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Abstract When measuring the shear modulus of wood 
by static bending tests, the basic theory is dependent on 
Timoshenko's bending theory. The shear modulus obtained 
by static bending is a much smaller value than that derived 
by other methods. We examined the applicability of 
Timoshenko's theory and propose an empirical equation 
that can derive the shear modulus properly. Three soft- 
woods and three hardwoods were used for the tests. First, 
the Young's modulus and shear modulus were measured by 
free-free flexural vibration tests. Then the three-point static 
bending tests were undertaken, varying the depth/span ra- 
tios. Additionally, the bending tests were simulated by the 
finite element method (FEM). The shear moduli obtained 
by these methods were then compared. The deflection be- 
haviors in static bending were not expressed by the original 
Timoshenko bending theory because of the stress distortion 
near the loading point. Based on the experimental results 
and numerical calculations, we modified the original 
Timoshenko bending equation. When using our modified 
equation the stress concentration must be carefully taken 
into account. 

Key words Shear modulus • Static bending test • Flexural 
vibration test • Timoshenko's bending theory • Depth/span 
ratio 

Introduction 

During the bending of beam-shaped material, the load- 
deflection relation is influenced by the shear stress that 
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occurs in the material. The effect of shear stress de- 
pends on the depth/span ratio of a beam; the effect of shear 
on the load-deflection relation is small when the beam 
has a small depth/span ratio, whereas it is marked when 
the depth/span ratio is large. In other words, the effect of 
shear stress can be controlled by varying the depth/span 
ratio. Several studies have measured the shear modulus of 
wood by static bending of the beams with various depth/ 
span ratios. 1'2 The values of shear moduli obtained from 
the bending tests were smaller than those obtained by 
other testing methods, such as torsion tests and 45 ° off- 
axis compression tests. 3'4 In our previous work, the shear 
moduli obtained by torsion tests coincided well with those 
obtained by the 45 ° off-axis compression tests. 3 Therefore 
we think there is a serious drawback when measuring 
shear modulus by static bending. In this study we con- 
ducted static bending tests of several wood species and 
examined the method for measuring shear modulus by this 
manipulation. 

Theory 

When measuring the shear modulus by bending, the 
method is dependent on Timoshenko's theory of bend- 
ing, described below. When the load P is imposed at a 
center of the beam with a span of l, the deflection at the 
loading point caused by the bending moment (Yb) can be 
written as 5 

p l  3 
Yb - (1) 

48EI  

where E and I are Young's modulus and the second mo- 
ment of cross-sectional area of the beam, respectively. 
When the beam is slender enough, the total deflection of the 
beam can be represented almost by (Yb)- When the depth/ 
span ratio of the beam is large, the effect of the shear- 
ing force should be taken into account. According to 
Timoshenko's theory, the deflection at the loading point 
caused by the shearing force (Ys) can be written as 
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sP1 
Ys - (2) 

4GA 

where G and A are the shear modulus and cross-sectional 
area of the beam, respectively, and s is Timoshenko's shear 
factor. When the factor s is defined as the maximum/aver- 
age shear stress ratio, it is 1.5 for a beam with a rectangular 
cross section. On the other hand, s is derived as 1.2 from 
calculation of strain energy. 5 Here we used the value 1.2 
for the factor s. The shear force, which does not distribute 
homogeneously in the shearing plane, is leveled by this 
factor. The total flexural displacement at the center of the 
beam (y) is represented as 

P13 sPl 
Y =Yb +Y, - - - +  - -  (3) 48EI 4GA 

When the beam has a rectangular section whose depth is h, 
Eq. (3) can be given as 

Pl 3 ( 1  s h2 I Pl 3 
Y = 4-~-" + - - .  - (4) G ~- 48E,I 

where 

+ ± .  
E~=~ G <l) (5) 

The value of Es, corresponding to the depth/span ratio h/I, is 
obtained from the P-y relation. Young's modulus (E) and 
the value of G/s can be obtained by varying the value of 
h/l. 

Experiment 

Specimens 

Sitka spruce (Picea sitchensis Carr.), Western hemlock 
(Tsuga heterophylla Sarg.), akamatsu (Japanese red pine, 
Pinus densiflora D. Don), yellow poplar (Liriodendron 
tulipfera L.), shioji (Japanese ash, Fraxinus spaethiana 
Lingelsh.), and balsa (Ochroma lagopus Sw.) were used 
in the experiments. These specimens were conditioned 
at 20°C and 65% relative humidity before and during the 
tests. 

Static bending tests 

Beam specimens were cut with the dimensions 500 mm (lon- 
gitudinal direction) × 30mm (radial direction) × 10, 20, and 
30ram (tangential direction). Six specimens were used for 
each test condition. Specimens were supported by spans 
varying from 130 to 480 mm at 50-ram intervals. The vertical 
load, whose velocity was 5 mm/min, was applied to the cen- 
ter of the longitudinal-radial (LR) surface with a loading 
head whose radius was 15 mm. The load-deflection diagram 
was recorded by a X-Y recorder. 

The value of Es, corresponding to each h/l, was obtained 
from the linear segment of the load-deflection diagram. The 

values of E and G/s were separated from the 1/Es-h/l 
relations by the method of least squares. 

Flexural vibration tests 

Free-free flexural vibration tests are often used to measure 
shear modulus because this method has been established as 
an acceptable measuring method for this parameter. In our 
study the vibration tests were conducted as follows. The test 
beam was suspended by two threads at the nodal positions 
of the free-free vibration corresponding to its resonance 
mode. The specimen was excited in the direction of the 
thickness at one end by a hammer. The resonance frequen- 
cies whose mode was from the first to the fourth were 
measured by the fast frequency transform (FFT) digital 
signal analyzer. Young's modulus and the shear modulus 
were obtained from the Timoshenko-Goens-Hearmon 
method, whose details are described in several previous 
papers. 6 Young's moduli and the shear moduli obtained 
from the static bending tests and vibration tests were com- 
pared with, and the validity of Timoshenko's bending 
theory was examined. 

FEM simulation of static bending 

Static bending tests were simulated by the finite element 
method (FEM). By comparing simulation results with ex- 
perimental ones, we also examined the validity of 
Timoshenko's boending theory. 

The program used was MSC/NASTRAN Ver. 67, a 
library program of the Computer Center of the University 
of Tokyo. Figure 1 shows the finite element mesh and 
boundary conditions used in our study. The finite elements 
were divided by the dimensions 1 × 1 mm. Young's moduli 
in the longitudinal and tangential directions (EL and Er), 
the shear modulus (GLT), and Poisson's ratio (VLr) used in 
the calculations are shown in Table 1. To examine the appli- 
cability of the bending theory to various species, we used 
the elastic moduli from an existing study for calculations 
independent of the experiment. 6 Supported points were 
variously changed in the same manner as for the static 
bending tests. A fixed displacement (0.5ram = Yc) was 
established at the top of the center of the beam, and the 
nodal force at the displaced point (P) was obtained. Es, 
corresponding to the depth/spa n ratio, was obtained by sub- 
stituting the values for Yc and P into Eq. (4). The calculated 
results were compared with those obtained using the static 
bending tests. 

Results and discussion 

Flexural vibration tests 

Table 2 shows Young's moduli and the shear moduli 
obtained from the vibration tests. As described in several 
previous reports, these values were adequate. Thus we ex- 



Fig. 1. Finite element mesh used 
for the numerical calculations 
(in millimeters). Meshes are uni- 
formly divided to the dimensions 
of 1 × i mm. Span is 130 to 480mm 
at 50-mm intervals 
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Table 1. Elastic constants used for finite element method analyses 3 

Spcies Scientific name E L (GPa) E T (GPa) GEt (GPa) VLr 

Sitka spruce Picea sitchensis Carr. 10.9 0.44 0.63 0.51 
Sugi Cryptomeria japonica D. Don 7.5 0.30 0.35 0.60 
Douglas fir Pseudotsuga menziesii Franco 16.0 0.80 0.90 0.45 
Buna Fagus crenata BI. 12.5 0.60 0.65 0.50 
Red lauan Shorea sp. 13.2 0.52 0.49 0.61 
Balsa Ochroma lagopus Sw. 3.9 0.60 0.14 0.23 

EL, E> Young's moduli in ~ longitudinal and tangential directions; GLr, Shear modulus; VEt, Poisson's 
Ratio. 

Table 2. Shear moduli (G~T) and Young's modulus (EL) obtained by 
flexural vibration tests 

Table 3. Shear modulius (Gbr) and Young's modulus (E b) obtained 
by the conventional Timoshenko bending theory 

Species G~T (GPa) EL (GPa) G~Lr/E~ Species G~r (GPa) E b (GPa) Eb/Gbr 

Spruce 0.91 11.4 12.5 Spruce 0.21 10.1 48.1 
Western hemlock 0.75 13.6 18 .1  Western hemlock 0.32 14.5 45.3 
Akamatsu 1.29 16.5 12 .9  Akamatsu 0.22 16.8 76.3 
Yellow poplar 0.77 12.1 15.7 Yellow poplar 0.21 12.2 58.1 
Shioji 0.85 12.0 14.1 Shioji 0.15 13.2 88.0 
Balsa 0.20 3.18 13.2 Balsa 0.05 2.90 61.7 

v, vibration test. b, bending test. 

amined the validity of the static bending tests by comparing 
their results with those obtained using the vibration tests. 

Applicability of Timoshenko 's  bending theory 

The 1/E,-h/l relation was regressed into Eq. (5). Young's  
modulus (E) and the shear modulus (G) were calculated 
and are shown in Table 3. As expected, the shear modulus 
was found to be much smaller than that obtained from the 
vibration tests for every species. In  contrast to the small 
values for the shear modulus, Young's  modulus was found 
to be higher than that obtained using the vibration tests. 

Figure 2 shows the relation between E / E , -  1 and h2/l 2 for 
yellow poplar, where 0.77 GPa was derived as the shear 
modulus. From Eq. (5), this relation should be expressed by 

a linear function if the deflection behavior is subject to 
Timoshenko 's  theory. In the range where h2/l 2 > 0.01 (h/l > 
0.1), however, the experimental  data deviate from the linear 
relation. Thus we thought that the applicable range should 
be limited to that where h/l < 0.1 if the conventional  
Timoshenko theory was used. Table 4 shows the shear 
moduli  obtained from the specimens whose depth/span ra- 
tios were smaller than 0.1. Al though the shear moduli  were 
close to those obtained from the vibration tests, they were 
still smaller. 

According to Dong and colleagues, stress concentrat ion 
at the loading point produced the additional deflection] 
Thus we thought that the shear modulus could be evaluated 
properly by Timoshenko 's  theory when the deflection was 
not measured at the loading point. Figure 3 shows the shear 
modulus (G) corresponding to the depth/span ratio ob- 
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Fig. 2. Value of (E/Es 1) calculated by substituting the shear modu- 
lus obtained from the vibration tests into Timoshenko's bending theory 
corresponding to the squares of depth/span ratio 
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Fig. 3. Shear modulus corresponding to the depth/span ratio obtained 
from the finite element method (FEM) calculations when the grid point 
for measuring the deflection was varied. Circles, measured at the load- 
ing point; squares, measured at the middle of the depth; triangles, 
measured at the opposite side of the loading point; broken line, shear 
modulus given as a material parameter (G = 0.63 GPa for spruce) 

Table 4. Shear moduli (Gbr) and Young's modulus (E~) obtained by 
Timoshenko's bending theory with the data in the range where the 
depth/span ratio was less than 0.1 

Species G~r (GPa) E b (GPa) ELIGrrb b 

Spruce 0.45 9.4 20.9 
Western hemlock 0.54 13.3 24.6 
Akamatsu 0.24 16.5 68.8 
Yellow poplar 0.28 11.8 42.1 
Shioji 0.15 13.3 88.7 
Balsa 0.08 2.70 33.8 

tained from the FEM calculations when the point used for 
measuring the deflection was varied. It is known that the 
shear modulus is calculated to be smaller when the deflec- 
tion is measured at the loading point. However, the shear 
modulus, which should be independent of the depth/span 
ratio, decreases with the increase in the depth/span ratio for 
all cases. Thus it would be difficult to evaluate the shear 
modulus by the conventional Timoshenko theory when the 
deflection is measured at any point other than the loading 
point. 

We undertook several trials, in vain, to obtain the shear 
modulus by the conventional Timoshenko theory. As 
pointed out by Uemura, a stress concentration near the load- 
ing point disturbs the stress distribution, and this distorted 
stress condition causes a low shear modulus. In fact, the 
flexural vibration method, in which no stress concentration 
exists, can provide a proper value for the shear modulus. 
The load-deflection relation cannot be predicted by the 
original Timoshenko theory when the stress concentration 

exists. From the results summarized above, we believe that 
the shear modulus cannot be predicted properly by the 
conventional Timoshenko bending theory. 

New proposal for deriving a proper shear modulus value 

It is true that we should solve a differential equation that 
can describe the distorted stress condition around the load- 
ing point when precisely determining the load-deflection 
relation. However, it is difficult to derive this equation, and 
the solution of the equation is complicated. Therfore we 
tried to modify the original Timoshenko bending theory 
to find one that can give the correct shear modulus using 
results from FEM calculations. 

We thought that Timoshenko's shear factor (s), which is 
1.2 (or 1.5) in the original Timoshenko theory, is dependent 
on the depth/span ratio. Thus we transformed Eq. (5) as 

and examined the dependence of s on the depth/span ratio 
with the FEM calculation results. Timoshenko's shear fac- 
tor (s) was calculated by substituting E and G (Table 1), 
h/l, and Es obtained from the FEM calculation into Eq. (6). 
Figure 4 shows the relations between the shear factor (s) 
calculated by Eq. (6) and the depth/span ratio (h/l). Accord- 
ing to the original Timoshenko theory, s should be a con- 
stant value of 1.2 or 1.5. Nevertheless, Fig. 4 suggests that 
the shear factor is represented by a linear function whose 
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Fig. 4. Dependence of Timoshenko's shear factor on the depth/span 
ratio obtained from the FEM calculations. Open circles, spruce; open 
squares, Sugi; open triangles; Douglas fir solid circles, red melanti; solid 
squares, buna; solid triangles, balsa 
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tained by the calculation results of 1/Es-h / l  regressed into 
Eq. (8) when the values of as were determined to be 35. The 
plausible values of shear moduli were obtained for the spe- 
cies tested here. As for spruce and balsa, Young's  moduli 
are estimated to be smaller by Eq. (8) than those obtained 
from the vibration tests, although the shear moduli are close 
to those determined by the vibration tests. This phenom- 
enon is because of the small values of E, in the small depth/ 
span ratio ranges where the influence of shearing force is 
negligible. To increase the accuracy of Young's  modulus, 
the apparent  Young's  modulus in the small depth/span ratio 
range should be correct. 

The disagreement of a between the FEM calculations 
and testing results is due to the difference of deformation 
around the loading point. We believe that the evaluation of 
the shear modulus is influenced by the shape of the loading 
head (whose radius was 15 mm in this experiment), and that 
the applicability of this method is limited by the testing 
condition. To obtain a plausible value for the shear modulus 
by static bending tests, the stress concentration by the load- 
ing point should be considered carefully. Otherwise, we 
should measure the shear modulus of wood by another 
method, such as static torsion tests, 3 45 ° off-axis tests, 9 tor- 
sional vibration tests, 1° or the ftexural vibration tests used 
here. 

Table 5. Shear moduli (G~T) and Young's modulus (E b) derived by 
our proposed method 

Species G~r (GPa) E b (GPa) E~IG~r 

Spruce 0.89 9.3 10.5 
Western hemlock 0.86 15.5 18.0 
Akamatsu 0.95 15.5 16.3 
Yellow poplar 0.97 11.3 11.6 
Shioji 0.81 11.2 13.8 
Balsa 0.17 2.44 14.1 

intercept is 1.2. Thus we defined the shear factor dependent  
on the depth/span ratio as s '  and supposed it to be derived 
as follows 

h 
s' = 1.2 + a - -  (7) 

l 

where c~ is a constant coefficient. Equation (7) shows that 
the deflection behavior is described by the original 
Timoshenko bending theory derived by calculating the 
strain energy (s = 1.2) when the depth/span ratio is small 
enough. With these adjustments, we modified Eq. (5) as 
follows: 

1 _ 1 F - - -  (8) 
E~ E G 

From the calculations, the values of as were about 10. 
Nevertheless, the proper  values of shear moduli were not 
obtained by substituting 10 into cq we then adjusted the 
value of c~, and the proper  shear moduli were obtained. 
Table 5 shows Young 's  moduli and the shear moduli ob- 

Conclusions 

We examined the method for measuring the shear modulus 
of wood by static bending tests and obtained the following 
results. 

1. Using the static bending test, the load-deflection be- 
havior could not be predicted by the original Timoshenko 
bending theory. Hence we believe it is difficult to obtain 
the correct shear modulus of wood using the original 
Timoshenko theory. 

2. By modifying Timoshenko's  theory, we derived a 
method for measuring shear modulus by static bending. 

3. When measuring the shear modulus using static bend- 
ing tests, the stress concentration imposed by the loading 
point must be carefully considered. 

Acknowledgments We thank Prof. Tetsuya Nakao for his advice on 
conducting our experiment. A part of this research was supported by a 
Grant-in-Aid for Scientific Research (No. 07760159) from the Ministry 
of Education, Science and Culture of Japan. 

References 

1. Wangaad FF (1964) Elastic deflection of wood-fiberglass compos- 
ite beams. Forest Prod J 14:256-260 

2. Biblis EJ (1965) Shear deflection of wood beams. Forest Prod J 
15:492-498 

3. Yoshihara H, Ohta M (1993) Measurement of the shear moduli of 
wood by the torsion of a rectangular bar. Mokuzai Gakkaishi 
39:993-997 

4. Hearmon RFS (1948) Elasticity of wood and plywood. HMSO, 
London, pp 6-7 



20 

5. Timoshenko SP (1955) Strength of materials. Part 1. Elementary 
theory and problems, 3rd edn. Van Nostrand, New York, pp 165- 
310 

6. Hearmon RFS (1958) The influence of shear and rotatory inertia 
on the free flexural vibration of wooden beams. Br J Appl Phys 
9:381-388 

7. Dong Y, Nakao T, Tanaka C, Takahashi A, Nishino Y (1994) 
Effects of the shear, compression values of loading points, and 
bending speeds on Young's moduli in the bending of wood based 
panels (in Japanese). Mokuzai Gakkaishi 40:481-490 

8. Uemura M (1981) Problems and designing the standards of me- 
chanical tests of fiber reinforced plastics II (in Japanese). Trans Jpn 
Soc Comp Mater 7(2):74-81 

9. Kon T (t948) On the law of variation of the modulus of elasticity 
for bending in wooden beams. Bull Hokkaido Univ Dept Eng 
1:157-166 

10. Nakao T (1984) Measurement of the anisotropic-shear modulus by 
the torsional vibration method for flee-free wooden beams (in 
Japanese). Mokuzai Gakkaishi 30:877-885 


