
ORIGINAL ARTICLE

J Wood Sci (2003) 49:392–397 © The Japan Wood Research Society 2003
DOI 10.1007/s10086-002-0500-z

Takafumi Nakagawa · Masamitsu Ohta

Collapsing process simulations of timber structures under dynamic
loading I: simulations of two-story frame models

Received: June 12, 2002 / Accepted: October 28, 2002

Abstract In this study we tried to develop an analysis pro-
gram that can simulate the collapsing process of timber-
frame structures under dynamic loading by adopting the
extended distinct element method (EDEM). Using the
EDEM, it is possible to trace the movement of any parts
that were separated from unity after the failure of connect-
ing elements, a property that fits our purpose well. As a
preliminary study, simple two-story frame structures were
modeled and examined by our program. Each model is an
assembly of frame members composed of the EDEM ele-
ments. The spring elements of the joints have less rigidity
than those of the frame members. Several models were
analyzed under dynamic loading. The models varied in the
configuration of bracing shear walls. Experiments with a
one-ninth model were carried out under similar conditions,
and the results were compared with the results from nu-
merical simulations. Simulated results showed various col-
lapsing processes corresponding to the arrangement of the
bracing shear wall, and the simulated aspects gave good
agreement with the results of the experiments under similar
conditions.
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Introduction

For aseismatic design of wooden structures, it is essential to
obtain sufficient knowledge of their vibrational properties.
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Various analyses have been undertaken for this purpose.
The characteristic frequency analysis is a well-known,
simple method for investigating the vibrational response of
wooden structures.1 This method enables us to investigate
the vibrational mode and damping properties of structures,
but it has some difficulty with the analysis of nonlinear large
deformation behavior. The time history response analysis
by the shear mass system model,2 the so-called stick-of-
dumplings method, can unveil maximum deformation and
nonlinear deformation for seismic loading. This method,
however, is not sufficiently effective to determine the local
deformation and three-dimensional torsion of a whole
structure.

These characteristic factors can be clarified in detail
using the three-dimensional elastoplastic analysis by the
finite element method (FEM)3,4 or by the pseudo-three-
dimensional analysis.5,6 Nevertheless, it is difficult for the
FEM to simulate the failure of developing processes under
dynamic loading. Furthermore, detailed damage informa-
tion involving bending deformation and fracture aspects
(e.g., buckling of a brace, rupture during the bending of
columns, rupture of metal connections) of frame structures
have hardly been determined by the above-mentioned
methods.

To obtain full knowledge of the fracturing behavior of
timber structures under seismic loading, it is indispensable
to simulate the collapsing process and trace the movement
and deformation of each structural member. Collapsing
simulations are extremely useful for antiseismic planning of
wooden houses because they enable us to make a seismic
estimation of each wooden structure with various structural
members and reinforcement of virtual spaces. It would also
provide extensive economizing by not having to make real
size shaking table experiments.

We tried to simulate the collapsing process of timber-
frame structures numerically using a newly developed com-
puter program. We employed the extended distinct element
method (EDEM) as the base program and modified it to fit
the analysis of timber structures.
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Background of EDEM

The distinct element method (DEM) was originally pro-
posed by Cundall7 in 1971 to simulate soils in the domain of
civil engineering. With the DEM, a material is considered to
be an assembly of circular particles, and there are no resis-
tant forces against traction. To give continuity to this dis-
crete numerical model, elastic springs and dashpots were
added by some Japanese researchers, as shown in Fig. 1.8

This method is called the “modified DEM” or “extended
DEM.” The model behaves as a continuous medium while
the springs are intact; after the breakage of some of the
springs, it enables us to trace the movement of the indi-
vidual parts that were separated from each other to destroy
the structure’s unity. Using this method, it becomes possible
to analyze the fracture-developing processes. One of the
authors has applied the EDEM to the simulation of the
various fracturing processes of wood and has obtained good
results.9–12

Theories

To simulate the collapsing process of three-dimensional
wooden-frame structures by EDEM, it is necessary to ex-
tend our program to a three-dimensional one. With the
EDEM, material is considered to be an assembly of spheri-
cal particles called “particle elements.” Particle elements
are connected to each other by elastic springs and dashpots.
Between two particle elements, a pairing of a spring and
dashpots exists in the normal direction (along the line con-
necting the center of the particle elements), and two pairs
exist in two shear directions, as shown in Fig. 1. These three
pairs of spring and dashpots make up one spring unit, which
we hereafter simply call a “spring element.” These spring
elements are eliminated when a fracture condition is satis-
fied. To save the required memory by the EDEM program,
we tried to reduce the number of particle elements by sim-
plifying the component. Each member of the wooden struc-
ture (i.e., column, sill, beam, brace, metal connector) has
four particle elements in its cross section, as shown in
Fig. 2a. Figure 3 shows the configuration of the spring ele-

ments connecting eight particle elements in an elementary
unit, where 16 spring elements are equipped in vertical,
horizontal, and diagonal directions. The frame element con-
sists of elementary units; and by assembling the frame ele-
ments, we can obtain a frame structure model (Fig. 2b,c). At
the connecting parts of frame members, we placed only four
axial spring elements (no diagonal elements).

Equation of motion

The EDEM calculation is performed under the following
theoretical concepts: The motion of a spherical particle ele-

Fig. 1. Configuration of spring elements of the extended distinct ele-
ment method (EDEM)

Fig. 2. EDEM elements and units

Fig. 3. Configuration of the spring elements in the elementary unit of
the EDEM model
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ment i having the mass m and the moment of inertia I is
expressed as follows
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where Fi is the sum of the all forces, including the force of
gravity, acting on the particle element; Mi is the sum of the
moments acting on it; C and D are damping coefficients; ui

is the displacement vector; and Fi is the angular displace-
ment. The time history of ui and Fi can be obtained step by
step in the time domain by the numerical integration of
these equations. At each step of the calculation the state of
the spring elements is checked by the fracture conditions,
which are described in the following section. For the EDEM
analysis, an element receives forces from all the alive spring
elements, and the forces are calculated from the strain of
the spring elements. The accelerations of the particle ele-
ment in x-, y-, and z-directions are then obtained by the
following relations, respectively.
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The rotatory acceleration is obtained as follows
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where xit, yit, and zit are the displacements in x-, y-, and z-
directions on particle element i, respectively; Fxit, Fyit, and
Fzit are the components of the force acting on particle ele-
ment i; and Mit is the moment acting on it at time t. Velocity
increments and displacement increments of the particle ele-
ments during a short time period ∆t are obtained by nu-
merical integration of these equations. In the DEM or
EDEM, the above-mentioned equations of motion are not
linked to each other between the different elements, and
they are solved as the forward finite difference, which corre-
sponds to propagation of the stress wave. Consequently,
large total stiffness matrices as in FEM are not required,
and calculation amounts are largely saved.13 Following this
calculation, we can obtain the three-dimensional coordi-
nates of all particle elements consecutively. Thus we can
produce every step of the fracturing process in a computer.

Fracture conditions

In the EDEM calculation, the fracture condition is gener-
ally defined by the concept of the maximum deformation
theory as follows

D L Lij ij ij �  � ( ) εc (5)

where Dij is the distance between particle elements i and j;
Lij is the initial distance between them; and εc is a constant.
In our frame structure model, as the connecting parts are
easily broken by shearing deformation between two frame
members, the following equation was added

α αij � c (6)
where αij is an angle made between lines i and j correspond-
ing to the sill/beam and column, respectively, as shown in
Fig. 4; and αc is a fracture angle. If these fracture conditions
are satisfied at any step of the EDEM calculation, four
spring elements connecting two particle elements are elimi-
nated simultaneously.

Simulations

Simulated model structures

The simulated model frame structures used in our calcula-
tions are shown in Fig. 5. The AA structure assumes a
wooden frame structure made with 20 frame members (8
beams, 8 columns, 4 sills). The four directions (north, south,
west, east) are indicated in the figure for the convenience of

Fig. 4. Definition of αij used in the fracture condition

Fig. 5. Configuration of simulated and tested specimens



395

the following explanation. The BA structure has a brace in
the northern wall of the first story. This brace is jointed with
sill/beam and column. The BB structure has two braces in
the northern wall of the first and second stories. In these
calculations, the model structures were assumed to be one-
ninth scale of the actual size. The sizes of the frame mem-
bers are shown in Fig. 5. Cross sections of columns, sills, and
beams are 20 � 20mm, and those of braces are 10 � 20mm.
The modulus of spring elements of each frame member was
defined to be far larger than that of joint parts. Figure 6
shows the coefficients of the spring elements used here.

Conditions of simulations

Using the above-described model structures, we made our
simulations under the following conditions: A mass of 1kg
was added to each beam considering the dead load of the
structure. The basement of the model structures (four sills)
was moved from east to west at an acceleration rate of 0.3g
(9.8 � 0.3m/s2). The used time period ∆t was 10�5 ms. The
dumping coefficient, which has less effect on the calculated
results, was set at 1% of the spring constant provisory. The
fracture criteria for Eqs. (5) and (6) are determined to
correspond to each simulated case. Here we employed 0.5
for εc and p/8 for αc. which gave good results that fitted the
experimental ones.

Materials and methods

Douglas fir (Pseudotsuga menziesii Franco; density 0.45 g/
cm3) was used for the frame members. Joints between the
frame members were represented by gummed tapes of 2 �
10mm. Frame patterns the same as those of the simulated
models, shown in Fig. 5, were investigated. The model
frame structure was mounted on a sliding basement, which
was connected to a 4.2-kg weight by a steel wire (Fig. 7).
The dynamic load was applied by dropping this weight

mass. Four 0.25-kg metal weights were mounted on the
northern and southern beams of both stories. To prevent
lateral shifting of the basement, aluminum guides were set
along the runaway. Total collapsing processes were filmed
by a high-speed video camera (NAC: HSV-500).

Results and discussion

Figure 8 shows the collapsing process of the AA structure,
which has no shear wall, obtained by our simulation. Fol-
lowing the law of inertia, the movement of the second story
delays until that of the basement members. Thus the first-
story structure leans gradually; and the spring elements of
two joint parts of the upper southwest corner and lower
northeast corner disappear at 80ms, satisfying the angular
fracture condition. Then, at 100ms, six other joint parts of
the first story are broken. Finally, all columns of the first
story are separated from the beams and sills, and the first
story collapses totally, with the second story falling on it.
The results of the corresponding experiment are shown in
Fig. 9. The results were similar to those of the simulated
results.

Equipped with a brace in the northern wall of the first
story, the BA structure behaves differently from the AA
structure, as shown in Fig. 10. The northern wall of the first
story is hardly deformed, whereas its southern wall and the
northern wall of the second story are extensively deformed.
As the result, the west- and east-side beams lean markedly,
and the first breaking of the spring elements occurs at the
northern ends of these beams. Then the joints of the col-
umns in the southern wall of the first story and northern
wall of the second story reach the fracture condition. All the
walls except for the northern wall of the first story are
broken at 100ms. Figure 11 shows the experimental results
of the BA structure. The total collapsing process coincided
well with our EDEM simulation.

Figure 12 shows the collapsing process of the BB struc-
ture. In this case, the southern walls of the first and second
stories have braces. Both northern walls deform little,
whereas the southern wall of the first story deforms
markedly. At 70ms, the west- and east-side beams of the

Fig. 6. Modulus of elastic springs

Fig. 7. Test equipment for dynamic loading
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Fig. 8. Collapsing process of the AA structure during the simulation

Fig. 10. Collapsing process of the BA structure during the simulation

Fig. 12. Collapsing process of the BB structure during the simulation

Fig. 9. Collapsing process of the AA structure during the experiment

Fig. 11. Collapsing process of the BA structure during the experiment

Fig. 13. Collapsing process of the BB structure during the experiment
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first story lean markedly, and the first breaking of the spring
elements occurs at the northern ends of these beams. At
100ms the southern wall of the first story crashes, and con-
sequently the southern wall of the second story falls. The
northern walls survive these processes. Figure 13 shows
the experimental results of the BB structure. In this case,
the deformation of the southern walls is similar to the simu-
lated results, but there are several differences in the collaps-
ing processes between the experimental results and our
calculation. Perhaps the estimation of the parameters of the
spring elements in our calculation did not match well those
of the experimental model.

The total time scale did not coincide for the simulations
and experiments, but the simulated result by our method
corresponded well with the experimental results qualita-
tively. Therefore, it is suggested that the collapsing process
of wooden structures with various configurations of shear
walls can be predicted by our new method. However, the
quantitative outcome is essential for the simulation of
actual-size structures, so our calculating method must be
improved to realize the quantitative simulations from now
on.

Conclusions

The collapsing process of wooden-frame structure models
under dynamic loading was investigated by the newly devel-
oped numerical program based on the EDEM. Using this
method, it was demonstrated that the frame models with
different shear wall configurations collapse in different
ways. Simulated results corresponded well with the experi-
mental results under similar conditions. Our new method
proved to be promising for measuring future aseismatic
designs, but further improvement is required to realize a
quantitative simulation.
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