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Abstract This study was intended to detect nondestruc- 
tively some defects such as knots and grain deviations in 
wood using modal analysis. The shapes of flexural vibration 
waves at the first mode generated by the tapping of wooden 
beams were determined using the transfer function. The 
wave shapes obtained were compared with the theoretical 
wave shape for a uniform material; and the possibility of 
detecting defects in wood was examined. The results are 
summarized as follows: (1) The shapes of flexural vibration 
waves at the first mode of wooden beams free of defects 
coincided almost completely with the theoretical wave 
shape. (2) The shapes of flexural vibration waves of wooden 
beams containing defects such as knots clearly differed from 
the theoretical wave shape, especially near the defect. (3) 
Based on these results, it should be possible to detect the 
presence of defects and to determine their location in wood. 

Key words Modal analysis - Transfer function �9 Non- 
destructive test .  Flexural vibration �9 Defect 

Introduction 

If  the elasticity and strength of wood for structural uses can 
be estimated nondestructively with high accuracy by apply- 
ing a small deformation or vibration to a wood sample, the 
confidence of wood for structural uses will increase; more- 
over, various woods can be more appropriately utilized 
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according to their elasticity and strength. Therefore,  it is 
useful for the forest industry that a wood 's  elasticity 
and strength be easily estimated with high accuracy by non- 
destructive testing. 

A large number  of nondestructive methods for testing 
wood properties such as elasticity and strength have been 
studied, z and many results obtained by the vibrational 
method (i.e., stress waves generated by tapping and ultra- 
sonic longitudinal waves) have been reported. Most studies 
have showed the relation between the resonance frequency 
of longitudinal or flexural vibration and the average elastic 
modulus of the wood. 2 However,  even if the elasticity and 
the strength of wood used for building or construction as 
whole can be estimated in terms of the resonance fre- 
quency, the elasticity and the strength of partial defects such 
as decays or knots cannot be estimated. Thus, in previous 
studies nondestructive vibration tests were used for uniform 
wood 3 and the average elasticity and strength of whole 
wood containing defects were studied, 4 but there has been 
no investigation of the elasticity or strength of partial de- 
fects such as knots in the wood. Defects such as knots are 
commonly present in wood, so it is difficult to avoid the 
influence of such defects on wood's  elasticity or strength, 
and the elasticity or strength of the defects is also important. 
From these viewpoints, a method for detecting defects 
easily and estimating the elasticity or strength of the defec- 
tive parts with high accuracy is necessary. 

Modal analysis 5 was at tempted for the above purpose 
in a series of studies. Miyamura and Nakajima 6 used this 
method to measure the unified degree of laminated woods 
but not to detect defects or to estimate the elasticity of the 
defective parts. In a series of studies, the vibrational proper- 
ties of wood containing defects, especially the vibrational 
properties of defective parts (flexural vibration wave 
shape), were compared with a uniform wooden beam (de- 
fect free) to determine the possibility of detecting defects 
and estimating their elasticity or strength. In the present 
report, as the first step of these studies, the detection of 
defects such as knots and the estimation of the location of 
the defects were at tempted based on the difference in the 
wave shape from that of a uniform wooden beam. 
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Materials and methods 

Materials 

The wood beams were cut from a sugi (Cryptomeria 
japonica) log from Miyamacho, Japan; the tree was 76 years 
old with a diameter of 130cm at breast height. Twelve wood 
beams with a dimension of 100 (L) • 4 (R) • 4 (T) cm were 
cut from air-dried sapwood and heartwood. Three kinds of 
wood beams - a uniform straight grain beam, a beam con- 
taining a knot, and a beam containing grain deviation near 
a knot - were prepared. These beams were stored in an air- 
conditioned room at 20~ and 65% relative humidity (RH) 
for at least 4 weeks. The wood density after conditioning 
ranged from 0.32 to 0.38g/cm 3, and the moisture content 
measured by a radiofrequency resistance-type moisture 
meter (CAS Electronic Co.) ranged from 7.9% to 8.5%. 

Transfer function 

When a force is applied to a beam, its response x(t) can be 
described by a convolution integral with the force f(t) and 
dynamic properties h(t) as shown in Eq. (1) as a function of 
t ime] 

x(t) = f~k(r ) f ( t -  r)dr (1) 

When this relation is converted to a function of fre- 
quency using the Fourier transform, it can be described by 
a simpler equation with the force F(f), the response X(f), 
and the dynamic properties H(f) as follows: 

x ( s )  : H(S).F(/) (2) 

Accordingly, for analysis of the vibration, the response 
X(f) was generally measured. However, the response de- 
pends on the force, so to grasp the dynamic properties 
correctly and to analyze the response obtained under the 
various conditions the dynamic property H(f) (i.e., compli- 
ance transfer function) should be measured directly. For 
obtaining H(f), the force H(f) and response X(f) should be 
measured simultaneously and can be calculated using the 
following equation. 

H(f)- X(f)  (3) 
F(i) 

In the present report, using the modal analysis in the 
single degree of freedom based on the compliance transfer 
function, the imaginary value at the first mode (maximum 
amplitude) on each measuring point of the longitudinal 
direction of the beam was measured. Then the flexural 
vibration wave shape was determined and analyzed using 
the maximum amplitudes obtained. 

Measurement of flexural vibration wave shapes 

Figure 1 illustrates the experimental apparatus. The beam 
was hung horizontally at two points located 22.4cm from 
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Fig. 1. Experimental apparatus 

each end of the beam (the node point of the first mode), as 
shown in Fig. 1. The measuring points, every 1 cm (5 cm in 
some experiments) on the same surface of the beam, were 
tapped by a impulse force hammer, and the responses of the 
generated flexural vibration were measured by an acceler- 
ometer placed at a definite location (99cm) on the same 
surface. The wave of the impulse from the impulse force 
hammer and the response measured by the accelerometer 
were read by digital spectrum analyzer, and the resonance 
frequency at the first mode of the beam and the imaginary 
value of the transfer function (i.e., the maximum amplitude 
at the first mode of each measuring point) were obtained by 
the digital spectrum analyzer. The flexural vibration wave 
shape of the beam was determined by these amplitudes. 
The flexural wave shape was then normalized by the ampli- 
tudes as described in the following section and compared 
with the theoretical flexural wave shape for a uniform 
material. All of the measurements were carried out in an 
air-conditioned room at 20~ and 65% RH. 

Theoretical flexural vibration wave shape and modal 
normalization 

The wave shape of the flexural vibration s with the free ends 
can be described using the following equation. 

Y(x) = sinhkil + sink,./(sinhkx ~ 7  c ~ '  ' + sinkex) 

+ coshk, x + coskix 

kll = 4.730, k21 = 7.853, k31 = 10.996, k41 = 14.137, 

ks1 = 17.279 

(4) 

where i is the number of modes; and l is the length of the 
beam. 

To compare the experimentally obtained wave shape 
with the theoretical wave shape, the wave shape of the 
beams were normalized. To make clear the difference be- 
tween a wave shape of a beam containing a knot and that of 
the theoretical wave shape, the amplitudes between the two 
node points of the beam were used for normalization, as 
shown in Fig. 2. The area enclosed by the original wave 
shape among two node points and the x-axis (the integral of 
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Fig. 2. Normalization of flexural vibration wave shape at the first 
mode. Open symbols, original wave shape; solid line, normalized wave 
shape; broken line, theoretical wave shape 

the amplitudes between two node points to the length direc- 
tion of the beam) (shown by the right oblique lines) and the 
area enclosed by the theoretical wave shape between two 
node points and the x-axis (shown by the left oblique lines) 
were computed. The ratio of the latter to the former was 
multiplied by the original wave shape, thereby obtaining 
the normalized wave shape of the beam. From this point on, 
the normalized wave shapes determined by this method are 
used for comparison with the theoretical wave shape. 

Results and discussion 

Determination of the flexural vibration wave shape using 
the transfer function 

For determining the wave shape of the flexural vibration at 
the first mode, the maximum amplitude of each measuring 
point on the longitudinal direction of the beam must be 
measured simultaneously. An apparatus with multiple 
channels and a number of sensors is necessary for such 
analysis. Such a system is expensive, and difficulty is often 
encountered because of the mass of the sensors used in the 
measurement. Therefore, measurements using a less expen- 
sive apparatus with two channels and a single sensor is 
desirable. In the present study, the method using the wave 
shape determined by the transfer function, obtained from 
the displacement/impulse force ratio was attempted. A 
beam with straight grain and no defects was tapped twice at 
different forces at the identical measuring point using the 
impulse force hammer. The impulse from the impulse force 
hammer and the generated flexural vibration were mea- 
sured by the accelerometer set near one end of the beam 
and were fed into the digital spectrum analyzer. The results 
calculated by the transfer function are shown in Fig. 3. 
Despite the different tapping forces, the maximum ampli- 
tude at the first mode was 0.264, at the second mode it was 
0.124, and at the third mode it was 1.53, with the amplitudes 
of the two taps being identical at each mode. Therefore, 
it was possible to obtain identical maximum wave shape 
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Fig. 3. Influence of tapping force on transfer function analysis 

amplitudes by tapping each measuring point of the beam 
individually. This apparatus system is relatively inexpensive 
and does not involve the difficulty entailed by the mass 
of multiple sensors because it uses only a single sensor. 
Accordingly, the wave shape of the flexural vibration can be 
obtained easily and accurately with the present method. 

As mentioned above, the maximum amplitude of each 
measuring point can be determined by tapping each mea- 
suring point of the beam and using the transfer function, 
thereby allowing the wave shape to be obtained from these 
maximum amplitudes. Consequently, it is possible to detect 
wood defects such as knots and to estimate the elasticity or 
the strength of the wood based on the wave shape. 

Flexural vibration wave shape of uniform beam 

Using the method described above, a beam with straight 
grain and without defects was tapped at each measuring 
point every i cm on the flat grain surface, and the maximum 
amplitudes of each measuring point were determined at the 
first mode; the wave shape was obtained by these maximum 
amplitudes. The wave shape of the beam was then normal- 
ized and compared with the theoretical wave shape of the 
homogeneous material. As seen by the results shown in Fig. 
4, the normalized wave shape of the uniform beam com- 
pletely coincided with the theoretical wave shape. Because 
this beam did not contain defects and its grain was straight, 
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Fig. 4. Flexural vibration wave shape at the first mode  of a clear 1 
wooden beam. Open symbols, normalized wave shape of a clear 
wooden beam; broken line, theoretical wave shape 

the elasticity of the beam was considered uniform. The 
results shown in Fig. 4 also suggest that the elasticity of the 
beam is almost uniform. 

Effect of partial mass and elasticity variation on the 
flexural vibration wave shape 

The elasticity of the area containing a mechanical defect 
such as a knot or decay is generally lower in the direction of 
the tree axis than in a uniform part of the same beam; and 
the density of such an area is also different from that of the 
uniform part. Therefore, when detecting the defect and 
estimating the elasticity of the defective part using the wave 
shape, the effect of the partial elasticity and density varia- 
tion on the wave shape must be examined. In the present 
report, this issue was investigated by attaching a weight with 
glue to simulate density variation and by drilling a hole to 
simulate elasticity variation (more exactly, the bending stiff- 
ness variation). That is, after obtaining the wave shape of a 
uniform beam with straight grains, a 5-g iron bar with glue 
was attached to the beam in the width direction at a position 
63cm from one end, and the wave shape of the beam was 
then remeasured. Moreover, after removing the iron bar, a 
2cm diameter hole was drilled at the same position on the 
flat grain surface, and the wave shape was measured for a 
third time. The mass removed by drilling the hole was al- 
most equal to the mass of the iron bar attached to the beam. 
Figure 5 shows these three wave shapes. As shown in Fig. 
5A, the node points of the wave shape of the beam to which 
the iron bar was attached shifted to the center of the beam 
compared with those of the uniform beam. At the point 
(63 cm) of attachment to the iron bar, the amplitude was 
somewhat higher than that of the uniform beam, and the 
curvature of this point increased. This result shows the shift 
in the node points to the location of the weight increase due 
to the increase in the mass and the attendant increase in the 
curvature of the location. In contrast, the node points of the 
wave shape of the beam with a hole drilled at the same 
position (63 cm) scarcely shifted, although the curvatures of 
the wave shape apparently increased, as shown in Fig. 5B. 

286 

2 

-- 0 

-1 

-2 

B 

, , , i  . . . .  I . . . .  i . . . .  i . . . .  I . . . .  i . . . .  i . . . .  i . . . .  i . . . .  

10 20 30 40 50 60 70 80 90 100 
Length (cm) 

Fig. 5A,B. Influence of partial density and rigidity variation on the 
flexural vibration wave shape at the first mode.  A Wave shape of the 
beam with at tached weight. B Wave  shape of the beam with a hole. 
Open symbols, wave shape of the wooden beam with weight in case A 
and with a hole in case B; broken line, theoretical wave shape 

This result shows that in the beam with a knot 2cm in 
diameter, even if the density of the knot is twice that of the 
uniform part, the effect of the density variation on the wave 
shape was only slight. However, if the bending stiffness or 
elasticity of only 2cm of the partial defect against the 100cm 
length of the beam was decreased by half, the effect of the 
elasticity variation on the wave shape would be marked. 

The preceding results suggest that it is possible to detect 
defects such as knots or decay based on the wave shape, 
especially in the case of knots, as both the increase in den- 
sity and the decrease in elasticity increase the curvature of 
part of the knot, making the knot more easily detected. 

Determining the presence of a knot in a beam in terms of 
flexural wave shape 

To discuss the characteristics of the flexural vibration wave 
shape of a beam containing defects such as knots, two 
beams with the dimensions described under materials were 
prepared. One contained a 3cm diameter knot, with the 
center of the knot located 62cm from the base end of the 
beam. The other was taken from the adjacent part in a 
direction tangential to the above beam, and it contained 
grain deviations around the knot in the above beam. 

The flexural vibration wave shapes at the first mode of 
these beams were obtained and compared with the theoreti- 
cal wave shape. In the case in which the beam contained a 
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Fig. 6. Influence of a knot  on the flexural vibration wave shape at the 
first mode.  Open symbols, wave shape of wooden beam with a knot; 
broken line, theoretical wave shape 
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Fig. 7. Influence of localized grain deviations on the flexural vibration 
wave shape at the first mode.  Open symbols, wave shape of a wooden 
beam containing localized grain deviations; broken line, theoretical 
wave shape 

knot at 62cm, the wave shape was obviously different from 
the theoretical wave shape. The maximum amplitude of the 
wave shape shifted to the right, and the amplitudes near the 
knot were higher than those of the theoretical wave shape 
at the same position, as shown in Fig. 6. A similar tendency 
was found in the beam containing the disordered grain, as 
shown in Fig. 7, though the tendency was much less than in 
the case shown in Fig. 6. In the case of the beam in which 
a hole was drilled (Fig. 5B), the amplitudes of the part in 
which a hole was drilled were also higher than that of the 
theoretical wave shape, and the curvature of that part was 
higher than that of the same part of the theoretical wave 
shape. 

As mentioned above, it was shown that in the case of the 
beam containing a defect with lower elasticity (e.g., a knot, 
grain deviation, or hole) the amplitudes near the defect and 
the curvature of the defective part increased compared with 
the theoretical wave shape. 

These results show that not only the presence of defects 
can be detected but also that the location and the elasticity 
of the defective parts can be estimated by comparing the 
beam's wave shape with the theoretical wave shape. 
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Fig. 8. Influence of knot  location on the flexural vibration wave shape 
at the first mode.  Open symbols', wave shape of wooden beam  with a 
knot; broken line, theoretical wave shape 

Estimating the location of the defect by means of the 
flexural vibration wave shape 

As described in the preceding section, the location of the 
defect can be estimated by tapping the beam containing the 
defect and examining the wave shape. A beam containing a 
knot whose center was located near the center (51cm) of 
the beam, a beam containing a knot whose center was lo- 
cated slightly apart from the center (58 cm) of the beam, and 
a beam containing a knot whose center was located near the 
node point (77 cm) were used for measurements. The wave 
shapes of these three beams were determined to investigate 
the reliability of estimating the defect's location. 

In the case of the beam containing a knot (A: about 5cm 
diameter, perforated) near the center of the beam, as shown 
in Fig. 8A, the wave shape of the beam was markedly differ- 
ent from the theoretical wave shape, and the node points 
shifted to the center of the beam. Therefore, the site where 
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the ampl i tude  was most  separa ted  from the theoret ica l  
wave cor responded  to the locat ion of the knot.  This result  
suggested that  the locat ion of the defect  can be es t imated 
with high accuracy. In the case of the beam containing a 
knot  (B: about  3cm diameter ,  pe r fora ted)  slightly distant 
f rom the center  of the beam,  a similar result  was obtained;  
that  is, the ampl i tude  of the knot ' s  locat ion was most sepa- 
ra ted  f rom the theoret ica l  wave, and the locat ion of the 
knot  can be accurately est imated.  In the case of the beam 
containing a knot  (C: about  6cm diameter ,  about  l cm 
depth)  far from the center  of the beam and near  the node  
point,  the wave shape was significantly different  from the 
theoret ica l  wave, and the max imum ampl i tude  shifted to 
the right. Because  the depth  of the knot  was shallow, there  
was only a small  difference from the theoret ica l  wave shape. 
However ,  the ampl i tudes  were most  separa ted  from the 
theoret ica l  wave shape in the range of 75-80cm in the same 
locat ion as that  of the knot.  

These  results suggested that  defects located near  the 
central  par t  of a beam can be easily detected,  and the loca- 
t ion of the defect  can be es t imated  with high accuracy based 
on the flexural v ibra t ion  wave shape ob ta ined  by the trans- 
fer function. Moreover ,  it is thought  that  the elasticity of 
every par t  of the  beam can be es t imated  using the curvature  
of the wave shape. Consequent ly ,  the testing method  de- 
scr ibed in the present  s tudy should be further  investigated.  

Conclusions 

For  the purpose  of nondestruct ively detect ing wood defects 
such as knots,  the flexural v ibra t ion  wave shape at the first 
mode  genera ted  by tapping the beam was de te rmined  using 

the transfer  function, and the wave shape was compared  
with the theoret ical  wave shape for homogeneous  material .  
As  a result,  the flexural vibrat ion wave shape at the first 
mode  of the uniform beam almost  complete ly  coincided 
with the theoret ica l  wave shape. In the case where the beam 
conta ined a defect  such as a knot,  the wave shape obviously 
differed f rom the theoret ica l  wave shape around the defect. 
These results suggest that  it is possible to detect  the pres- 
ence of defects and es t imate  their  locations. Moreover ,  be- 
cause it is thought  that  the defective par t ' s  elasticity can be 
es t imated by analyzing the curvature of the wave shape, 
re la ted  studies will be further pursued.  
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