Takeshi Katayama • Jyoji Tsutsui - Kazuo Tsueda
Takao Miki - Yasuhiro Yamada - Murao Sogo

Absolute configuration of arylglycerol- β-aryl ethers obtained by asymmetric reduction of the corresponding α-ketonic compound with intact Fusarium solani cells

Received: July 27, 1999 / Accepted: November 22, 1999

Abstract

When (\pm)- α-oxo-guaiacylglycerol- β-(vanillic acid) ether (1) is degraded by Fusarium solani M-13-1, the α-ketone is initially reduced to give erythro and threo guaiacylglycerol- β-(vanillic acid) ethers (2), arylglycerol- β-aryl ethers, both of which are enantiomerically pure. The absolute configuration in each 2 was determined by Mosher's method; the products were converted to α, γ-di- (R) - α-methoxy- α-trifluoromethylphenylacetates (MTPA esters) ($\mathbf{3}^{\prime}$) of erythro (-)- and threo (+)-veratrylglycerol- β-(methyl vanillate) ethers (3), whose ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were examined and compared with those of four di-(R)-MTPA ester ($\mathbf{3}^{\prime}$) diastereomers from chemically synthesized erythro $(\pm)-\mathbf{3}$ and threo (\pm)-3. To assign the α - and γ-MTPA- OCH_{3} peaks, the ${ }^{1} \mathrm{H}$ NMR scans of several compounds that have substructures of $\mathbf{3}^{\prime}$ and their 3,4,5-trimethoxyphenyl analogues were examined. When a racemic alcohol reacts with (R)-MTPA to give a pair of (R)-MTPA ester diastereomers, the $\Delta \delta$ value was defined as the absolute value of the difference in the ${ }^{1} \mathrm{H}$ chemical shifts of the peak between the diastereomers. It was found that the $\Delta \delta$ values of α-MTPAOCH_{3} were larger than those of γ-MTPA- OCH_{3} owing to a shielding effect of the veratryl ring located on the α -MTPA- OCH_{3}, and that the α-MTPA- OCH_{3} peaks in the 3,4,5-trimethoxyphenyl compounds shifted downfield relative to those in the veratryl compounds. On the basis of the ${ }^{1} \mathrm{H}$ NMR data of (R)-MTPA esters, the absolute configuration of the four chemically prepared diastereomers (3^{\prime}) were determined. The catabolic erythro $\mathbf{3}^{\prime}$ [from erythro $(-)-3]$ and threo 3 ' $[$ from threo $(+)-3]$ were identical to $(R$, $\alpha S, \beta R)$-erythro 3^{\prime} and $(R, \alpha S, \beta S)$-threo $\mathbf{3}^{\prime}$, respectively. An

[^0]Part of this paper was presented at the 33rd Lignin Symposium, 'Tsukuba, November 1988
hydrogen species in the fungal reduction would attack the α-ketone from re-face of both $(\beta R)-1$ and $(\beta S)-1$, giving erythro $(\alpha S, \beta R)-2$ and threo $(\alpha S, \beta S)-2$, respectively.

Key words Arylglycerol- β-aryl ether • MTPA • Absolute configuration \cdot Asymmetric reduction \cdot Fusarium solani

Introduction

Arylglycerol- β-aryl ethers are the major substructures in lignin, and α-carbonyl structures are considered to be characteristic in decayed wood lignin. We had studied the degradation of (\pm) - α-oxo-guaiacylglycerol- β-(vanillic acid) ether (1) (Fig. 1), which has both characteristics, by Fusarium solani M-13-1 and then found that the α-ketone is reduced to the secondary alcohols, giving erythro and threo guaiacylglycerol- β-(vanillic acid) ethers (2), ${ }^{1}$ both of which are enantiomerically pure. ${ }^{2}$ In the present paper, we report determination of their absolute configurations derived by Mosher's method ${ }^{3-5}$ and the ${ }^{1} \mathrm{H}$ NMR spectroscopy of (R)$\left(+\right.$)-MTPA esters (3^{\prime}) of veratrylglycerol- β-(methyl vanillate) ethers (3) derivatized from 2 ; we preliminary reported this material for the first time previously. ${ }^{2}$ There had been no reports on the absolute configuration of arylglycerol- β aryl ethers, although these structures in lignins and as $8-O-$ 4^{\prime} neolignans are considered to be most abundant ones on earth next to carbohydrates. On the basis of the absolute configuration, stereochemistry during the fungal reduction is discussed.

Results and discussion

Preparation of α, γ-di- (R)-MTPA esters (3') of
veratrylglycerol- β-(methyl vanillate) ethers (3)
The fungal reduction product $\mathbf{2}$ was methylated with diazomethane, giving 3 . ${ }^{1}$ Erythro and threo isomers of both of the catabolic 3 and synthetic 3 were separated as de-

Fig. 1. Structures of compounds. Configurations of four stereoisomers of $\mathbf{2}$ or $\mathbf{3}$ are shown in Fig. 4

1

4. $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$

4' $\mathrm{R}=(R)-$ MTPA, $\mathrm{R}^{\prime}=\mathrm{H}$ $4 \mathrm{M} \mathrm{R}=\mathrm{H}_{1} \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$ $4^{\prime} \mathrm{M} R=(R)-\mathrm{MTPA}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$

$7 \quad \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$
7' $\mathrm{R}=(R)-\mathrm{MTPA}, \mathrm{R}^{\prime}=\mathrm{H}$
$7 \mathrm{M} R=\mathrm{H}_{1} \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$
$7^{\prime} \mathrm{MR}=(R)-\mathrm{MTPA}_{1} \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$

2

5. $\quad R=R^{\prime}=H$
5. $\mathrm{R}=$ (A) -MTPA, $\mathrm{R}^{\prime}=\mathrm{H}$ $5 \mathrm{M} \quad \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$ $5^{\prime} \mathrm{M} \mathrm{R}=(R)-\mathrm{MTPA}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$

$8 \quad R=R^{\prime}=H$
8' $\mathrm{R}=(R)-\mathrm{MTPA}, \mathrm{F}^{\prime}=\mathrm{H}$
$8 \mathrm{M} R=\mathrm{H}, \mathrm{F}^{\prime}=\mathrm{OCH}_{3}$
$8^{\prime} \mathrm{M} R=(R)-M T P A, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$

$9 \quad R=R^{\prime}=H$
$9^{\prime} \quad \mathrm{R}=(R)-$ MTPA, $\mathrm{R}^{\prime}=\mathrm{H}$
$9 M \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OC} \mathrm{H}_{3}$
$9^{\prime} \mathrm{MR}=(R)-\mathrm{MTPA}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$
(R)-(+)-MTPA

Table 1. Chemical shifts of MTPA-OCH ${ }_{3}$ of synthetic ($\mathbf{3}^{\prime}$ a and $\mathbf{3}^{\prime} \mathrm{b}$) and catabolic ($\left.\mathbf{3}^{\prime} \mathrm{b}\right) ~ \alpha, \gamma$-di- (R)-MTPA esters of veratrylglycerol- β (methyl vanillate) ethers and synthetic ($\mathbf{3}^{\prime} \mathrm{Ma}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$) α, γ - $\mathrm{di}-(R)$ MTPA esters of $3,4,5$-trimethoxyphenylglycerol- β-(methyl vanillate) ethers

Compound		${ }^{1} \mathrm{H}$ Chemical shifts (δ) of MTPA- OCH_{3}	
		α	γ
Synthetic Erythro	3'a	3.533	3.436
	$3^{\prime} \mathrm{b}$	3.384	3.502
Catabolic Erythro	3 'b	3.385	3.503
Synthetic Erythro	$3^{\prime} \mathrm{Ma}$	3.565	3.437
	$3^{\prime} \mathrm{Mb}$	3.412	3.504
Synthetic Threo	3'a	3.585	3.401
	$3^{\prime} \mathrm{b}$	3.395	3.438
Catabolic Threo	3'b	3.396	3.439
Synthetic Threo	$3^{\mathbf{\prime}} \mathrm{Ma}$	3.603	3.430
	$\mathbf{3}^{\prime} \mathrm{Mb}$	3.456	3.442

scribed previously ${ }^{2}$ and treated individually with (R)MTPA chloride by a method described in the literature ${ }^{3}$ to afford α, γ-di-(R)-MTPA esters ($\mathbf{3}^{\prime}$).

The α, γ-di-((R)-MTPA esters of the synthetic erythro $(\pm)-\mathbf{3}[(\alpha R, \beta S)-3$ and $(\alpha S, \beta R)-3]$ are a pair of diastereomers that showed two spots [erythro $\mathbf{3}^{\prime}$ a (upper spot) and erythro $\mathbf{3}^{\prime} \mathrm{b}$ (lower spot)] on thin-layer chromatography (TLC) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane $3: 1$, eight times). In contrast, di(R)-MTPA esters $\mathbf{3}^{\prime}$ of the catabolic erythro $\mathbf{3}$ gave one spot on TLC that was identical to the erythro $\mathbf{3}^{\prime} \mathrm{b}$ spot. Similarly, the α, γ-di- (R)-MTPA esters of the synthetic threo (\pm)-3 $[(\alpha R, \beta R)-3$ and $(\alpha S, \beta S)-3]$ also gave a pair of diastereomers as two spots [threo $\mathbf{3}^{\prime}$ a (upper spot) and threo $\mathbf{3}^{\prime} \mathbf{b}$ (lower spot)] on TLC (EtOAc/n-hexane 1:3, three times), whereas the di-(R)-MTPA esters $\mathbf{3}^{\prime}$ of the catabolic threo 3
gave one spot on TLC that was identical to the spot of threo $3^{\prime} \mathrm{b}$.

The ${ }^{1} \mathrm{H}$ NMR spectra of both catabolic erythro $\mathbf{3}^{\prime} \mathrm{b}$ and threo $\mathbf{3}^{\prime} \mathrm{b}$ also were identical to those of the synthetic compounds. Table 1 shows the chemical shifts of the $a, \gamma-$ MTPA- OCH_{3} in erythro $\mathbf{3}^{\prime} \mathrm{a}$ and $\mathbf{3}^{\prime} \mathrm{b}$ and in threo $\mathbf{3}^{\prime} \mathrm{a}$ and $3^{\prime} \mathrm{b}$.

Mosher method
To determine the absolute configuration of chiral secondary benzyl alcohols, it is effective to measure the ${ }^{1} \mathrm{H}$ NMR spectra of the (R) - or (S)-MTPA ester derivatives of the sample alcohols: A preferred conformation of the MTPA ester has $\alpha-\mathrm{CF}_{3}$, the carbonyl $(\mathrm{C}=\mathrm{O})$ of the MTPA ester, and the benzyl C-H in an eclipsed arrangement. ${ }^{4}$

In case of a (S)-secondary veratryl (benzyl) ester of (R)MTPA (Fig. 2), ${ }^{4,5}$ the (R)-MTPA-OCH ${ }_{3}$ is located on the veratryl ring and the X moiety is on the benzene ring of the MTPA moiety. In contrast, in the case of an (R)-secondary veratryl (benzyl) ester of (R)-MTPA, ${ }^{4.5}$ the (R)-MTPAOCH_{3} is not on the veratryl ring nor is the X moiety on the benzene ring. Therefore, the ${ }^{1} \mathrm{H}$ chemical shift $\left(\delta_{\mathrm{s}}\right)$ of the (R)-MTPA- OCH_{3} in the (S)-veratryl ester is upfield relative to that $\left(\delta_{\mathrm{R}}\right)$ in the (R)-veratryl ester, and the ${ }^{1} \mathrm{H}$ chemical shift (δ_{s}^{\prime}) of the C-H in the X moiety of the (S)-veratryl ester is upfield relative to that ($\delta_{\mathrm{R}}^{\prime}$) of the (R)-veratryl ester. Consequently, the absolute configuration of the secondary veratryl (benzyl) alcohol derivative is determined with the absolute values of the differences between the two chemical shifts, $\left|\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right|=\Delta \delta$ and $\left|\delta_{\mathrm{S}}^{\prime}-\delta_{\mathrm{R}}^{\prime}\right|=\Delta \delta^{\prime}$.

In the case of erythro $\mathbf{3},(\alpha S)$-erythro- $\mathbf{3}^{\prime}$ ' would adopt a preferential conformation, as shown in Fig. 2. The MTPA-

Fig. 2. Reaction of (αR) - and (αS)-secondary benzyl alcohols (veratryl alcohol derivatives) with $(R)-(+)$-MTPA chloride and preferred conformation of the resulting $(R, \alpha R)$ and ($R, \alpha S$) MTPA esters. The Newman projection formulas show shielding effects of the veratryl ring on the MTPA- OCH_{3} and of the benzene ting on the X moiety. (Ether oxygen atoms in the MTPA esters are omitted.) When the X is $-\mathrm{CH}_{3}$ (5^{\prime}) or $-\mathrm{CH}_{2} \mathrm{CH}_{2}$-OMTPA (9^{\prime}), the symbols (αR) and (αS) should read (αS) and (αR), respectively
OCH_{3} would be located on the veratryl ring, and the $\mathrm{C} \beta-\mathrm{H}$ in the X moiety would be on the benzene ring of the MTPA. As a consequence, upfield shifts of both of the MTPAOCH_{3} peak and the $\mathrm{C} \beta-\mathrm{H}$ peak are expected in the ${ }^{1} \mathrm{H}$ NMR spectra. In contrast, in (αR)-erythro- $\mathbf{3}^{\prime}$, neither the MTPA- OCH_{3} nor the $\mathrm{C} \beta$-H peaks have such effects because neither is located on the aromatic rings. Therefore, the α - (R)-MTPA- OCH_{3} and the $\mathrm{C} \beta-\mathrm{H}$ in (αS)-erythro- $\mathbf{3}^{\prime}$ are expected to shift upfield rather than those in the (αR) isomer. In this investigation, a pair of the diastereomers, erythro 3^{\prime} a and erythro $3^{\prime} \mathrm{b}$, were successfully separated by preparative TLC, their ${ }^{1} \mathrm{H}$ NMR scans were examined individually, and the $\Delta \delta$ values of the MTPA- OCH_{3} were evaluated to distinguish between α - and γ-MTPA- OCH_{3}, as described in the following sections and to determine the absolute configuration. However, the $\Delta \delta^{\prime}$ values for $\mathrm{C} \beta-\mathrm{H}$ were not used because the $\mathrm{C} \beta-\mathrm{H}$ peaks were broad multiplets and sometimes overlapped other peaks.

In the case of threo $3, \alpha-(R)$-MTPA- OCH_{3} and the $\mathrm{C} \beta-\mathrm{H}$ in $(R, \alpha S, \beta S)-\mathbf{3}^{\prime}$ are expected to shift at a higher field than those in the (αR)-isomer. Thus, for threo 3^{\prime} a and threo $3^{\prime} \mathrm{b}$ the $\Delta \delta$ values were examined by the same manner as the erythro isomers.

Distinction between α - and $\gamma-(R)$-MTPA-OCH 3 peaks of related compounds of 3^{\prime} by ${ }^{1} \mathrm{H}$ NMR

Because ${ }^{1} \mathrm{H}$ NMR peaks of the α-MTPA- OCH_{3} of 3^{\prime} were close to or partially overlapped those of the γ-MTPAOCH_{3} of $\mathbf{3}^{\prime}$, it was necessary to assign the peaks as α or γ. To establish ${ }^{1} \mathrm{H}$ NMR assignments of the MTPA-OCH O_{3} s of 3^{\prime}, the (R)-MTPA esters of veratryl compounds, $4^{\prime}, 5^{\prime}, 6^{\prime}$, $7^{\prime}, 8^{\prime}$, and 9^{\prime} with the substructure of $\mathbf{3}^{\prime}$ and their $3,4,5$ trimethoxyphenyl analogues ($3^{\prime} \mathrm{M}$ to $9^{\prime} \mathrm{M}$) (Fig. 1) were synthesized, and chemical shifts (δ) of their MTPA-OCH esters and the $\Delta \delta$ values were determined.

Figure 3 shows the chemical shifts of $\mathbf{3}^{\prime}$ (white columns), $3^{\prime} \mathrm{M}$ (black columns), and their related compounds $4^{\prime}, 5^{\prime}, 6^{\prime}$, $7^{\prime}, 8^{\prime}, 9^{\prime}$ (white columns) and, $4^{\prime} \mathrm{M}, 5^{\prime} \mathrm{M}, 6^{\prime} \mathrm{M}, 7^{\prime} \mathrm{M}, 8^{\prime} \mathrm{M}$, and $9^{\prime} \mathrm{M}$ (black columns). Because $5,6,8,9,5 \mathrm{M}, 6 \mathrm{M}, 8 \mathrm{M}$, and 9 M , which have an asymmetric carbon, were synthesized as racemates, their (R)-MTPA esters $\left(5^{\prime}, 6^{\prime}, 8^{\prime}, 9^{\prime}, 5^{\prime} \mathrm{M}, 6^{\prime} \mathrm{M}\right.$, $8^{\prime} \mathrm{M}, 9^{\prime} \mathrm{M}$) are couples of diastereomers.

Compounds $4^{\prime}, 4^{\prime} M, 5^{\prime}, 5^{\prime} M, 6^{\prime}, 6^{\prime} M, 7^{\prime}, 7^{\prime} M, 8^{\prime}$, and $8^{\prime} M$

Figure 3 indicates that it is impossible to distinguish α - and γ-MTPA- OCH_{3} by chemical shifts alone. The α-MTPAOCH_{3} peak of 4^{\prime} and $4^{\prime} \mathrm{M}$ was at $\delta 3.508$ and 3.537 , respectively. The α-MTPA- OCH_{3} peaks of 5^{\prime} appeared at $\delta 3.464$ and 3.559 , and those of $5^{\prime} \mathrm{M}$ at $\delta 3.488$ and 3.583. The upfield peaks would be under the shielding effect by the veratryl nuclei, but the downfield ones would not; hence the upfield peaks were assigned to α-MTPA- OCH_{3} of (αR) form and the downfield ones to that of (αS) form. Two diastereomers, 6'a (upper spot) and 6^{\prime} b (lower spot), showed their α -MTPA- OCH_{3} peaks at $\delta 3.624$ and 3.485 , respectively. The configuration of $6^{\prime} \mathrm{b}$ was determined to be αS, as the α -MTPA- OCH_{3} peak of $6^{\prime} \mathrm{b}$ was subject to the shielding effect by the veratryl ring, whereas that of 6^{\prime} a was determined to be αR. Similarly, the $\mathrm{C} \alpha$ configurations of $6^{\prime} \mathrm{M}$, whose MTPA- OCH_{3} peaks appeared at $\delta 3.509(\alpha S)$ and at $\delta 3.641$ (αR), were determined as in parentheses.

Compounds $\mathbf{7}^{\prime}, 7^{\prime} \mathrm{M}, 8^{\prime}$, and $\mathbf{8}^{\prime} \mathrm{M}$ are mono-MTPA ester derivatives of the γ-primary alcohols. The MTPA-OCH ${ }_{3}$ peaks of 7^{\prime} and $7^{\prime} \mathrm{M}$ appeared at $\delta 3.558$ and 3.557 , respectively. The MTPA- OCH_{3} peaks of the diastereomeric mixture $\mathbf{8}^{\prime}$ were at $\delta 3.472$ and 3.518 , and those of $\mathbf{8}^{\prime} \mathrm{M}$ were at $\delta 3.464$ and 3.513 . There was little difference in the MTPAOCH_{3} chemical shifts between 7^{\prime} and $7^{\prime} \mathrm{M}$ or between 8^{\prime} and $8^{\prime} \mathrm{M}$.

Rules 1 and 2

On the basis of the above results, it was confirmed (Fig. 3) that the $\Delta \delta$ of α-MTPA- OCH_{3} attached to the asymmetric $\mathrm{C} \alpha\left(\mathbf{5}^{\prime}, \mathbf{5}^{\prime} \mathrm{M}, \mathbf{6}^{\prime}, \mathbf{6}^{\prime} \mathrm{M}\right)$ are larger than the $\Delta \delta$ of γ-MTPAOCH_{3} attached to $\mathrm{C} \gamma$ adjacent to the asymmetric or achiral $\mathrm{C} \beta\left(\mathbf{8}^{\prime}\right.$ and $\left.\mathbf{8}^{\prime} \mathrm{M}\right)$ because of the shielding effect by the veratryl and 3,4,5-trimethoxyphenyl nuclei (rule 1).

Fig. 3. ${ }^{1} \mathrm{H}$ NMR chemical shifts of MTPA- OCH_{3} peaks. The white and black columns correspond to the chemical shifts of $3^{\prime}-9^{\prime}$ with the Ar group and of $3^{\prime} \mathrm{M}-9^{\prime} \mathrm{M}$ with the Ar_{m} group, respectively. Diastereomers $9^{\prime} \mathrm{a}$ and $9^{\prime} \mathrm{Ma}$ correspond to longer columns and $9^{\prime} \mathrm{b}$ and $9^{\prime} \mathrm{Mb}$ to the shorter columns. Diastereomers 3'a and $\mathbf{3}^{\prime} \mathrm{Ma}$ correspond to shorter columns and $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ to longer columns

Furthermore, comparing the chemical shifts of (R)-MTPA- OCH_{3} of $4^{\prime}-6^{\prime}$ with those of $4^{\prime} \mathrm{M}-6^{\prime} \mathrm{M}$, it was found that the chemical shifts of $\alpha-(R)$-MTPA- OCH_{3} of $\mathbf{4}^{\prime} \mathrm{M}-6^{\prime} \mathrm{M}$ were shifted downfield ($0.017-0.034 \mathrm{ppm}$) relative to those of $\mathbf{4}^{\prime}-\mathbf{6}^{\prime}$, whereas there was little difference between the chemical shifts of $\gamma-(R)$-MTPA- OCH_{3} of $7^{\prime} \mathrm{M}-8^{\prime} \mathrm{M}$ and those of $\mathbf{7}^{\prime}-\mathbf{8}^{\prime}$ (rule 2).

Compounds 9^{\prime} and $9^{\prime} M$

Assignments of the peaks between $\alpha-$ and $\gamma-(R)$-MTPAOCH_{3} and determination of the absolute configuration of
$9^{\prime} \mathrm{a}, 9^{\prime} \mathrm{b}, 9^{\prime} \mathrm{Ma}$, and $9^{\prime} \mathrm{Mb}$ were attempted using the rules 1 and 2 . Because two diastereomers (9^{\prime} a and 9^{\prime} b) were partially separated by preparative TLC, giving two fractions, the MTPA- OCH_{3} peaks of 9^{\prime} a $(\delta 3.418,3.546)$ were able to distinguish from those of $9^{\prime} \mathrm{b}(\delta 3.504,3.546)$ by the relative peak areas. Because the peak of 9^{\prime} a at $\delta 3.418$ appeared to be upfield remarkably relative to the other peak of $9^{\prime} a$ and to the two peaks of $9^{\prime} \mathrm{b}$, rule 1 applies in this case; the $\Delta \delta$ values between $\delta 3.418$ (9^{\prime} a) and $3.504\left(9^{\prime} \mathrm{b}\right)$ and between δ $3.418\left(9^{\prime} \mathrm{a}\right)$ and $\delta 3.546\left(9^{\prime} \mathrm{b}\right)$ were larger than the $\Delta \delta$ values between $\delta 3.546\left(9^{\prime} \mathrm{a}\right)$ and $3.504\left(9^{\prime} \mathrm{b}\right)$ and between 3.546 $\left(9^{\prime} \mathrm{a}\right)$ and $\delta 3.546\left(9^{\prime} \mathrm{b}\right)$. Therefore, the peak of 9^{\prime} a at $\delta 3.418$ was assigned to α-MTPA- OCH_{3} on the veratryl ring, and the absolute configuration of 9^{\prime} a was determined as (αR). Thus, the peak at $\delta 3.546$ in 9^{\prime} a was assigned to γ-MTPAOCH_{3}, and the absolute configuration of $9^{\prime} \mathrm{b}$ was determined as (αS). Assignment of the peak of $9^{\prime} b$ is shown later.

In the case of $9^{\prime} \mathrm{Ma}$ and $9^{\prime} \mathrm{Mb}$, similar to the above, the MTPA- OCH_{3} peaks of $9^{\prime} \mathrm{Ma}(\delta 3.531-3.557)$ were distinguished from those of $9^{\prime} \mathrm{Mb}(\delta 3.453,3.531-3.557)$ by their relative peak areas. Because the clearly resolved MTPAOCH_{3} peak of $9^{\prime} \mathrm{Mb}$ at $\delta 3.453$ appeared upfield relative to the other MTPA- OCH_{3} peak of $\mathbf{9}^{\prime} \mathrm{Mb}$ and to the peaks of $9^{\prime} \mathrm{Ma}$ (which also suggested that $\Delta \delta$ between the peak at δ 3.453 and the peak of $9^{\prime} \mathrm{Ma}$ was larger than $\Delta \delta$ between the peak of $9^{\prime} \mathrm{Mb}$ at $\delta 3.531-3.557$ and the peak of $9^{\prime} \mathrm{Ma}$), the peak of $9^{\prime} \mathrm{Mb}$ at $\delta 3.453$ was assigned as the α-MTPA- OCH_{3} located on the $3,4,5$-trimethoxyphenyl ring, and absolute configuration of $9^{\prime} \mathrm{Mb}$ was determined as (αR). Thus the peak of $9^{\prime} \mathrm{Mb}$ at $\delta 3.531-3.557$ was assigned to γ-MTPAOCH_{3}, and the absolute configuration of $9^{\prime} \mathrm{Ma}$ was determined as (αS). Thus, it was found that the α-peak at 3.453 of $(\alpha R)-9^{\prime} \mathrm{Mb}$ was shifted downfield relative to the α-peak at 3.418 of $(\alpha R)-9^{\prime}$ a, which is consistent with rule 2 . In the case of $\mathbf{9}^{\prime} \mathrm{Ma}, \gamma$-MTPA- OCH_{3} and α-MTPA- OCH_{3}, which was not shifted upfield, overlapped each other upon $\delta 3.531$ 3.557.

Finally, compared the peaks of $(\alpha S)-9^{\prime} \mathrm{b}(\delta 3.504,3.546)$ with those of $(\alpha S)-9^{\prime} \mathrm{Ma}[\delta 3.531-3.557(\alpha$ and $\gamma)]$, the peaks were assigned to $3.504(\alpha)$ and $3.546(\gamma)$.

Distinction of α - and $\gamma-(R)$-MTPA- OCH_{3} peaks of 3^{\prime} and $3^{\prime} \mathrm{M}$ and the absolute configuration of erythro 3^{\prime} and threo 3^{\prime}

The assignment of α - and $\gamma-(R)$-MTPA- OCH_{3} peaks of synthetic erythro and threo $\mathbf{3}^{\prime}$, and erythro and threo $\mathbf{3}^{\prime} \mathrm{M}$, based on rules 1 and 2, are shown in Table 1 and Fig. 3. (Erythro $\mathbf{3}^{\prime} \mathrm{Ma} / \mathbf{3}^{\prime} \mathrm{Mb}$ and threo $\mathbf{3}^{\prime} \mathrm{Ma} / \mathbf{3}^{\prime} \mathrm{Mb}$ were defined in the same manner as erythro $\mathbf{3}^{\prime} \mathrm{a} / \mathbf{3}^{\prime} \mathrm{b}$ and threo $\mathbf{3}^{\prime} \mathrm{a} / \mathbf{3}^{\prime} \mathrm{b}$.)

Erythro isomer

Because erythro $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ have ${ }^{1} \mathrm{H}$ peaks of MTPAOCH_{3} markedly upfield, it was suggested that both peaks were due to α-MTPA- OCH_{3} with (αS)-configuration, and thus $\mathbf{3}^{\prime} \mathrm{a}$ and $\mathbf{3}^{\prime}$ Ma have (αR)-configuration. The assignments in Table 1 were consistent with rules 1 and 2 as follows.

The $\Delta \delta$ values for α-MTPA- OCH_{3} in $3^{\prime}\left(\left|\delta_{3^{\prime} \mathrm{b}}-\delta_{3^{\prime} \mathrm{a}}\right|\right)$ and $3^{\prime} \mathrm{M}\left(\left|\delta_{3^{\prime} \mathrm{Mb}}-\delta_{3^{\prime} \mathrm{Ma}}\right|\right)$ are 0.149 and 0.153 ppm , respectively, which are apparently larger than those of γ-MTPA- OCH_{3} : 0.034 ppm in $\mathbf{3}^{\prime}\left(\left|\delta_{3^{\prime} \mathrm{b}}-\delta_{3^{\prime} \mathrm{a}}\right|\right)$ and 0.068 ppm in $\mathbf{3}^{\prime} \mathrm{M}\left(\mid \delta_{3^{\prime} \mathrm{Mb}}{ }^{-}\right.$ $\left.\delta_{3^{\prime} \mathrm{Ma}} \mathrm{I}\right)$.

The differences of the chemical shifts of α-MTPA- OCH_{3} between $\mathbf{3}^{\prime}$ and $\mathbf{3}^{\prime} \mathrm{M}$ are obtained by subtracting $\delta_{\mathbf{3}^{\prime} \mathrm{a}}$ from $\delta_{3^{\prime} \mathrm{Ma}}(0.032 \mathrm{ppm})$ and by subtracting $\delta_{3^{\prime} \mathrm{b}}$ from $\delta_{3^{\prime} \mathrm{Mb}}$ $(0.028 \mathrm{ppm})$, whereas those of γ-MTPA-OCH ${ }_{3}$ between 3^{\prime} and $3^{\prime} \mathrm{M}$ are small $\left(\delta_{3^{\prime} \mathrm{Ma}^{\prime}}-\delta_{3^{\prime} \mathrm{a}}=0.001 \mathrm{ppm} ; \delta_{3^{\prime} \mathrm{Mb}}-\delta_{3^{\prime} \mathrm{b}}=\right.$ $0.002 \mathrm{ppm})$.

Thus it was established that the α-MTPA- OCH_{3} of $3^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ were affected by the shielding effect of veratryl and 3,4,5-trimethoxyphenyl rings, respectively, whereas those of neither $\mathbf{3}^{\prime}$ a nor $\mathbf{3}^{\prime} \mathrm{Ma}$ were affected. Consequently, the $\mathrm{C} \alpha$ of $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ have an (S)-configuration, whereas the $\mathrm{C} \alpha$ of $\mathbf{3}^{\prime}$ a and $\mathbf{3}^{\prime} \mathrm{Ma}$ have an (R)-configuration. The absolute configuration of catabolic product erythro $\mathbf{3}^{\prime}$ ($\mathbf{3}$ and 2) was determined to be $(\alpha S, \beta R)$.

The NOESY (two-dimensional nuclear Overhauser effect spectroscopy) spectrum of erythro $\mathbf{3}^{\prime} \mathrm{b}$ revealed the presence of a cross peak between the MTPA-OCH 3 peak at $\delta 3.384$ and the peak of Ar-A2-H. Consequently, it was confirmed that (αS)-erythro $\mathbf{3}^{\prime} \mathrm{b}$ adopts the conformation that the α-MTPA- OCH_{3} faces on the veratryl ring (Fig. 2).

Threo isomer

Because threo 3'a and $\mathbf{3}^{\prime}$ Ma have peaks that appeared markedly downfield relative to the other peaks, it was suggested that $\mathbf{3}^{\prime}$ a and $\mathbf{3}^{\prime} \mathrm{Ma}$ do not have an (αS)-configuration but an (αR)-configuration; thus $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ have an (αS) configuration. The assignments in Table 1 were consistent with the rules 1 and 2 as follows.

The $\Delta \delta$ values of α-MTPA-OCH ${ }_{3}$ in $3^{\prime}\left(\left|\delta_{3^{\prime} \mathrm{b}}-\delta_{3^{\prime} \mathrm{a}}\right|\right)$ and $\mathbf{3}^{\prime} \mathrm{M}\left(\left|\delta_{3^{\prime} \mathrm{Mb}}-\delta_{3^{\prime} \mathrm{Ma}}\right|\right)$ are 0.190 and 0.147 ppm , respectively, which are obviously larger than those of γ-MTPA- OCH_{3} : 0.037 ppm in $3^{\prime}\left(\left|\delta_{3^{\prime} \mathrm{b}}-\delta_{3^{\prime} \mathrm{a}}\right|\right)$ and 0.012 ppm in $\mathbf{3}^{\prime} \mathrm{M}\left(\mid \delta_{3^{\prime} \mathrm{Mb}}{ }^{-}\right.$ $\delta_{3_{\mathrm{Ma}}} \mathrm{l}$).

The differences in the chemical shifts of α-MTPA- OCH_{3} between $\mathbf{3}^{\prime}$ and $\mathbf{3}^{\prime} \mathrm{M}$ are $0.061 \mathrm{ppm}\left(\delta_{3^{\prime} \mathrm{Mb}}-\delta_{3^{\prime} \mathrm{b}}\right)$ and $0.018 \mathrm{ppm}\left(\delta_{3^{\prime} \mathrm{Ma}}-\delta_{3^{\prime} \mathrm{a}}\right)$, whereas those of γ-MTPA- OCH_{3} between $\mathbf{3}^{\prime}$ and $\mathbf{3}^{\prime} \mathrm{M}$ are $0.004 \mathrm{ppm}\left(\delta_{3^{\prime} \mathrm{Mb}}-\delta_{3^{\prime} \mathrm{b}}\right)$ and 0.029 ppm $\left(\delta_{3^{\prime} \mathrm{Ma}}-\delta_{3^{\prime} \mathrm{a}}\right)$. Although it could be an exception to rule 2 that the difference of the chemical shifts of the γ-MTPA$\mathrm{OCH}_{3}, 0.029 \mathrm{ppm}\left(\delta_{3^{\prime} \mathrm{Ma}}-\delta_{3^{\prime} \mathrm{a}}\right)$, is larger than that of α MTPA$\mathrm{OCH}_{3}, 0.018 \mathrm{ppm}\left(\delta_{3^{\prime} \mathrm{Ma}^{2}}-\delta_{\mathbf{3}^{\prime} \mathrm{a}}\right)$, rule 1 takes precedence over rule 2. Upfield shifts of γ-MTPA- OCH_{3} were found for threo 3'a and $\mathbf{3 '}^{\prime} \mathrm{Ma}$, probably because the OCH_{3} is located on the aromatic B-ring, which might cause the above exception.

Thus it was established that the α-MTPA- OCH_{3} of $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ were affected by the shielding effect of veratryl and 3,4,5-trimethoxyphenyl rings, respectively, whereas those of $\mathbf{3}^{\prime}$ a and $\mathbf{3}^{\prime} \mathrm{Ma}$ were not. Consequently, the $\mathrm{C} \alpha$ of $\mathbf{3}^{\prime} \mathrm{b}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$ were an (S)-configuration, whereas the $\mathrm{C} \alpha$ of $\mathbf{3}^{\prime} \mathrm{a}$ and $\mathbf{3}^{\prime} \mathrm{Ma}$ were an (R)-configuration. Therefore,

($\alpha R, \beta R$)-Threo $\quad(\alpha S, \beta R)$-Erythro

(6S)

2
$(\alpha R, \beta S)$-Erythro $\quad(\alpha S, \beta S)$-Threo

Fig. 4. Reduction of (\pm)- α-oxo-guaiacylglycerol- β-(vanillic acid) ether (1) to erythro and threo guaiacylglycerol- β-(vanillic acid) ethers (2) by F. solani M-13-1 would occur through pathway I
absolute configurations of catabolic erythro (-)-3 and threo $(+)-3$ were determined to be $(\alpha S, \beta R)$ and $(\alpha S, \beta S)$, respectively.

The NOESY spectrum of threo $\mathbf{3}^{\prime}$ b showed the presence of cross peaks between the MTPA-OCH3 peak at δ 3.395 and the peaks of Ar-A2-H and A6-H. Consequently, it was also confirmed that (αS)-threo 3^{\prime} b adopts the conformation that the α-MTPA-OCH3 faces on the veratryl ring (Fig. 2).

Figure 4 shows that the fungal reduction of (\pm)-1 would occur by pathway I in which an hydrogen species attacks the carbonyl groups of both erythro 1 and threo 1 from re-faces, giving erythro $(\alpha S, \beta R)-2$ and threo $(\alpha S, \beta S)$ $\mathbf{2}$, respectively. Determination of the absolute configuration with a modified Mosher's method for (R) - and (S)-MTPA esters of catabolic $\mathbf{3}^{\prime}$ is under study. Recently, a study on the absolute configuration of $8-\mathrm{O}-4^{\prime}$ neolignans from Lonicera gracilipes var. glandulosa by circular dichroism spectroscopy and NOESY was reported. ${ }^{6}$

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Hitachi R-90H FT-NMR spectrometer (90 MHz), with tetramethylsilane as an internal standard. Chemical shifts and coupling constants (J) were expressed in δ and hertz, respectively. The concentration of the sample solution was 1% in CDCl_{3}. The good reproducibility of the chemical shifts was confirmed. NOESY spectra were measured on a JEOL JNM ALPHA-400 FT NMR spectrometer $(400 \mathrm{MHz}$, data point 512 , acquisition time $0.16-0.24 \mathrm{~s}$, pulse delay 3.5 s ; pulse width $10.8 \mu \mathrm{~s}$, mixing time 1500 ms). Mass spectrometry (MS) and chromatography were the same as described previously. ${ }^{1.2}$

Synthesis of compounds and ${ }^{1} \mathrm{H}$ NMR of (R)-MTPA ester derivatives

Compounds with veratryl nuclei

Veratrylglycerol- β-(methyl vanillate) ether (3) was synthesized as a mixture of erythro and threo forms by way of compound (\pm)-8 using a modified method of Adler and Eriksoo, ${ }^{7}$ and Miksche: ${ }^{8}$ (1) The methyl ketone of acetoveratrone was brominated with CuBr_{2} in a mixture of ethyl acetate (EtOAc) and chloroform at $70^{\circ}-80^{\circ} \mathrm{C}$ for 2.5 h giving α-bromoacetoveratrone. ${ }^{9}$ (2) Stirring a mixture of α-bromoacetoveratrone, methyl vanillate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, and KI in N, N-dimethylformamide (DMF) afforded α-oxo-veratrylglycol- β-(methyl vanillate) ether. (3) Condensation of the product with paraformaldehyde by use of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dimethylsulfoxide (DMSO) gave (\pm)-8.8. ${ }^{8}$ (4) Reduction of the ketone of 8 with NaBH_{4} in a mixture of MeOH and tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$ afforded 3. Separation of (\pm)-erythro and (\pm)-threo isomers of $\mathbf{3}$ was achieved as reported previously. ${ }^{2}$

Veratryl alcohol (4) is available commercially. Compound (\pm)-5 was obtained by the NaBH_{4} reduction of acetoveratrone in MeOH at $0^{\circ} \mathrm{C}$.

Compounds (\pm)-6, 7, and (\pm)-9 were prepared as follows. Acetoveratrone was treated as in steps (1) and (2) and then with reduction of the ketone of α-oxo-veratrylglycol- β (methyl vanillate) ether with NaBH_{4} in a mixture of MeOH and THF at $0^{\circ} \mathrm{C}$, yielding (\pm)-6.

Compound 7: Methylation of the phenolic hydroxyl group of coniferaldehyde with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in MeOH at $0^{\circ} \mathrm{C}$ for 2 h , yielding coniferaldehyde methyl ether. Catalytic reduction of the allyl aldehyde moiety of the product with 10% palladium on activated carbon $(\mathrm{Pd}-\mathrm{C})$ in MeOH under hydrogen gas for 60 min then yielded 7.

Compound (\pm)-9: Catalytic reduction of the allyl aldehyde moiety of coniferaldehyde with $10 \% \mathrm{Pd}-\mathrm{C}$ in MeOH under hydrogen gas for 65 min gave dihydroconiferyl alcohol. The α-methylene of dihydroconiferyl alcohol was oxidized with 2,3-dichloro-5,6-dicyano- p-benzoquinone (2 equivalent) in water saturated benzene, giving 1 -guaiacyl-3-hydroxy-1-propanone. The phenolic hydroxyl group of the product was methylated with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in MeOH at $0^{\circ} \mathrm{C}$ for 80 min to afford 3-hydroxy-1-veratryl-1-propanone. The ketone of the product was reduced with $\mathrm{NaBH}_{4}\left(10\right.$ eq.) in MeOH at $0^{\circ} \mathrm{C}$, yielding 9. Structures of those compounds were confirmed by ${ }^{1} \mathrm{H}$ NMR and MS.

${ }^{1} H$ NMR of (R)-MTPA esters of veratryl compounds

$(R)-(+)$-MTPA esters were prepared from alcohols with $(R)-(+)$-MTPA (Merck) by a method described in the literature. ${ }^{3}$ Crude reaction products of erythro (\pm) $\mathbf{3}$ with (R) MTPA chloride were separated by TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane 3:1, eight times) giving two diastereomers: erythro $\mathbf{3 '}^{\prime}$ a (upper spot, $\mathrm{R}_{\mathrm{f}} 0.45-0.50$) and erythro $\mathbf{3}^{\prime} \mathrm{b}$ (lower spot, R_{f}
0.37-0.45). Similarly, threo (\pm)-3 gave threo 3'a (upper spot, $\mathrm{R}_{\mathrm{f}} 0.36-0.45$) and threo $\mathbf{3}^{\prime} \mathrm{b}$ (lower spot, $\mathrm{R}_{\mathrm{f}} 0.28-0.33$) (EtOAC/n-hexane 1:3, three times).

Synthetic erythro 3'a (upper spot): ${ }^{1} \mathrm{H}$ NMR: $3.436[3 \mathrm{H}$, doublet (d), $J=1.2, \gamma-\mathrm{MTPA}-\mathrm{OCH}_{3}$], $3.533(3 \mathrm{H}, \mathrm{d}, J=1.2$, α-MTPA- OCH_{3}), 3.668, 3.746, 3.854, and 3.897 (3H $\times 4$, four singlets (s), $-\mathrm{COOCH}_{3}$ and three $\mathrm{Ar}-\mathrm{OCH}_{3}$), $4.430[1 \mathrm{H}$, double doublet (dd), $\left.J=11.4, J=3.5, \gamma-\mathrm{CH}_{\mathrm{a}}\right]$, $4.608(1 \mathrm{H}$, $\mathrm{dd}, J=11.4, J=6.4, \gamma-\mathrm{CH}_{\mathrm{b}}$), 4.73-4.93[1H, multiplet (m), $\beta-\mathrm{CH}], 6.141(1 \mathrm{H}, \mathrm{d}, J=4.2, \alpha-\mathrm{CH}), 6.67-6.82(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ $\mathrm{A}-\mathrm{H}$ and $\mathrm{B} 5-\mathrm{H}), 7.27-7.56(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{B} 2,6-\mathrm{H}$ and two MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $m / z(\%): 824\left(\mathrm{M}^{+}, 5\right)$. Synthetic erythro $\mathbf{3}^{\prime} \mathrm{b}$ (lower spot): ${ }^{1} \mathrm{H}$ NMR: $3.384(3 \mathrm{H}, \mathrm{d}, J=1.0, \alpha$-MTPA$\left.\mathrm{OCH}_{3}\right), 3.502\left(3 \mathrm{H}, \mathrm{d}, J=1.1, \gamma\right.$-MTPA- OCH_{3}), 3.727, 3.791, 3.862, and $3.883\left(3 \mathrm{H} \times 4\right.$, four $\mathrm{s},-\mathrm{COOCH}_{3}$ and three $\mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J=11.9, J=5.3, \gamma-\mathrm{CH}_{\mathrm{a}}\right), 4.48(1 \mathrm{H}, \mathrm{dd}$, $\left.J=11.9, J=3.9, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.73-4.95(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}), 6.114$ $(1 \mathrm{H}, \mathrm{d}, J=6.1, \alpha-\mathrm{CH}), 6.607(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H})$, $6.802(1 \mathrm{H}, \mathrm{d}, J=8.7, \mathrm{Ar}-\mathrm{A} 5-\mathrm{H}), 6.926(1 \mathrm{H}, \mathrm{dd}, J=8.6, J=$ 1.8, Ar-A6-H), $6.947(1 \mathrm{H}, \mathrm{d}, J=1.8, \mathrm{Ar}-\mathrm{A} 2-\mathrm{H}), 7.26-7.65$ $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{B} 2,6-\mathrm{H}\right.$ and two MTPA- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$. MS $\mathrm{m} / \mathrm{z}(\%)$: $824\left(\mathrm{M}^{+}, 5\right)$.

Synthetic threo 3'a (upper spot): ${ }^{1} \mathrm{H}$ NMR: 3.401 ($3 \mathrm{H}, \mathrm{d}$, $J=1.1, \gamma$-MTPA- OCH_{3}), $3.585(3 \mathrm{H}, \mathrm{d}, J=1.1, \alpha$-MTPA$\left.\mathrm{OCH}_{3}\right), 3.614,3.783,3.856$, and $3.908(3 \mathrm{H} \times 4$, four s , $-\mathrm{COOCH}_{3}$ and three $\left.\mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.6-3.9\left(1 \mathrm{H}, \mathrm{dd}, \gamma-\mathrm{CH}_{\mathrm{a}}\right)$, $4.56-4.78\left(1 \mathrm{H}, \mathrm{dd}, J=11.4, J=3.9, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.76-4.90(1 \mathrm{H}$, $\mathrm{m}, \beta-\mathrm{CH}), 6.192(1 \mathrm{H}, \mathrm{d}, J=8.6, \alpha-\mathrm{CH}), 6.662(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A}-$ $\mathrm{H}), 6.886(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H}), 7.04-7.63(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ B2,6-H and two MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $m / z(\%): 824\left(\mathrm{M}^{+}, 4\right)$. Synthetic threo 3'b (lower spot): ${ }^{1} \mathrm{H}$ NMR: 3.395 ($3 \mathrm{H}, \mathrm{d}$, $J=1.1, \alpha$-MTPA- $\left.\mathrm{OCH}_{3}\right), 3.438(3 \mathrm{H}, \mathrm{d}, J=1.1, \gamma$-MTPA$\left.\mathrm{OCH}_{3}\right), 3.768,3.794,3.883$, and $3.902(3 \mathrm{H} \times 4$, four s , $-\mathrm{COOCH}_{3}$ and three Ar- OCH_{3}), $3.85-4.09\left(1 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right)$, $4.524\left(1 \mathrm{H}, \mathrm{dd}, J=11.9, J=2.8, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.826[1 \mathrm{H}$, double double doublet (ddd), $J=7.3, J=4.7, J=2.8, \beta-\mathrm{CH}], 6.194$ $(1 \mathrm{H}, \mathrm{d}, J=7.3, \alpha-\mathrm{CH}), 6.746(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H})$, 6.83-6.92 (3H, Ar-A-H), 7.06-7.60 (12H, m, Ar-B2,6-H and two MTPA-C $\mathrm{C}_{6} \mathrm{H}_{5}$). MS m/z (\%): $824\left(\mathrm{M}^{+}, 5\right)$.

Compound $4^{\prime}:{ }^{1} \mathrm{H}$ NMR: $3.508[3 \mathrm{H}$, quartet (q), $J=1.2$, MTPA- OCH_{3}], $3.801\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.874(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 5.283\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.74-6.86(1 \mathrm{H}, \mathrm{Ar}-5-\mathrm{H}), 6.81-$ $6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-2-\mathrm{H}), 6.87-7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{Ar}-6-\mathrm{H}), 7.371(5 \mathrm{H}$, m, MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $m / z(\%): 384\left(\mathrm{M}^{+}, 12\right)$.

Compound 5^{\prime} (a mixture of two diastereomers): ${ }^{1} \mathrm{H}$ NMR: 1.575 and $1.627\left(3 \mathrm{H} \times 2, \mathrm{~d}, J=6.6, \mathrm{C}-\mathrm{CH}_{3}\right), 3.464$ and $3.559\left(3 \mathrm{H} \times 2, \mathrm{~d}, J=1.1\right.$, MTPA- OCH_{3}), 3.731, 3.836, 3.867 , and $3.878\left(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 6.06$ and $6.09(1 \mathrm{H} \times$ $2, \mathrm{q}, J=6.6,-\mathrm{CH}), 6.70-7.01(3 \mathrm{H} \times 2, \mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 7.366(5 \mathrm{H}$ $\left.\times 2, \mathrm{~s}, \mathrm{MTPA}-\mathrm{C}_{6} \mathrm{H}_{5}\right) . \mathrm{MS} m / z(\%): 398\left(\mathrm{M}^{+}, 7\right)$.

Compound 6^{\prime} : Two diastereomers (6^{\prime} a and 6^{\prime} b) were separated by TLC (EtOAc/n-hexane $=1: 4$, six times). 6'a (upper spot): ${ }^{1} \mathrm{H}$ NMR: 3.624 ($3 \mathrm{H}, \mathrm{d}, J=1.2$, MTPA$\left.\mathrm{OCH}_{3}\right), 3.719,3.862,3.882$, and $3.891(3 \mathrm{H} \times 4$, s, three Ar$\mathrm{OCH}_{3}$ and $\left.-\mathrm{COOCH}_{3}\right), 4.11-4.30\left(1 \mathrm{H}, \beta-\mathrm{CH}_{\mathrm{a}}\right), 4.26-4.57$ $\left(1 \mathrm{H}, \beta-\mathrm{CH}_{\mathrm{b}}\right), 6.370(1 \mathrm{H}, \mathrm{dd}, J=8.2, J=3.8, \alpha-\mathrm{CH}), 6.70-$ $6.98(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{A}-\mathrm{H}$ and B5-H), $7.26-7.68(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ B2,6-H and MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $m / z(\%): 578\left(\mathrm{M}^{+}, 3\right) .6^{\prime} \mathrm{b}$ (lower spot): ${ }^{1} \mathrm{H}$ NMR: $3.485(3 \mathrm{H}, \mathrm{d}, J=1.1$, MTPA-
$\left.\mathrm{OCH}_{3}\right), 3.847(3 \mathrm{H}, \mathrm{s}), 3.860(3 \mathrm{H}, \mathrm{s}), 3.891(6 \mathrm{H}, \mathrm{s})$ (three ArOCH_{3} and $\left.-\mathrm{COOCH}_{3}\right), 4.10-4.33\left(1 \mathrm{H}, \beta-\mathrm{CH}_{\mathrm{a}}\right), 4.25-4.56$ $\left(1 \mathrm{H}, \beta-\mathrm{CH}_{\mathrm{b}}\right), 6.439(1 \mathrm{H}, \mathrm{dd}, J=7.3, J=4.6, \alpha-\mathrm{CH}), 6.70-$ 7.07 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{A}-\mathrm{H}$ and Ar-B5-H), $7.26-7.56$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ B2,6-H and MTPA-C C_{6}).

Compound 7': ${ }^{1} \mathrm{H}$ NMR: $1.82-2.15\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}\right), 2.612$ [2 H , triplet (t), $\left.J=7.6, \alpha-\mathrm{CH}_{2}\right], 3.558(3 \mathrm{H}, \mathrm{d}, J=1.2$, MTPA- $\left.\mathrm{OCH}_{3}\right), 3.847\left(6 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-\mathrm{OCH}_{3}\right), 4.326(1 \mathrm{H}, \mathrm{t}, J=$ $\left.6.5, \gamma-\mathrm{CH}_{2}\right), 6.56-6.84(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.33-7.59(5 \mathrm{H}, \mathrm{m}$, MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $\mathrm{m} / \mathrm{z}(\%): 412\left(\mathrm{M}^{+}, 70\right)$.

Compound $\mathbf{8}^{\prime}$ (a mixture of two diastereomers): ${ }^{1} \mathrm{H}$ NMR: 3.472 and $3.518\left(3 \mathrm{H} \times 2, \mathrm{~d}, J=1.2, \mathrm{MTPA}-\mathrm{OCH}_{3}\right)$, $3.746(3 \mathrm{H}, \mathrm{s})$ and $3.782(3 \mathrm{H}, \mathrm{s})\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.871,3.886$, $3.897,3.928$, and $3.943\left(9 \mathrm{H} \times 2\right.$, five s) $\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right.$ and $\left.-\mathrm{COOCH}_{3}\right), 4.72-4.89\left(2 \mathrm{H} \times 2, \mathrm{~m}, \gamma-\mathrm{CH}_{2}\right), 5.64-5.87(1 \mathrm{H} \times$ $2, \mathrm{~m}, \alpha-\mathrm{CH}), 6.75(1 \mathrm{H}, \mathrm{d}, J=9)$ and $6.85(1 \mathrm{H}, \mathrm{d}, J=9)(\mathrm{Ar}-$ A5 and B5-H), $7.26-7.85(9 \mathrm{H} \times 2, \mathrm{~m}, \mathrm{Ar}-\mathrm{A} 2,6$ and $\mathrm{B} 2,6-\mathrm{H}$, and MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$).

Compound 9^{\prime} : Although separation of two diastereomers by TLC (EtOAC/n-hexane 1:5, five times) was unsuccessful, the band was divided into two fractions whose ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of two diastereomers (${ }^{*} 9^{\prime} \mathrm{a}$ and ${ }^{* *} 9^{\prime} \mathrm{b}$) in a slightly different ratio. ${ }^{1} \mathrm{H}$ NMR: 2.06$2.44\left(2 \mathrm{H} \times 2, \mathrm{~m}, J=8.2, \beta-\mathrm{CH}_{2}\right), 3.418^{*}(3 \mathrm{H}, \mathrm{d}, J=1.1$, MTPA- OCH_{3}), $3.504^{* *}\left(3 \mathrm{H}, \mathrm{d}, J=1.2\right.$, MTPA- OCH_{3}), $3.546\left(3 \mathrm{H} \times 2, \mathrm{~d}, J=1.1, \mathrm{MTPA}-\mathrm{OCH}_{3}\right), 3.701^{* *}(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 3.812^{*}\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.868^{* *}(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 3.877^{*}\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.11-4.40(2 \mathrm{H} \times 2, \mathrm{~m}$, $\left.\gamma-\mathrm{CH}_{2}\right), 5.84^{* *}(1 \mathrm{H}, \mathrm{dd}, J=8.2, J=6.0, \alpha-\mathrm{CH}), 5.91^{*}(1 \mathrm{H}$, dd, $J=8.5, J=6.0, \alpha-\mathrm{CH}), 6.61^{* *}$ and $6.76^{* *}(3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 6.79^{*} and $6.84^{*}(3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.55(5 \mathrm{H} \times 2, \mathrm{~m}$, MTPA$\mathrm{C}_{6} \mathrm{H}_{5}$).

Compounds with 3,4,5-trimethoxyphenyl nuclei

3,4,5-Trimethoxybenzyl alcohol (4 M) was available commercially (Aldrich). Compound (\pm)-5M was prepared by NaBH_{4} reduction of 3,4,5-trimethoxyacetophenone in MeOH at $0^{\circ} \mathrm{C}$. Compound (\pm)- 6 M was synthesized from 3,4,5-trimethoxyacetophenone by the same method as $(\pm)-6$. For compound 7M, Fischer esterification of $3,4,5-$ trimethoxycinnamic acid in MeOH in the presence of catalytic amounts of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at refluxed temperature gave methyl 3,4,5-trimethoxycinnamate. The unsaturated ester moiety of the product was reduced with LiAlH_{4} in anhydrous THF at $50^{\circ} \mathrm{C}$ to afford 7 M . Compound (\pm)-8M was synthesized from 3,4,5-trimethoxyacetophenone by the same method as $(\pm)-8 .{ }^{8}$ For compound (\pm)-9M, condensation of 3,4,5-trimethoxyacetophenone with diethyl carbonate by use of NaH in anhydrous benzene at refluxed temperature gave ethyl 3-oxo-3-(3,4,5-trimethoxyphenyl)propionate. Reduction of the ketone of the product with NaBH_{4} in a mixture of THF and MeOH at $0^{\circ} \mathrm{C}$ afforded ethyl 3-hydroxy-3-(3,4,5-trimethoxyphenyl)propionate. The hydroxyl group of the product was then acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ - pyridine. The resulting 3-acetoxypropionate was reduced with LiAlH_{4} in anhydrous THF at $50^{\circ} \mathrm{C}$, giving (\pm)-9M.

Structures of those compounds were confirmed by ${ }^{i} \mathrm{HNMR}$ and MS.

Erythro (\pm)- and threo (\pm)-3,4,5-trimethoxyphenyl-glycerol- β-(methyl vanillate) ethers (erythro 3 M and threo 3 M , respectively) were obtained by NaBH_{4} reduction of 8 M followed by separation of the diasterembers as described previously. ${ }^{2}$ Erythro 3 M : ${ }^{2} \mathrm{H}$ NMR: $3.78-3.98\left(2 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right)$, 3.814, 3.894, and 3.911 (each 3 H , three s, two $\mathrm{Ar}-\mathrm{OCH}_{3}$ and $\left.-\mathrm{COOCH}_{3}\right), 3.833\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.333(1 \mathrm{H}, \mathrm{q}, J=5, \beta-$ $\mathrm{CH}), 4.960(1 \mathrm{H}, \mathrm{d}, J=5.1, \alpha-\mathrm{CH}), 6.634(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-\mathrm{A}-\mathrm{H})$, $6.933(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H}), 7.55-7.59(1 \mathrm{H}, \mathrm{Ar}-\mathrm{B} 2-\mathrm{H})$, 7.55-7.68 (1H, Ar-B6-H). MS $m / z(\%): 422\left(\mathrm{M}^{+}, 5.0\right)$. Threo 3 M : ${ }^{1} \mathrm{H}$ NMR: $3.59-3.70\left(2 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{CH}_{2}\right), 3.827,3.902$, and $3.952\left(3 \mathrm{H} \times 3\right.$, three s, two $\mathrm{Ar}-\mathrm{OCH}_{3}$ and $\left.-\mathrm{COOCH}_{3}\right), 3.851$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.21(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}), 4.977(1 \mathrm{H}, \mathrm{d}, J=7.3$, $\alpha-\mathrm{CH}), 6.668(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A}-\mathrm{H}), 7.108(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-$ $\mathrm{H}), 7.58-7.62(1 \mathrm{H}, \mathrm{Ar}-\mathrm{B} 2-\mathrm{H}), 7.58-7.72(1 \mathrm{H}, \mathrm{Ar}-\mathrm{B} 6-\mathrm{H}) . \mathrm{MS}$ $m / z(\%): 422\left(\mathrm{M}^{+}, 5.0\right)$.

${ }^{1} H$ NMR of (R)-MTPA esters of 3,4,5-trimethoxyphenyl compounds

α, γ-Di-(+)-MTPA esters of erythro $(\pm)-\mathbf{3 M}\left(\right.$ erythro $\left.\mathbf{3}^{\prime} \mathrm{M}\right)$: Crude erythro $\mathbf{3}^{\prime} \mathrm{M}$ after the esterification was separated repeatedly by TLC [EtOAC/n-hexane $1: 2$ (three times), and then $1: 2$ (four times)] giving two diastereomers, erythro $\mathbf{3}^{\prime} \mathrm{Ma}$ and $\mathbf{3}^{\prime} \mathrm{Mb}$. Erythro 3' Ma (upper): ${ }^{1} \mathrm{HNMR}: 3.437$ (3H, $\mathrm{d}, J=1.1, \gamma$-MTPA- OCH_{3}), $3.565(3 \mathrm{H}, \mathrm{d}, J=1.2, \alpha$-MTPA$\left.\mathrm{OCH}_{3}\right), 3.680\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A} 3,5-\mathrm{OCH}_{3}\right), 3.755(3 \mathrm{H}, \mathrm{s}), 3.807$ $(3 \mathrm{H}, ~$ s $), 3.899(3 \mathrm{H}, \mathrm{s})\left(\mathrm{Ar}-\mathrm{A} 4\right.$ and $\mathrm{B} 3-\mathrm{OCH}_{3}$, and $\left.-\mathrm{COOCH}_{3}\right), 4.440\left(1 \mathrm{H}, \mathrm{dd}, J=10.8, J=2.7, \gamma-\mathrm{CH}_{\mathrm{a}}\right), 4.653$ $\left(1 \mathrm{H}, \mathrm{dd}, J=10.9, J=6.6, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.73-4.94(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH})$, $6.121(1 \mathrm{H}, \mathrm{d}, J=4.1, \alpha-\mathrm{CH}), 6.397(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A} 2,6-\mathrm{H})$, $6.755(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H}), 7.26-7.56(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ B2,6-H and two MTPA-C C_{5}). Erythro $3^{\prime} \mathrm{Mb}$ (lower): ${ }^{1} \mathrm{H}$ NMR: $3.412\left(3 \mathrm{H}, \mathrm{d}, J=1.1, \alpha\right.$-MTPA- $\left.\mathrm{OCH}_{3}\right), 3.504(3 \mathrm{H}, \mathrm{d}$, $\left.J=1.1, \gamma-\mathrm{MTPA}-\mathrm{OCH}_{3}\right), 3.767\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A} 3,5-\mathrm{OCH}_{3}\right)$, $3.731,3.816$, and $3.882(3 \mathrm{H} \times 3$, three s, Ar-A4, B3-OCH 3 , and $\left.-\mathrm{COOCH}_{3}\right), 4.41\left(1 \mathrm{H}\right.$, dd, $\left.J=12, J=5.4, \gamma-\mathrm{CH}_{2}\right), 4.48$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12, J=3.7, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.75-4.99(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH})$, $6.072(1 \mathrm{H}, \mathrm{d}, J=5.9, \alpha-\mathrm{CH}), 6.597(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A} 2 ; 6-\mathrm{H})$, $6.616(1 \mathrm{H}, \mathrm{d}, J=8.9$, Ar-B5-H), $7.26-7.58(12 \mathrm{H}, \mathrm{m}$, Ar$\mathrm{B} 2,6-\mathrm{H}$ and two MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$).
$\alpha, \gamma-\mathrm{Di}-(+)-\mathrm{MTPA}$ esters of threo (\pm)-3M (threo $\left.\mathbf{3}^{\prime} \mathrm{M}\right)$: Crude threo $3^{\prime} \mathrm{M}$ obtained by the esterification was separated repeatedly by TLC [EtOAc/n-hexane $1: 2$ (twice); $1: 5$ (twice) and 1:4 (five times); 1:4 (once) and $1: 2$ (three times)], giving three fractions: pure threo $3^{\prime} \mathrm{Ma}$ (upper), a mixture of threo $3^{\prime} \mathrm{Ma}$ and $3^{\prime} \mathrm{Mb}$, and pure threo $3^{\prime} \mathrm{Mb}$ (lower). Threo $\mathbf{3}^{\prime} \mathrm{Ma}$ (upper): ${ }^{1} \mathrm{H}$ NMR: $3.430(3 \mathrm{H}, \mathrm{d}, J=$ $1.0, \gamma$-MTPA- OCH_{3}), $3.603\left(9 \mathrm{H}, \mathrm{s}, \alpha-\mathrm{MTPA}-\mathrm{OCH}_{3}\right.$ and Ar$\left.\mathrm{A} 3,5-\mathrm{OCH}_{3}\right), 3.778,3.819$, and $3.910(3 \mathrm{H} \times 3$, three s, two $\mathrm{Ar}-\mathrm{OCH}_{3}$ and $\left.-\mathrm{COOCH}_{3}\right), 3.75-3.95\left(1 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right), 4.68-4.78$ $\left(1 \mathrm{H}, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.78-4.93(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}), 6.211(1 \mathrm{H}, \mathrm{d}, j=8.0$, $\alpha-\mathrm{CH}), 6.410(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A}-\mathrm{H}), 6.882(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{Ar}-\mathrm{B} 6-$ H), $7.10-7.63(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$. MS $m / z(\%): 854\left(\mathrm{M}^{+}, 10\right)$. Threo $3^{\prime} \mathrm{Mb}$ (lower): ${ }^{1} \mathrm{H}$ NMR: 3.442 and 3.456 (6 H , two d, $J=1.4$ and $1.0, \gamma$ - and α-MTPA-OCH3, respectively), 3.774
$(9 \mathrm{H}, \mathrm{s}), 3.845(3 \mathrm{H}, \mathrm{s})$, and $3.901(3 \mathrm{H}, \mathrm{s})\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right.$ and $\left.-\mathrm{COOCH}_{3}\right), 3.9-4.07\left(1 \mathrm{H}, \mathrm{dd}, J=12, J=5, \gamma-\mathrm{CH}_{\mathrm{a}}\right), 4.585$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12, J=3, \gamma-\mathrm{CH}_{\mathrm{b}}\right), 4.70-4.90(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH})$, $6.156(1 \mathrm{H}, \mathrm{d}, J=7.0, \alpha-\mathrm{CH}), 6.560(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A}-\mathrm{H}), 6.770$ ($1 \mathrm{H}, \mathrm{d}, J=8.9$, Ar-B6-H), $7.10-7.60(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \mathrm{MS}$ $m / z(\%): 854\left(\mathrm{M}^{+}, 8.6\right)$.

Compound $4^{\prime} \mathrm{M}:{ }^{1} \mathrm{H}$ NMR: 3.537 ($3 \mathrm{H}, \mathrm{s}, J=1.2$, MTPA$\left.\mathrm{OCH}_{3}\right), 3.790\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-3,5-\mathrm{OCH}_{3}\right), 3.838(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-4-$ $\left.\mathrm{OCH}_{3}\right), 5.279\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.534(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-2,6-\mathrm{H})$, 7.26-7.50 (5H, m, MTPA-C6 H_{5}). MS $m / z(\%): 414\left(\mathrm{M}^{+}, 17\right)$.

Compound $5^{\prime} \mathrm{M}$: One diastereomer (*) was shown to be slightly predominant over the other (${ }^{* *}$) after purification by TLC. ${ }^{1} \mathrm{H}$ NMR: $1.577^{*}\left(3 \mathrm{H}, \mathrm{d}, J=6.5, \beta-\mathrm{CH}_{3}\right), 1.622^{*} *$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.6, \beta-\mathrm{CH}_{3}\right), 3.488^{*}(3 \mathrm{H}, \mathrm{d}, J=1.1$, MTPA$\left.\mathrm{OCH}_{3}\right), 3.583^{* *}\left(3 \mathrm{H}, \mathrm{d}, J=1.2\right.$, MTPA- $\left.\mathrm{OCH}_{3}\right), 3.741^{* *}$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-3,5-\mathrm{OCH}_{3}$), 3.819^{*} ($6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-3,5-\mathrm{OCH}_{3}$), 3.827 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-4-\mathrm{OCH}_{3}\right), 3.845\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-4-\mathrm{OCH}_{3}\right), 6.024^{* *}$ $(1 \mathrm{H}, \mathrm{q}, J=6.7, \alpha-\mathrm{CH}), 6.063^{*}(1 \mathrm{H}, \mathrm{q}, J=6.7, \alpha-\mathrm{CH})$, $6.441^{* *}(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-2,6-\mathrm{H}), 6.576^{*}(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-2,6-\mathrm{H}), 7.26-$ $7.48\left(5 \mathrm{H} \times 2, \mathrm{~m}, \mathrm{MTPA}-\mathrm{C}_{6} \mathrm{H}_{5}\right) . \mathrm{MS} m / z(\%): 428\left(\mathrm{M}^{+}, 15\right)$.

Compound $6^{\prime} \mathrm{M}$ (a mixture of two diastereomers): ${ }^{1} \mathrm{H}$ NMR: $3.509\left(3 \mathrm{H}, \mathrm{d}, J=1.0, \mathrm{MTPA}-\mathrm{OCH}_{3}\right), 3.641(3 \mathrm{H}, \mathrm{d}, J$ $\left.=1.2, \mathrm{MTPA}-\mathrm{OCH}_{3}\right), 3.733(3 \mathrm{H} \times 2, \mathrm{~s}), 3.840-3.854(6 \mathrm{H} \times$ 2), $3.872(3 \mathrm{H} \times 2, \mathrm{~s})$, and $3.894(3 \mathrm{H} \times 2, \mathrm{~s})\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right.$ and $\left.-\mathrm{COOCH}_{3}\right), 4.11-4.47\left(2 \mathrm{H} \times 2, \mathrm{~m}, \beta-\mathrm{CH}_{2}\right), 6.23-6.42(1 \mathrm{H} \times$ 2, m, $\alpha-\mathrm{CH}$), 6.473 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{A} 2,6-\mathrm{H}$), 6.658 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ A2,6-H), 6.70-6.88 ($1 \mathrm{H} \times 2$, Ar-B5-H), $7.26-7.68(7 \mathrm{H} \times 2$, $\mathrm{m}, \mathrm{Ar}-\mathrm{B} 2,6-\mathrm{H}$ and MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS $m / z(\%): 608\left(\mathrm{M}^{+}\right.$, 12).

Compound $7^{\prime} \mathrm{M}$: ${ }^{1} \mathrm{H}$ NMR: $1.87-2.17\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}\right)$, $2.60\left(2 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right), 3.557\left(3 \mathrm{H}, \mathrm{d}, J=1.1, \mathrm{MTPA}-\mathrm{OCH}_{3}\right)$, $3.822\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.339\left(2 \mathrm{H}, \mathrm{t}, J=6.3, \gamma-\mathrm{CH}_{2}\right), 6.342$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-2,6-\mathrm{H}$), $7.30-7.57$ ($5 \mathrm{H}, \mathrm{m}$, MTPA- $\mathrm{C}_{6} \mathrm{H}_{5}$). MS m / z (\%): $442\left(\mathrm{M}^{+}, 100\right)$.

Compound $\mathbf{8}^{\prime} \mathrm{M}$: Two diastereomers (* and ${ }^{* *}$) were obtained in a different ratio by TLC (EtOAc/n-hexane 1:4). ${ }^{1} \mathrm{H}$ NMR: $3.464^{*}\left(3 \mathrm{H}, \mathrm{d}, J=0.9\right.$, MTPA- $\left.\mathrm{OCH}_{3}\right)$, $3.513 * *\left(3 \mathrm{H}, \mathrm{d}, J=1.1, \mathrm{MTPA}-\mathrm{OCH}_{3}\right), 3.745-3.924(15 \mathrm{H} \times$ 2, $\mathrm{Ar}-\mathrm{OCH}_{3}$ and $\left.-\mathrm{COOCH}_{3}\right), 4.60-5.00\left(2 \mathrm{H} \times 2, \mathrm{~m}, \gamma-\mathrm{CH}_{2}\right)$, $5.60-5.83(1 \mathrm{H} \times 2, \mathrm{~m}, \beta-\mathrm{CH}), 6.753^{*}(1 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{Ar}-\mathrm{B} 5-$ $\mathrm{H}), 6.771^{*} *(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{Ar}-\mathrm{B} 5-\mathrm{H}), 7.384(2 \mathrm{H} \times 2, \mathrm{~s}$, Ar-A $2,6-\mathrm{H}), 7.20-7.60(7 \mathrm{H} \times 2, \mathrm{~m}, \mathrm{Ar}-\mathrm{B} 2,6-\mathrm{H}$ and MTPA$\mathrm{C}_{6} \mathrm{H}_{5}$). MS $\mathrm{m} / \mathrm{z}(\%): 636\left(\mathrm{M}^{+}, 0.6\right)$.

Compound $9^{\prime} \mathrm{M}$: Although separation of two diastereomers by TLC (EtOAC/n-hexane 1:4, three times) was
unsuccessful, the band was divided into two fractions. The ${ }^{1} \mathrm{H}$ NMR spectrum of the upper fraction showed that two diastereomers were present in almost the same ratio, whereas those of the lower fraction were in a slightly different ratio (${ }^{*} \mathbf{9}^{\prime} \mathrm{Ma}$ and ${ }^{* *} \mathbf{9}^{\prime} \mathrm{Mb}$). ${ }^{1} \mathrm{H}$ NMR: 2.06-2.42 $(2 \mathrm{H} \times 2$, $\left.\mathrm{m}, \beta-\mathrm{CH}_{2}\right), 3.453^{*}\left(3 \mathrm{H}, \mathrm{d}, J=1.2\right.$, MTPA- OCH_{3}), 3.531$3.557\left(3 \mathrm{H}, \mathrm{MTPA}-\mathrm{OCH}_{3}\right)^{*}$ and $\left(6 \mathrm{H} \text {, two MTPA- } \mathrm{OCH}_{3}\right)^{* *}$, $3.711^{* *}$ and 3.790^{*} (each $6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-3,5-\mathrm{OCH}_{3}$), $3.829 * *$ and $3.840 *$ (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-4-\mathrm{OCH}_{3}\right), 4.01-4.43(2 \mathrm{H} \times 2, \mathrm{~m}, \gamma$ $\left.\mathrm{CH}_{2}\right), 5.70-5.96(1 \mathrm{H} \times 2, \mathrm{~m}, \alpha-\mathrm{CH}), 6.349^{* *}$ and 6.481^{*} (each $2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.26-7.58\left(10 \mathrm{H} \times 2, \mathrm{~m}\right.$, MTPA- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$. MS $m / z(\%): 674\left(\mathrm{M}^{+}, 13\right)$.

Acknowledgment This research was supported in part by a Grant-in Aid for Scientific Research (62760137) from the Ministry of Education, Science, Sports, and Culture, Japan.

References

1. Katayama T, Sogo M, Higuchi T (1986) Degradation and stereoselective reduction of an α-ketone derivative of guaiacylglycerol- β-vanillin ether, a lignin substructure model, by Fusarium solani M-13-1. Holzforschung 40:175-182
2. Katayama T, Sogo M (1989) An optically-active compound formed by the reduction of an α-ketonic lignin substructure model compound by Fusarium solani M-13-1. Mokuzai Gakkaishi 35:11161124
3. Dale JA, Dull DL, Mosher HS (1969) α-Methoxy- α trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J Org Chem 34:2543-2549
4. Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer reagents. Configuration correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O methylmandelate, and α-methoxy- α-trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95:512-519
5. Yamaguchi S (1985) The determination methods of chirality with NMR (in Japanese). Chem Today 168(3):14-21
6. Matsuda N, Kikuchi M (1996) Studies on the constitution of Lonicera species. X. Neolignan glycosides from the leaves of Lonicera gracilipes var. glandulosa Maxim. Chem Pharm Bull (Tokyo) 44:1676-1679
7. Adler E, Eriksoo E (1955) Guaiacylglycerol and its β-guaiacyl ether. Acta Chem Scand 9:341-342
8. Miksche GE (1973) Zum alkalischen Abbau von Arylglycerin- β -(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen (in German). Acta Chem Scand 27:1355-1368
9. King LC, Ostrum GK (1964) Selective bromination with copper (II) bromide. J Org Chem 29:3459-3461

[^0]: T. Katayama ($\boxed{\text { K }}$) \cdot J. Tsutsui \cdot K. Tsueda \cdot T. Miki \cdot Y. Yamada \cdot M. Sogo

 Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 7610795, Japan
 Tel. $+81-87-891-3083$; Fax $+81-87-891-3021$
 e-mail: katayama@ag.kagawa-u.ac.jp

