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Abstract The measurement method of mode II fracture
toughness-crack propagation length relation (i.e., the resis-
tance curve, or R-curve) was examined by end-notched
flexure tests on sitka spruce (Picea sitchensis Carr.). The
tests were conducted by varying the span/depth ratios under
the constant loading point displacement condition. The
fracture toughness was measured from the load-crack shear
displacement (CSD) and load-longitudinal strain relations.
The crack length was determined by a combination of load-
CSD and load-strain compliances and Williams’s end
correction theory, as well as the observation of crack propa-
gation. When the specimen had an appropriate span/depth
ratio, the fracture toughness and crack propagation length
were measured from the load-CSD compliance and com-
bined load-CSD and load-strain compliances, respectively,
and the R-curve could be determined properly under the
constant loading point displacement condition.

Key words Mode II fracture toughness · Crack length · R-
curve · End-notched flexure test

Introduction

Wooden beams usually contain natural fractures whose
planes parallel the longitudinal direction; and bending load
is often applied to beams with these fractures. With this
loading pattern, fracture often propagates by in-plane shear
mode (mode II) or a combination of crack opening (mode
I) and in-plane shear modes. Therefore, it is important to
measure the mode II fracture toughness properly. When
measuring the mode II fracture toughness of advanced com-
posites such as carbon fiber-reinforced plastics (CFRP), the

end-notched flexure (ENF) test is commonly performed; its
techniques were developed over two decades.1–5

In previous studies the ENF test method was examined
using western hemlock, and it was found that the testing
method could be applied to measuring the fracture tough-
ness of wood under certain testing conditions.6,7 The ENF
tests were conducted under the loading point displacement
control condition. Although the crack propagation is not
always stable with this loading condition, a servo-controlled
testing machine is not required and plural fracture
toughnesses can be obtained when the initial crack length is
1 3 0 6933 @( ).  times longer than the half-span. Therefore,
the fracture toughness–crack propagation length relation
(i.e., the resistance curve, or R-curve) can be obtained even
in this loading condition. As for the mode II fracture tough-
ness of wood, however, there were few studies of fracture
toughness by the R-curve because of the difficulty of evalu-
ating the crack length properly. With the ENF test, the
crack often propagates obscurely; and the crack length,
which has a serious influence on the R-curve, is difficult to
measure by observation. Kageyama and colleagues pro-
posed the determination method for crack length without
observing the crack propagation based on “Williams’s end
correction theory.”3,4 Nevertheless, Williams’s theory re-
quires the elastic constants of the specimen, which should
be determined independently of the ENF tests; and there is
a concern that the variation in elastic constants inevitably
contained in wood cause an incorrect evaluation of crack
length. Here a method for determining the mode II R-curve
of wood is proposed, and the validity of this method was
examined.

Theories

Derivation of energy release rate by ENF test

As in Fig. 1, an ENF specimen with a crack length of a is
loaded by P at the center of the span of 2L. The equation
for bending is given by the elementary beam theory as
follows.
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where Ex is Young’s modulus in the longitudinal axis, and I
is the second moment of cross-sectional area in the crack-
free region. Solving this equation, we can obtain the deflec-
tion at the loading point v as:

v
P L a

E Ix
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 � 2 3
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(2)

The loading point compliance CL is defined as follows.

C
v
P

L a
E Ix

L  �  � 
 � 2 3

12

3 3

(3)

Hence, the energy release rate in the in-plane shear mode
(mode II) , GII, is given as1,3,4:
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where b is the width of the beam. When dGII/da is nega-
tive, the crack propagates stably. For stable crack pro-
pagation, the crack length a should be larger than L 3 3
under the constant loading point displacement condition.1

Kageyama and colleagues proposed a method for deriv-
ing the energy release rate by measuring the crack shear
displacement (CSD) instead of measuring the loading point
displacement as in Fig. 1.3 The CSD, denoted as δ, is ob-
tained by integrating the strain along the longitudinal axis
from the lower end corner of the upper beam to the crack
tip; it is given as follows.

δ �  � 
ha
E I

P
ha
E I

P
x x

2 2

8 ¢ (5)

where h is the upper beam height of cracked region, and I�
is the second moment of cross-sectional area in the cracked

region (which equals I/8). The CSD compliance CC is writ-
ten as follows.
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From Eqs. (3)–(6), the energy release rate can be formu-
lated as3,5:
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There is a concern that the fracture toughness obtained
from Eq. (4) or (7) is influenced by the additional deflection
caused by the shearing force that implicitly occurred in the
beam.7 When the longitudinal strain at the most outer plane
is measured (Fig. 1), however, the influence of shearing
force might be effectively reduced. As in Fig. 1, the longitu-
dinal strain at the midspan εx is represented as follows.

εx
x x

Mh
E I

PLh
E I

 �  � 
2 (8)

where M is the bending moment at the midspan. When the
load-strain compliance is defined as CS, it is represented as:
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From Eqs. (3), (4), and (9), the energy release rate is given
as:
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Evaluation of crack length

In the ENF test the crack propagates without a clear open-
ing, and the difficulty evaluating the crack length causes the
impropriety of the R-curve even when the fracture tough-
ness is properly measured. To reduce this difficulty, the
crack length must be determined without observation. One
method for evaluating the crack length is based on
Williams’s end correction theory. According to that theory,
the crack length is regarded as being �h longer than the real
length, so the load-CSD compliance CC is represented as
follows.2

C
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where � is the function of elastic constants as:
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where Ey is Young’s modulus in the direction of thickness,
and Gxy is the shear modulus. The crack length evaluated by

Fig. 1. End-notched flexure (ENF) test
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the theory is defined as αw and is determined from Eq. (11)
as3:

αw
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With Williams’s end correction theory, which was origi-
nally applied to measuring the fracture toughness of CFRP
by Kageyama and colleagues,3 measurements of elastic con-
stants are required independently of the ENF tests. Never-
theless, the elastic constants of wood show larger variations
than those of CFRP, and there is a concern that these varia-
tions cause the impropriety of R-curve. Additionally, it is
inconvenient to measure the elastic constants indepen-
dently of the ENF tests. By combining the compliances,
however, the crack length during propagation can be calcu-
lated without measuring the elastic constants. From Eqs.
(3), (6), and (9), the compliance ratios rLS, rCS, and rCL are
defined by CL/CS, CC/CS, and CC/CL, respectively, as follows.
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The ratios at a � 0.7L, which is close to the lower boundary
for stable crack propagation, are defined as r0

LS, r
0
CS, and r0

CL.
Figure 2 shows the variances of normalized compliance ra-
tios rLS/r

0
LS, rCS/r

0
CS, and rCL/r0

CL by crack propagation. As
shown in Fig. 2, the variance of rCS/r

0
CS is larger than that of

the others, which indicates that the value of rCS is more
sensitive to the change in crack length than the others.
When evaluating the crack propagation length, therefore, it
would be effective to use the combination of load-CSD and
load-strain compliances and the crack length estimated by
the combination of compliances, which is defined as αc,
derived from Eq. (15) as:

αc
C

S

CS �  � 
LC

C
Lr

2 2 (17)

In this experiment, the crack length was evaluated by a, αw,
and αc. The R-curves obtained by the various crack length
evaluations were compared with each other.

Experiment

Materials

Sitka spruce (Picea sitchensis Carr.), with a density of 0.42g/
cm3, was used for the specimens. Specimens were condi-
tioned at 20°C and 65% relative humidity (RH) before and
during the tests. Five specimens were used for each testing
condition.

ENF tests

A beam specimen was cut with the dimensions of 15 �
15mm in the radial and tangential directions, respectively,
and 250–550mm at intervals of 50mm in the longitudinal
direction. The span length 2L varied as 150–450mm, which
was 100mm shorter than the total length. The crack was
initially cut in the longitudinal-tangential plane by a band
saw with a thickness of 1mm; it was then extended by a
razor blade. The initial crack length a0 was 0.7 times the
half-span L. A strain-gauge (gauge length 2mm) (FLA-2-
11, Tokyo Sokki, Tokyo, Japan) was bonded to the bottom
of the midspan. The crack shear displacement and loading
point displacement were measured by the CSD gauge and
dial gauge set on the upper cantilever of the specimen and
below the loading nose, respectively. Two sheets of Teflon
film of 0.5 mm thickness were inserted between the crack
surfaces to reduce the friction between the upper and lower
cantilever beams. This specimen was supported with the
span whose lengths are shown in Table 1, and the load was
applied to the midspan of the longitudinal-radial plane not
to exceed the strain rate of 0.015/min at the midspan. The
loading speed corresponding to the span is shown in Table
1. The load P, crack shear displacement δ, and longitudinal
strain at the bottom of the midspan εx were measured si-
multaneously and recorded in a data log at intervals of 2s.

Fig. 2. Variances of normalized compliance ratios by the crack
propagation
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The critical load, which is regarded as the load at initiation
of crack propagation, was determined to be the load be-
tween the straight-line segments through the prelinear and
postlinear portions of the load-CSD curves.6,7 Equation
(8) suggests the difficulty of determining the critical load
from the load-longitudinal strain relation because this
relation has no crack length and is not sensitive to crack
propagation. The load-strain relation was used to calculate
the energy release rate; hence, the critical load was
measured from the load-loading period relation. Prior to
the tests, straight lines were drawn in the crack-free region
of an LT plane at intervals of approximately 0.03L per-
pendicular to the crack for the specimen. A load was
applied until the splitting of a marker line was observed.
This process was performed under a magnifying glass. The
specimen was then unloaded until a certain load was
attained. The specimen was reloaded until the splitting of
another marker. This load-unload process was repeated,
and the fracture toughness at the beginning of crack propa-
gation GIIc and that during the crack propagation GIIR were
calculated from Eqs. (7) and (10). As mentioned above, the
crack length was evaluated by a (obtained by observation)
and by αw and αc [calculated using Eqs. (13) and (17), re-
spectively]. Plural R-curves corresponding to each span/
depth ratio 2L/2h were obtained from the various fracture
toughness-crack length relations and were compared with
each other.

Compression tests

To evaluate the crack length by Williams’s end correction
theory, αw, Young’s moduli Ex and Ey, and the shear modu-
lus Gxy were determined by compression tests. Short-col-
umn specimens whose dimensions were 60 � 30 � 30mm
were prepared. When measuring Ex and Ey, the long axis of
the specimen was male to coincide with the longitudinal and
tangential directions of wood, respectively, whereas when
measuring Gxy the long axis was made to coincide, with its
direction inclined at 45° with respect to the grain. Strain-
gauges were bonded at the centers of LT planes, and a
compression load was applied at a crosshead speed of
0.5 mm/min. Young’s moduli were obtained from the stress-
strain relation. The shear modulus was determined from the
following equation.

G
E

vxy � 
 � 

45

452 1( ) (18)

where E45 and v45 are Young’s modulus and Poisson’s ratio
in the direction inclined at 45° with respect to the grain,
respectively.

Results and discussion

Figure 3 shows the fracture toughness at the beginning of
crack propagation GIIc corresponding to the span/depth
ratio 2L/2h. When the span/depth ratio was less than 20,
the GIIc value obtained from the load (P)–CSD (δ) relation
increased with decreasing span/depth ratio. This tendency
was due to the additional crack shear displacement caused
by the shearing force.2 In contrast, GIIc obtained from the
load (P)–longitudinal strain (εx) relation was rather stable
over all span/depth ratios because the longitudinal strain
was free from the influence of shearing force. When the
fracture toughness was obtained from the P–δ relation, the
crack length implicitly contained in Eq. (7) was estimated to
be longer than the real one because of the end correction
effect shown as Eq. (11), which indicates that the CSD
compliance is seriously influenced by this effect. In contrast,
the real crack length, in which the end correction effect is
ignored, was used when the fracture toughness was calcu-
lated from the P–εx relation, as in Eq. (10). Because of the
corrected crack length, the value of GIIc obtained from the
P–δ relation was always larger than that obtained from
the P–εx relation. This tendency was commonly found
in the fracture toughness during crack propagation GIIR.
When using the P–εx relation for obtaining the fracture
toughnesses GIIc and GIIR, there is an advantage in reducing
the influence of shearing force. As shown in Eq. (10), how-
ever, there is a drawback that the end correction effect
cannot be taken into account from the P–εx relation. Addi-

Table 1. Crosshead speed corresponding to each span and depth

Span 2L (mm) Crosshead speed (mm/min)

150 0.3
200 0.5
250 1.0
300 1.0
350 2.0
400 2.0
450 3.0

Fig. 3. Fracture toughness at the beginning of crack propagation GIIc

corresponding to the initial crack length/half-span 2L/2h. Circles
and horizontal bars represent the means and standard deviations,
respectively
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tionally, there are two drawbacks when obtaining the value
of GIIR from the P–εx relation. The first drawback is due to
the strain-gauge compliance CS, which is not essentially
changed by the crack propagation, as in Eq. (9). Insensitiv-
ity to crack propagation causes incorrect estimation of frac-
ture toughness. The other drawback is due to that the crack
length a should be given by the observation when obtaining
GIIR from Eq. (10). As mentioned, the crack propagates
obscurely in the ENF test, and it is difficult to determine the
crack length properly. When determining the fracture
toughnesses GIIc and GIIR, use of the P–δ relation by the
specimen with an appropriate span/depth ratio is recom-
mended.

Using compression tests, the elastic constants Ex, Ey, and
Gxy obtained were 12.7, 0.88, and 0.72 GPa, respectively.
Substituting these constants into Eqs. (12) and (13), crack
length αw was evaluated by Williams’s end correction
theory. Figure 4 is an example of the normalized crack
lengths αw/L and αc/L calculated with Eqs. (13) and (17),
respectively, corresponding to the observed crack length
normalized by the half span a/L. As shown in Fig. 4b, the
tendencies of αw/L–a/L and αc/L–a/L relations were similar
when the span was larger than 350mm (span/depth ratio
23.3). This phenomenon indicates that the crack length cal-
culated by the combination of load-CSD and load-strain
compliances was as effective as Williams’s end correction
theory. As shown in Fig. 4a, however, the value of αc/L did
not increase by crack propagation despite the increased αw/
L when the span/depth ratio was small. This tendency was
marked when the span was smaller than 300mm (span/
depth ratio 20). The anomalous behavior of αc/L was caused
by the load-strain compliance CS. Figure 5 shows the nor-
malized strain compliance CSI/Lh corresponding to the nor-
malized crack length, a/L. Equation (9) suggests that the
strain compliance CS is independent of the crack length, and
this independence was verified when the span was larger
than 350mm. When the span was smaller than 300mm,
however, the value of CS was often increased by crack
propagation, as in Fig. 5. When obtaining the R-curve by the
combination of load-CSD and load-strain compliances, an
appropriate span/depth ratio range exists.

Figure 6 shows the R-curves, which are the GIIR-a, αc, and
αw relations and the GIIR-∆a, ∆αc, and ∆αw relations. The
value of GIIR was increased by crack propagation due to
“fiber bridgings”, which span the upper and lower crack
surfaces; and the R-curves showed the convexity whether
the crack length was defined by a, αc, or αw because the
resistance against the crack propagation is increased by
the bridgings.5 As in Fig. 6a, the R-curves obtained using the
observed and calculated crack lengths were different from
each other. When the fracture toughness and crack propa-
gation length were used as in Fig. 6b, however, the R-curves
overlapped.

Considering the difficulty of observing crack propaga-
tion and the inconvenience of Williams’s end correction
theory, the combined compliance method proposed here
is appropriate for determining the R-curve. As mentioned
above, however, the span/depth ratio should be large
enough to reduce the influence of shearing force and to
increase strain compliance during crack propagation.

Fig. 4. Crack lengths per half-
span calculated from Williams’s
correction theory and the combi-
nation of load-CSD and load-
strain compliances corresponding
to the observed crack length per
half-span. Open and solid circles
were obtained from Williams’s
correction theory and the combi-
nation of compliances, respec-
tively; dashed line shows the
condition that the calculated
crack length is equal to the ob-
served one

Fig. 5. Variance of normalized strain compliance by crack propagation
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Conclusions

Using mode II fracture in a spruce specimen, the
toughness–crack propagation length relation (R-curve) was
obtained by the ENF test under the constant loading point
displacement condition. The following results were ob-
tained. (1) The fracture toughness obtained by the CSD
compliance was influenced by the span/depth ratio because
of the shearing force that is inevitable in beam deformation.
The fracture toughness obtained by the load-longitudinal
strain compliance was free from the influence of shearing
force, but it was always smaller than that obtained by the
load-CSD compliance because of ignorance of the end
correction effect. (2) The crack length, calculated by the
combination of load-CSD and load-strain compliances, was
close to that derived by Williams’s end correction theory
when the specimen had an appropriate span/depth ratio. (3)
Using the fracture toughness (obtained by the load-CSD
compliance) and the crack propagation length (calculated
by the combination of load-CSD and load-strain compli-
ances), the R-curve can be determined properly under the
constant loading point displacement condition.
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