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Abstract This study deals with the suitable discriminant
techniques of wood-based materials by means of near-
infrared spectroscopy (NIRS) and several chemometric
analyses. The concept of Mahalanobis’ generalized dis-
tance, K nearest neighbors (KNN), and soft independent
modeling of class analogy (SIMCA) were evaluated to de-
termine the best analytical procedure. The difference in the
accuracy of classification with the spectrophotometer, the
wavelength range as the explanatory variables, and the
light-exposure condition of the sample were examined in
detail. It was difficult to apply Mahalanobis’ generalized
distances to the classification of wood-based materials
where NIR spectra varied widely within the sample cat-
egory. The performance of KNN in the NIR region (800–
2500nm), for which the device used in the laboratory was
employed, exhibited a high rate of correct answers of vali-
dation (�98%) independent of the light-exposure condi-
tions of the sample. When employing the device used in the
field, both KNN and SIMCA revealed correct answers of
validation (�88%) at wavelengths of 550–1010nm. These
results suggest the applicability of NIRS to a reasonable
classification of used wood at the factory and at job sites.
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Introduction

When we utilize wood as architectural or industrial materi-
als, it normally is subjected to several chemical or mechani-
cal processes (e.g., impregnation of antiseptics or fire
retardants, application of adhesives, lamination with a poly-

vinyl chloride film). Therefore, when discarding or recycling
such wood-based materials, we must consider the best pro-
cedure for distinguishing them clearly into inflammable and
incombustible groups in which chemical components should
be evaluated accurately and rapidly. Currently, there are
few feasible discriminting systems at the factory or at job
sites, where the inspectors roughly classify them. Therefore,
we need to improve the present situation as quickly as
possible from the viewpoint of preserving the environment.

Near-infrared spectroscopy (NIRS) is a nondestructive
analytical method for determining the composition of mate-
rials.1,2 Diffuse reflectance or an absorption spectrum of
800–2500nm allows clear discrimination of various organic
compounds. The application of NIRS to such wood-based
materials or engineered wood has been reported by some
researchers,3,4 who especially noted the usefulness of quan-
titative analysis. However, the severe and critical require-
ment to the wood industry described above may also be
satisfied by the use of NIRS.

We5 have reported that the discrimination of wood spe-
cies could be performed by means of combining NIRS and
Mahalanobis’ generalized distance. Its accuracy and reason-
ability were examined for samples with various moisture
contents ranging from oven-dried to the fully saturated free
water state. Each wood group was well recognized by the
discriminant analysis using second derivative spectra, re-
sulting in a high percentage of correct answers, with good
validation. Brunner et al.6 have also demonstrated the use-
fulness of Fourier transform (FT)-NIR for classifying wood
species. They focused on the principal component analysis,
where the original NIR spectra of various sawn cut, or
microtomed samples were employed. These previous stud-
ies pointed out the significance of the NIR range, which
contributed to the discrimination of wood samples with
statistical satisfaction, although at first glance the spectra
between samples were similar.

In this study, the use of NIRS to classify wood-based
materials was examined in regard to social and industrial
backgrounds. As a first step of this project, we tried an
approximate classification to categorize diverse wood prod-
ucts, so each category included several types of wood-based
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material. For example, we did not especially distinguish
between plywood and laminated veneer lumber (LVL) but
classified solid wood and such laminated wood in one
group. Several chemometric techniques – Mahalanobis’
generalized distance,7 K nearest neighbors (KNN),8 soft in-
dependent modeling of class analogy (SIMCA)9,10 – were
examined for their accuracy and reasonability. The NIR
spectra of wood-based materials were measured by a typical
spectrophotometer used in the laboratory and one used in
the field. The difference in the accuracy of classification
with the spectrophotometer, the wavelength range as the
explanatory variable, and the light-exposure condition of
the sample were examined in detail.

Classification methods

When we have qualitative or quantitative information
based on spectra, we can focus on multivariate spectra to
classify or evaluate substances. As several overtone or
combined-tone bands of organic compounds overlap in the
NIR region, it is important to find the key information by
applying an effective chemometric technique(s). The classi-
fication modeling by KNN and SIMCA are briefly de-
scribed here. Because we introduced the concept of
Mahalanobis’ generalized distance in the last report,5 its
description is omitted here.

K nearest neighbors

The KNN procedure attempts to categorize an unknown
sample based on its proximity to samples already catego-
rized, similar to the Mahalanobis’ generalized distance tech-
nique. Specifically, the predicted class of an unknown
depends on the class of its k nearest neighbors, which ac-
counts for the name of the technique. In a fashion analo-
gous to polling, each of the k closest training set samples
votes once for its class; the unknown sample is then assigned
to the class with the most votes. An important part of the
process is to determine an appropriate value for k (the
number of neighbors voting).

The general expression for the Euclidean distance dab

between the known and unknown sample is
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where a and b are the data vectors for the known and
unknown sample, respectively. A data vector contains m
explanatory variables as the absorbances of a restricted
wavelength range.

If dab has a low value, it means there is high similarity
between the two data. This way, dab between the unknown
sample and several known samples, which have already
been classified, are calculated. Finally, the cluster including
the unknown sample is defined. We call a concrete proce-
dure 1NN, 3NN, 5NN, and so on. In the case of 1NN, the

cluster that includes the known sample nearest to the un-
known sample is selected. In the case of 3NN, the three
known samples nearest to the unknown sample are exam-
ined successively. If the cluster of two or three samples
coincides with each other, the unknown sample may be
included in it. When the similarity of the cluster does not
satisfy such conditions, we cannot determine that the cluster
includes the unknown sample.

Soft independent modeling of class analogy

The SIMCA method was first introduced by Wold.9 In con-
trast to KNN, which is based on distances between pairs of
samples, SIMCA develops principal component models for
each training category. An attractive feature of SIMCA is
its realistic prediction options compared to KNN.

Also with SIMCA, all known samples are classified into
several clusters. Principal component analysis (PCA) is per-
formed for each cluster, for which a restricted pth dimen-
sional space is constructed. The area of cluster including the
known s samples containing n measurement values (i.e., the
absorbances of the restricted wavelength range) is defined
as RSD and is calculated as follows.
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where eik is the residual of ith known sample. After per-
forming PCA for each cluster, a so-called SIMCA-box is
presented. The classification is based on the distance D
between the unknown sample and each SIMCA-box. D is
compared with RSD. If D is much smaller than RSD, the
unknown sample may be assigned to the cluster.

Materials and methods

Samples

Wood-based materials of various types are commonly used
under diverse conditions; however, it is not advisable to
examine the detailed classification at the first step of this
project. We should examine comprehensively the reason-
ability of using NIRS to classify wood-based materials.
Therefore, the samples were classified in five typical catego-
ries, as described in Table 1: solid wood, laminated wood,
particle- or fiberboard, impregnated wood, and overlaid
wood. These categories were approved by the Wood Tech-
nological Association of Japan. The dimensions of the
samples were 50 � 30 � 10mm (sample surface 50 �
30mm). Each sample was measured in the air-dried condi-
tion. In this study, we also controlled the light-exposure
condition of the sample, which might be regarded as a simu-
lation of used wood. The discriminant analysis was per-
formed on two sample groups as follows.

1. The samples did not suffer forced exposure. The sample
volume for each category consisted of 16 specimens: 12
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Table 1. Tested species

Solid wood
Japanese cedar (Cryptomeria japonica)
Japanese cypress (Chamaecyparis obtusa)
Douglas fir (Pseudotsuga menziesii)
Western hemlock (Thuja heterophylla)
Japanese zelkova (Zelkova serrata)
Oak (Quercus crispula)
Japanese ash (Fraxinus mandshurica)
Japanese beech (Fagus crenata)

Laminated wood
Plywood
Laminated veneer lumber

Particleboard or fiberboard
Particleboard
Medium-density fiberboard
Insulation fiberboard

Impregnated wood
Hard fiberboard
Preservative-treated wood

Overlaid wood
Fire retardant-treated wood
Plastic film-overlaid plywood
Printed paper sheet-overlaid plywood
Plastic film-overlaid particleboard
Wrapping of plastic profiles with thermoplastic foils
Thick fancy veneer-overlaid flooring
Thin fancy veneer-overlaid flooring

each were employed for the dataset, and 4 each were
employed for the validation set. There were a total of 80
samples.

2. The samples were exposed to simulated sunlight using a
WEL-SUN-D (Suga Test Instruments) for 37.5, 75, and
150h, respectively. These terms corresponded to the
natural outdoor exposure times of 2.5, 5, and 10 months,
respectively. Of course, it would be preferable to expose
the wood for a much longer time to examine the applica-
tion of this technique to the used wood. The sample
volume for each category was same as in item 1.

3. The members of the dataset and validation set were
changed four times in each category to check the accu-
racy of the validation.

Measuring apparatus

We measured each sample using two types of NIR spectro-
photometer. Analyses for laboratory use and for field use
were considered.

The InfraAlyzer 500 from Bran & Luebbe Co. was em-
ployed as the typical instrument for laboratory use; it was
labeled the L-type. It includes a diffraction grating and an
integrating sphere for obtaining spectral data. The optical
fiber probe was used for direct attachment between the
sample and the detector. In this system, NIR spectra with
high wavelength resolution (about 0.1–1.0nm) can be mea-
sured continuously using diffraction gratings. However, it
takes a significant length of time (30 seconds to several
minutes) to obtain a repeatable, stable spectrum. The wave-
length of incident light varied from 800 to 2500nm at a
stepwidth of 4 nm.

Model fruit selector K-BA100 (Kubota Co.) was em-
ployed as the instrument for field use; it was labeled the F-

type. It includes a diffraction grating and a multichannel
linear-array detector for obtaining spectral data. This de-
vice, operating in the interactance mode, was designed
to ascertain the quality of fruits or vegetables growing in
the field. The attachment optical fiber, employing the
interactance method, is useful for this original purpose;
however, it was not available for wood samples because of
the extreme light propagation along the longitudinal direc-
tion of wood fiber. Consequently, the measurement was
performed by keeping a distance of 10mm between the
sample surface and the fiber probe. The diffusely reflected
light can be detected under this condition. The measure-
ment time for one spectrum takes only 5s, but the linear
image sensor restricted the measurable range at short wave-
lengths ranging from 550 to 1010nm.

Outline of experiment

The procedures for discriminant analysis are as follows. The
NIR spectra for provided samples were measured by L-type
and F-type spectrophotometers, respectively. They were
divided into datasets, constructing each category and the
validation set as unknown data. The discriminant analysis
on the basis of Mahalanobis’ generalized distance, KNN,
and SIMCA were then examined. The members of the
dataset and validation set were changed four times in each
wood sample category.

Mahalanobis’ generalized distance was applied to NIR
spectra measured by the L-type instrument. The two or
three wavelengths for the best separations between five
categories of wood-based materials were determined from
the overall measurable wavelengths (800–2500nm).

KNN and SIMCA were also applied to NIR spectra from
L-type and F-type instruments. For each device, several
wavelength ranges were established taking into consider-
ation the spectroscopic characteristics of the electromag-
netic wave. The three ranges AF, BF, and CF for the F-type
instrument corresponded to the visible range (550–800nm),
the measurable NIR range for this device (800–1010nm),
and the overall measurable wavelength range (550–
1010nm), respectively. The three ranges AL, BL, and CL

were specified for the L-type spectrophotometer. They cor-
responded to the short wavelength range in NIR that was
mainly assigned to the second overtone (800–1400nm); the
long wavelength range in NIR, which was mainly due to the
first overtone and the combination band (1400–2500nm);
and overall NIR range (800–2500nm), respectively. The
specifications for each device and the established wave-
length ranges are summarized in Table 2.

Results and discussion

Discriminant analysis based on Mahalanobis’
generalized distance

Mahalanobis’ generalized distances between the five cat-
egories were calculated for the dataset, where the best two
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or three wavelengths were chosen. For this procedure, the
restricted wavelength in the spectrum is focused to classify
or identify the sample by matching the location and strength
of absorbance peaks to those of known substances.

Table 3 shows the results of the discriminant analysis
based on Mahalanobis’ generalized distances. According to
our recent report5 in which we examined the discrimination
of wood species using this technique, eight wood species
having various moisture contents could be easily classified
with the correct answer more than 98% of the time. The
variation of spectra with wood-based materials should be
larger than that with wood species. Therefore, we first esti-
mated that these categories could be well separated by this
classification method. However, the maximum correct an-
swers were limited to 75% for the nonexposure group. Fur-
thermore, the spectroscopic reasonability of the selected
wavelength was unelear. Some wavelengths were selected
from water absorption bands, whereas the moisture content
was not suitable as the explanatory variable in this case.
This means that the wavelength selection has no
significance.

Mahalanobis’ generalized distances cannot be applied to
the classification where the spectra vary widely from that of
the sample. The selection of wavelengths, which could be
explained by the specified position in the restricted nth
dimensional space, may be difficult. Although we may find

Table 2. Specifications for each device and established wavelength range for statistical procedures

Parameter L-type (device for laboratory use) F-type (device for field use)

Wavelength range 800–2500 nm 550–1010 nm
Detector Integrating sphere with PbS detector Multichannel linear array detector
Measurement time 5s 30s to several minutes
Applied chemometric Mahalanobis’ generalized distance KNN

technique KNN SIMCA
SIMCA

Selected wavelength Mahalanobis’ generalized distance: KNN and SIMCA
for analysis 800–2500 nm (total NIR range) AF: 550–800nm (visual range)

BF: 800–1010 nm (NIR range available for F-type)
KNN and SIMCA CF: 550–1010 nm (visual � NIR range)

AL: 800–1400nm (NIR range due to the second
overtone band)

BL:1400–2500 nm (NIR range due to the first overtone
and combination band)

CL: 800–2500nm (total NIR range)

KNN, K nearest neighbors; SIMCA, soft independent modeling of class analogy; NIR, near-infrared

Table 3. Results of discriminant analysis of wood-based materials
based on Mahalanobis’ generalized distance

Light-exposure condition of the sample Correct result
and selected wavelengths (nm)

No exposure
1945,a 1985 61%
945, 1945,a 1985 75%

Exposure for 37.5, 75, and 150 h
865, 985a 48%
985,a 1465,a 1985 71%

The wavelengths were selected from second derivative spectra meas-
ured by the spectrophotometer for laboratory use (L-type). The NIR
range for selecting the wavelength was 800–2500 nm
a Wavelength derived from the absorption of wood components1

a correct answer by increasing the number of selected wave-
lengths as explanatory variables, it will have little effect or
dramatically improve them.

Discriminant analysis based on KNN

Figure 1 shows the results of the discriminant analysis based
on KNN. The white and gray bars indicate the correct an-
swers for the nonexposed and light-exposed samples, re-
spectively. For the classification at a wavelength range of
800–2500nm using the L-type (CL) instrument, we found a
high rate of correct answers (�98%) independent of the
light-exposure conditions. On the other hand, the correct
classification results evaluated by AL and BL were slightly
less.

Fig. 1. Results of discriminant analysis of wood-based materials by K
nearest neighbors (KNN). Open bars, nonexposed sample; gray bars,
light-exposed sample; L-Type, instrument for laboratory use; F-Type,
instrument for field use
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In the case of the F-type instrument, we found the cor-
rect answer about 88% of the time at the wavelength range
of 550–1010nm (CF). Whereas the color condition varied
with the sample categories, the number of correct classifica-
tion answers using the visible range (AF) was low. The
correct answer evaluated by BF is higher than that by AF in
all cases. This suggests that the NIR range includes effective
information for the classification of wood-based materials,
even though it is a limited NIR range (800–1010nm).

Discriminant analysis based on SIMCA

Figure 2 shows the results of the discriminant analysis based
on SIMCA. The white and gray bars indicate the correct
answer for the nonexposed and light-exposed samples, re-
spectively. In the case of L-type, the number of correct
answers decreased almost to that of KNN. The correct clas-
sification answers obtained by the F-type instrument were
slightly more numerous than even obtained with KNN inde-
pendent of the selected wavelength or the light-exposure
state of the sample; however, the variation in results
increased.

KNN and SIMCA are based on the assumption that the
closer samples lie in the measured space, the more likely it
is that they belong to the same category. This idea of prox-
imity implies the concept of distance. KNN and SIMCA are
similar techniques that differ in their definition of distance.
SIMCA is statistically more realistic than KNN, so we must
consider the results in regard to our demands for the classi-
fication of wood-based materials.

Reasonability of classification analysis of
wood-based materials

We examined several classification procedures for wood-
based materials under diverse conditions. The results are
summarized to estimate and conclude which method is
suitable for our purpose. The analytical method of
Mahalanobis’ generalized distances may not satisfy us in
terms of accuracy. Therefore, we should examine the statis-
tical comparison of KNN and SIMCA for each device.

As shown in Fig. 1, the KNN method using the overall
NIR range (CL) with the L-type instrument gave nearly all
correct answers (100%) independent of the light-exposure
state of the sample. Needless to say, such a procedure
should be recommended as the best analytical classification
method. It is obvious that correct classification by AL oc-
curred at a higher rate than by BL for both KNN and
SIMCA. Therefore, we can conclude, interestingly, that
the relatively short NIR range of 800–1400nm includes
more effective information than the longer NIR range of
1400–2500nm, whereas the sensitivity of the NIR region to
chemical features of the materials commonly increases with
the increase in wavelength. This result provides useful sug-
gestions for when a new instrument is designed to classify
used wood.

On the other hand, for the F-type instrument the classi-
fication analysis based on both KNN and SIMCA provided
correct answers for validation more than 88% of the time
for the overall measurable range (CF) independent of the
light-exposure condition of the sample. The spectroscopic
information about visible range plus only a short NIR range
(800–1010nm) may eventually be found suitable for the
classification analysis. As described above, comparative
merits between KNN and SIMCA depend on our demand
for real classification of the wood-based materials. Al-
though the number of correct answers did not reach 90% in
this case, we may presently accept this degree of analytical
accuracy when considering the limited measurable wave-
length. We did not find that light exposure has a significant
effect on the classification analysis, perhaps because of the
relatively short exposure time for the sample.

In this study we performed a series of measurements and
analyses under known favorable experimental conditions
for the sample (e.g., sample surface or moisture content).
Needless to say, condition in the field where the measure-
ments and analyses must be performed are for more severe
and contaminated. Furthermore, the adequate or achieved
correct answers must be further considered. In the future
we will examine such analyses using real used wood and
clarify several problems that must be overcome to achieve a
reasonable performance.

Conclusions

We sought to find a suitable discriminant technique for
wood-based materials using NIR spectroscopy and several
chemometric techniques. The concepts of Mahalanobis’

Fig. 2. Results of discriminant analysis of wood-based materials by
soft independent modeling of class analogy (SIMCA). Open bars,
nonexposed sample; gray bars, light-exposed sample
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generalized distance, K nearest neighbors (KNN), and soft
independent modeling of class analogy (SIMCA) were
evaluated to examine their accuracy and reasonability for
this purpose. The differences in accurate classification with
the spectrophotometer, the wavelength range as the ex-
planatory variable, and the light-exposure condition of the
samples were examined in detail. NIR spectra were mea-
sured by a spectrophotometer typically used in laboratory
(L-type) and another used in the field (F-type).

Mahalanobis’ generalized distances could not be used to
classify wood-based materials when the NIR spectra varied
widely within the sample category, as the selection of the
wavelengths, which could be explained by the specified po-
sition in the restricted nth dimensional spaces, became dif-
ficult. KNN, using the entire NIR region (800–2500nm)
when the L-type instrument was employed, exhibited a
large number of correct answers for a validation rate of
more than 98% independent of the light-exposure condi-
tions of the sample. This means that the NIR region in-
cludes much useful information for classifying wood-based
materials. With the F-type spectrophotomer, there were
correct answers about 88% of the time in the measurable
wavelength range (550–1010nm). SIMCA, using the L-type
instrument, provided fewer correct answers than KNN. In
contrast, the F-type spectrophotometer provided a slighter
higher rate of correct classifications than did KNN indepen-
dent of the selected wavelength or the light-exposure state
of the sample. Application of the visual range plus only a
short NIR range (800–1010nm) may eventually be suitable
for both KNN and SIMCA. Although the number of correct
answers estimated by the F-type spectrophotometer did not
reach 90%, we may presently accept such analytical accu-
racy because of the limited measurable wavelength.

Finally, the analytical methods we recommend are
KNN for the L-type spectrophotometer and both KNN

and SIMCA for the F-type instrument. It is important to
determine the comparative merits of the devices and
chemometrics techniques because of our need to classify
wood-based materials. These results suggest the applicabil-
ity of NIR spectroscopy to the classification of used wood in
factory and job settings.
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