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Abstract We conducted asymmetric four-point bending 
tests of wood and obtained the shear moduli on the basis 
of Timoshenko's theory of bending. Akamatsu (Japanese 
red pine, Pinus densiflora D. Don) and shioji (Japanese 
ash, Fraxinus spaethiana Lingelsh.) were used for the tests. 
Asymmetric four-point bending tests were undertaken by 
varying the depth/span ratios; and Young's modulus and 
the shear modulus were calculated by Timoshenko's bend- 
ing theory. Independent of the asymmetric bending tests, 
we also conducted three-point bending tests, free-free- 
flexural vibration tests, and numerical calculations by the 
finite element method. Young's and shear moduli obtained 
by these methods were compared with those derived from 
the asymmetric bending tests. Based on these comparisons, 
we concluded that the shear modulus can be properly ob- 
tained by the asymmetric four-point bending tests when the 
span is 20 times larger than the depth. 

Key words Shear modulus - Asymmetric four-point bend- 
ing test �9 Timoshenko's beam theory �9 Depth/span ratio 

Introduction 

To develop a design methodology for wood and wood prod- 
ucts, deformation by shear makes the shearing properties 
one of the important parameters in the design processes. In 
the beam with an I-shaped cross section, for example, the 
deflection by shear is significant because of the slenderness 
along the neutral axis. If beams designed without consider- 
ing the shearing deflection are used for flooring materials, 
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the deformation of the floor is so serious it causes vibrations 
from which the resident may suffer. Thus, the shear modu- 
lus should be measured properly to predict the magnitude 
of the shearing deformation. 

Various testing methods are available to determine the 
shear modulus, such as the torsion test, I'a the Iosipescu 
t e s t y  and the tension or compression test of a 45 ~ off-axis 
specimen. 1 These tests, however, have their drawbacks. The 
torsion and Iosipescu tests require special equipment. For 
the tension or compression test of the off-axis specimen, the 
specimen's geometry is restricted. If these testing methods 
were simpler and more convenient, a reliable engineering 
database for shearing properties, including the shear modu- 
lus, could be developed. The bending test under varying the 
span/depth ratios is simpler than these methods. 

In previous studies the shear moduli of several wood 
species were measured by three-point bending tests based on 
Timoshenko's bending theory. The theoretical shear modu- 
lus was estimated to be smaller than the real value because of 
the extra deflection that cannot be predicted by the theoreti- 
cal construct. To obtain the proper shear modulus value, the 
original Timoshenko equation was modified taking into con- 
sideration the test results and numerical analyses. 5'6 Never- 
theless, it is more convenient that the shear modulus is 
properly measured without modifying the original equation 
because several experimental conditions (e.g,, the radius 
of the loading nose and the measurement of deflection) 
influence the modification. 6'7 The asymmetric four-point 
bending test whose detail is mentioned below is a promis- 
ing method for obtaining the shear modulus because the 
deflection produced by the shearing force is emphasized. In 
this study we conducted asymmetric four-point bending tests 
on two wood species and examined their validity by compar- 
ing the results with those obtained by other testing methods. 

Theories 

Figure la outlines the asymmetric four-point bending test. 
The distance between the outer spans is I, and the directions 
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Fig. 1. Asymmetric four-point bending test and the beam subjected to 
the lateral forces 

parallel and perpendicular to the length are defined as x and 
y, respectively. The specimen is supported at the point of x 
= 0 and 21/3, which are denoted A and C, respectively; and 
the load is applied at points x = 21/3 and l, denoted B and D, 
respectively. When the displacements of B and D are simi- 
lar, the total load of P is divided into 3P/4 and P/4 for B and 
D, respectively, whereas the reaction forces at A and C are 
P/4 and 3P/4, respectively. Figure lb shows the beam asym- 
metrically subjected to the lateral forces. Under this loading 
condition, the bending equation is derived by the elemen- 
tary bending theory as follows, s 

d2y 
M = ExI-j- Z = (1) 
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where M is the bending moment, Ex is Young's modulus 
in the length direction, and I is the moment of inertia. By 
solving this equation, the displacement line caused by the 
bending moment, y> is given when (x, Yb) = (0, 0) as: 

Yb = 

E J  ~. 24 

P ( 1 x3 _ 23 12 x 11x2 + - -  
~ f ~ / / ~  8 432 

!13/ 
216 j 

P.__P (_  I..1._ x3 _}_ !lx2 - 49 12 x 
E~I ~, 24 8 432 

+ 216 ) 

(2) 

The equation represents that the beam is supported by A 
and C, and that the displacements of B and D are similar to 
each other. 

During bending the displacement caused by the shearing 
force, denoted y~, is always produced; and the slope of the 
deflection line by the shearing force dys/dx is represented by 
Timoshenko's bending theory as: s 

d y s _  sV 
dx GxyA (3) 

where Gxy is the shear modulus in the xy-plane, V is the 
shearing force, A is the cross-sectional area of the beam, and 
s is Timoshenko's shear factor. This factor is 1.5 for a beam 
with a rectangular cross section when it is defined as the 
maximum/average shear stress ratio, whereas it is derived 
as 1.2 by calculating the strain energy. The shearing force 
is obtained by differentiating the bending moment by x. 
Hence, from Eqs. (1) and (3), dys/dx is represented as 
follows: 

dy~ _ s dM 
dx GxyA dx 
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Fig. 2. Definition of vertical displacements in asymmetric four-point 
bending 

deflection that cannot be predicted by Timoshenko's bend- 
ing theory is so marked the shear modulus calculated 
by Timoshenko's equation tends be smaller than the real 
value. The emphasized shearing effect during asymmetric 
bending, however, might obscure the extra deflection. 

Experiment 

Materials and testing procedures 

Figure 2 illustrates the vertical displacement with 
asymmetric bending. In the elastic strain range, the vertical 
displacement is much smaller than the span, and the 
deflection at point B, denoted d, is approximated as 
follows: 

1 A (5~-Z~ABq- ~ AC (6) 

where AAB and Z~AC are the vertical displacements of points 
A and C, respectively, with respect to point B. By substitut- 
ing x = I/3 and 2l/3 into Eqs. (2) and (5), Z~AB and Aac are 
calculated as: 

p/3 sP 
AAB - -  + - -  (7) 

432ExI 12GxyA 

and 

sP  
AAc -- (8) 

12GxyA 

When the depth and breadth of the specimen are denoted h 
and b, respectively, d is derived from Eqs. (6), (7), and (8) 
as; 

d - P l  3 + s P _ Pl  3 + 4.5s Ex (h i21  
432Exi 8GxyA 36Exbh 3 axy \ l ) J 

(9) 

According to the elementary bending theory, the effect 
of shearing force is ignored, and the second term in the 
braces of Eq. (9) vanishes. When Young's modulus based 
on the elementary bending theory is given by Es, the deflec- 
tion d is represented as follows: 

p l  3 p l  3 
- - -  - - -  (10) 

432EsI 36Esbh 3 

The following relation is obtained from Eqs. (9) and (10). 

1 1 

E~ G 
s (11) 

+ 4.5 Gxy 

This equation indicates that the effect of shearing force 
during asymmetric four-point bending is 4.5 times that with 
three-point bending. 5-s With three-point bending, the extra 

Akamatsu (Japanese red pine, Pinus  densiflora D. Don) 
and shioji (Japanese ash, Fraxinus spaethiana Lingelsh.) 
were used for the tests. The density of akamatsu was 0.66 g/ 
cm 3, whereas that of shioji was 0.58g/cm 3. Specimens were 
conditioned at 20~ and 65% relative humidity before and 
during the tests. 

Six specimens were used for each species. These 12 speci- 
mens initially had the dimensions of 10mm (tangential) 
depth, 20mm (radial) breadth, and 350mm (longitudinal) 
length. Young's and shear moduli corresponding to the 12 
specimens were determined by the flexural vibration, asym- 
metric four-point bending, and three-point bending tests. 
The depth of the specimen was then decreased to 5 mm by 
a planer, and Young's modulus and the shear modulus for 
each specimen were obtained by the asymmetric four-point 
and three-point bending tests. Thus, the five values for 
Young's modulus and the five values for the shear modulus 
were derived from one specimen. 

Asymmetric four-point bending tests 

Asymmetric four-point bending tests were undertaken by 
the following procedure. The specimen was settled on 
supports that correspond to points A and C in Fig. la. The 
distances between supports were 318, 222, 183, 159, 141, 
129, 120, 111,105, and 99mm. By determining the distance 
between the supports as above, the value of (h/l) 2 varied 
from approximately 0.001 to 0.01 at an interval of 0.001 and 
a depth of 10mm, whereas it varied from approximately 
0.0002 to 0.0025 at an interval of 0.00025 and a depth of 
5 mm. With loading noses whose radii were 15 mm, a verti- 
cal load was applied asymmetrically at points B and D in 
Fig. la at a loading speed of i mm/min. To reduce the extra 
deflection produced by the stress concentration around 
the loading noses and the machine compliance, the deflec- 
tion was measured at the bottom of the loading point, 
which corresponds to point B in Fig. la by the cantilever- 
type displacement gauge. The load was carefully applied 
so as not to exceed the elastic limit of the specimen, which 
was used repeatedly in this experiment. From the load 
(P)-displacement (6) relation, the apparent Young's 
modulus E~ corresponding to the depth/span ratio h/I was 
calculated by Eq. (10). The 1/E~-(h/l) 2 relation was then 
regressed into Eq. (11) by the method of least squares, 
and Young's modulus Ex and the shear modulus G~y were 
obtained. 



Three-point bending tests 

Three-point bending tests had been conventionally 
undertaken to determine the shear modulus of wood. ~'ga~ 
Here we conducted the three-point bending tests with the 
same specimens used for the asymmetric bending tests 
and compared the obtained shear moduli with those ob- 
tained by the asymmetric bending tests. The testing condi- 
tions such as span lengths, loading speed, and loading nose 
radius were similar to those of the asymmetric bending 
tests. The load was applied at the center of the specimen, 
and the deflection was measured by the displacement gauge 
set behind the loading point. Based on the load-deflection 
diagram, the apparent Young's modulus E~ corresponding 
to the span/depth ratio h/l  was calculated by the following 
equation: 

13 ~ l 3 A P  

Es - 48/ Ad 4bh 3 Ad (12) 

where AP/Ad is the initial inclination of the load-deflection 
diagram. Young's modulus Ex and the shear modulus 
G v were calculated by regressing the 1/E~-(h/l) 2 rela- 
tion into the following equation by the method of least 
squares. 5-7,9,10 

1 _ 1 + s (13) 
Es Ex axy 

Flexural vibration tests 

Prior to the static bending tests, Young's and shear moduli 
were obtained by the flexural vibration tests. The specimen 
was suspended by two threads at the nodal positions of the 
free-free vibration corresponding to its resonance mode 
and was excited in the direction of the depth at one end 
by a hammer. The resonance frequencies whose mode was 
from first to fourth were measured by the fast Fourier 
transform (FFT) digital signal analyzer; and Young's 
modulus and the shear modulus were obtained from the 
Timoshenko-Goens-Hearmon method whose details were 
described in several previous papers. 11 The values obtained 
were compared with those obtained by the static bending 
tests mentioned above. 
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Pig. 3. Finite element meshes used in the numerical calculations. 
Meshes are uniformly divided to the dimensions of 5.0 • 1.25 mm 

Young's moduli in the length and depth directions, Gx~ for 
the shear modulus, and Vxy for Poisson's ratio; the values of 
these constants were Ex = 10 GPa, Ey = Gxy = 1.2 GPa, and 
~v = 0.4. The outer-span length l varied as 90, 120, 150, 180, 
210, and 300mm. For the asymmetric bending simulations, 
loads of 3 N and 1N were applied at the top of points B and 
D in Fig. 3a, respectively. The deflection d was measured at 
the bottom of point B. The load-deflection relation was 
substituted into Eq. (10), and the apparent Young's modu- 
lus E~ corresponding to the depth/span ratio h/l  was ob- 
tained. For the three-point bending simulations, a load of 
4N was applied at the top of the center of the beam, and the 
deflection was measured at the point behind the loading 
point. The apparent Young's modulus E~ corresponding to 
the depth/span ratio h/l  was obtained by substituting the 
load-deflection relation into Eq. (12). The simulation re- 
sults were compared with those obtained from the static 
bending tests. 

Finite element analyses 

Asymmetric four-point and three-point bending tests were 
simulated by the finite element method (FEM), and the 
calculated results were compared with those obtained from 
the asymmetric and three-point bending tests. 

The program used was "ISAS-II," which is a library pro- 
gram of the Computer Center of The University of Tokyo. 
Figure 3 shows the finite element mesh and the boundary 
conditions used here. The finite elements were divided 
by the dimensions of 5mm length and 1.25mm depth; the 
breadth of the element was 20ram. The elastic constants 
used in the simulations were defined as Ex and Ey for 

Results and discussion 

Figure 4 shows the 1/Es-(h/l)  2 relations for the asymmetric 
four-point and three-point bending simulations by the finite 
element method. As mentioned above, the influence of the 
depth/span ratio was more significant in the asymmetric 
bending test than in the three-point bending test. According 
to the bending theory, the inclination of the 1/Es-(h/l)  2 rela- 
tion for asymmetric bending is 4.5 times that for three-point 
bending. From the numerical calculations, the inclination 
for asymmetric bending was 4.9 times that for three-point 
bending. Young's modulus Ex and the shear modulus a:~y 
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were calculated by regressing the numberical calculation 
results into Eqs. (11) and (13). The value of Ex was 11.1 GPa  
for asymmetric bending and 11.0 for three-point bending. 
When Timoshenko's  shear factor s was determined as 1.2, 
the value of Gxy was derived as 1.22GPa for asymmetric 
bending, whereas it was 1.34 GPa for three-point bending. 
We thought  that the validity of Timoshenko 's  bending 
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Fig. 4. Value of 1/E s corresponding to the (depth/span ratio) a obtained 
by the finite element method. Open andfiIled circles are obtained from 
the simulations of asymmetric four-point and three-point bending tests, 
respectively; and solid and dashed lines are obtained from the regres- 
sions of the 1/E<(h/l) z relations of asymmetric and three-point bending 
simulations, respectively, into linear relations 

theory for asymmetric bending would be verified by these 
simulation results. 

Tables 1 and 2 are Young 's  modulus E, and the shear 
modulus G,y, respectively, obtained by the flexural vibra- 
tion, asymmetric four-point bending, and three-point bend- 
ing tests. Differently from the finite element calculations, 
the shear modulus coincided well with that obtained by the 
vibration test when Timoshenko's  shear factor of 1.5 was 
used. With the bending tests, nonlinear deformation caused 
by frictional forces and stress concentrations around the 
loading and supporting points, which cannot be predicted 
by linear finite element analysis, produced the extra deflec- 
tion; and the shear modulus calculated using s -- 1.2 was 
small. Thus, Timoshenko's  shear factor of 1.5 might be 
applicable to the experimental data. As for three-point 
bending, the shear moduli could not be obtained properly 
despite the proper  values of Young 's  moduli. For asym- 
metric four-point bending, we thought that Young's  and 
shear moduli were properly determined when the depth of 
the specimen was 5mm, although the shear modulus of 
akamatsu was somewhat smaller than that obtained by the 
vibration tests. Figure 5 shows the inverse value of apparent  
Young's  modulus 1/E~ corresponding to the squares of the 
depth/span ratio (h/l) 2 obtained from the asymmetric four- 
point and three-point bending tests. With three-point bend- 
ing, the deflection caused by the shearing force is relatively 
small. For akamatsu with a thickness of 5 mm, this deflec- 
tion was too small to vary the apparent Young's  modulus by 
the depth/span ratio, and the shear modulus tended to be 
evaluated as extremely large. For the other results of three- 
point bending tests, the extra deflection caused by the stress 
concentration was not reduced effectively, and the shear 
modulus was evaluated to be small. In contrast, this extra 

Table 1. Young's modulus obtained by each method 

Depth (mm) Vibration test (GPa) Static bending test (GPa) 

Asymmetric four-point Three-point 

Akamatsu 
5 

10 
Shioji 

5 
10 

17.3 -+ 1.4 

13.4 -+ 1.1 

18.3 _+ 1.4 18.0 -+ 1.1 
23.3 + 4.9 16.9 • 1.6 

13.8 _+ 1.8 13.0 -+ 2.1 
16.8 _+ 1.5 13.7 +_ 1.3 

Results are averages _+ standard deviation 

Table 2. Shear modulus obtained by each method 

Depth (mm) Vibration test (GPa) Static bending test (GPa) 

Asymmetric four-point Three-point 

Akamatsu 
5 

10 
Shioji 

5 
10 

1.25 _+ 0.14 

0.91 +- 0.11 

1.07 _+ 0.13 4.70 +- 2.06 
0.56 +_ 0.17 0.82 -+ 0.03 

0.89 _+ 0.25 0.26 -+ 0.06 
0.56 • 0.11 0.44 +_ 0.06 

Results are averages _+ standard deviation 
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substituting Young's and shear moduli given by the flexural vibration 
tests into the Timoshenko's bending equations for the asymmetric 
four-point and three-point bendings, respectively 

deflection was effectively obscured with asymmetric four- 
point bending when the specimen had a small depth/span 
ratio. Nevertheless, it was significant with an increasing 
depth/span ratio. As shown in Fig. 5, the 1/E<(h/l) 2 relation 
obtained by the asymmetric bending tests of the specimens 
with a depth of 10mm was concave; and the intercept of this 
relation, which equals 1/Ex, was evaluated as small, whereas 
the slope, which corresponds to 4.5s/Gxy, was evaluated 
as large. We thought this concave tendency was due to the 
indentations at the loading and supporting points. By reduc- 
ing these indentations, the depth/span ratio range where 
Young's and shear moduli are effectively measured would 
be wider than the experimental results. Nevertheless, plural 
displacement gauges should be used, complicating the mea- 
surement method. 

This method is effective for homogeneous material, and 
there is a concern that it cannot be applied to a large speci- 
men in which inhomogeneity such as knots, grain inclina- 
tion, and variation of annual ring width are contained. The 
applicability should be examined for the material with 
these inhomogeneities. When the method adopted here is 
undertaken using a homogeneous specimen, however, we 
recommend that the span is larger than 20 times the depth. 
The shear modulus can then be obtained effectively by 
the asymmetric four-point bending tests as can Young's 
modulus. 

Conclusion 

We conducted asymmetric four-point bending tests of wood 
and concluded that the shear modulus can be properly o b -  

tained by the asymmetric four-point bending tests when the 
span is 20 times larger than the depth. 
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