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Abstract In a previous paper we presented the efficacy of
the extended distinct element method (EDEM) on the col-
lapsing process simulation of timber-frame structures. The
results obtained were qualitative, and the need for quantita-
tive simulation was pointed out. In this report, we improved
our simulating programs with the aim of establishing a
quantitative simulation by EDEM. For this purpose, the
parameters of the frame members (beam or column) were
determined by comparing the simulated results of four-
point bending tests with experimental results. Other param-
eters of plywood and joint members were determined by
simulations of two rail shear and slip tests of joint parts,
respectively. Using these parameters we made simulations
of the collapsing process of an actual-size plywood-
sheathed wall and at the same time carried out the
experiments under similar conditions. Simulated load–dis-
placement curves of the plywood-sheathed wall were simi-
lar to those obtained in the experiments, and the sequence
of failure at nailed joints of the simulation model gave good
agreement with that of the experimental collapsing pro-
cesses. Using these processes, we believe that we estab-
lished a basic quantitative simulation method to test the
collapsing process of timber-frame structures.
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Introduction

To improve the performance of wooden structures, it is
important to know the fracture behavior of the structures
under various loading conditions. For this purpose, the
establishment of a simulating method to explore the frac-
turing process is desirable.

In our previous report1 we developed a simulating
method based on the extended distinct element method
(EDEM). There, we made three-dimensional simulations
for two-story frame construction models and obtained good
simulated results that correspond to the experimental one
qualitatively. To obtain a quantitative output from the
simulation, however, it was pointed out that the relations
between the parameters of spring elements and actual
mechanical properties need clarification.

In this study we examined the parameters of EDEM
spring elements needed to obtain quantitative results. We
also tried to reduce the number of elements of structural
members and joint parts in the simulation model for the
convenience of large-scale simulation models that corre-
spond to actual wooden houses.

Theory

As the principle of EDEM was precisely explained in our
previous report,1 we explain only the modified points here.
For analysis of the whole structure it is desirable to reduce
the number of elements used in the calculation. In our
previous report, frame members consisted of four particle
elements in the cross section connected by eight spring
elements, including diagonal springs. Thus, it was difficult to
develop our models based on the large-scale model, as it
would require large memories and long calculating times.

Here, we tried to simplify the configuration of the ele-
ments by reducing the number of elements. For this pur-
pose, we used only one particle element in the cross section
for the frame members (Fig. 1a); and to resist the bending
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moment, we employed a rotational spring instead of shear
springs and a diagonal configuration of springs. By this
simplification of the spring configuration, we lost the possi-
bility of treating the material orthotopically; but in frame
structures the anisotropy of the frame members is generally
not so important.

The EDEM elements in this report are depicted in Fig. 2.
The normal spring connects particle elements in the normal
direction, and the rotational spring works against the rela-
tive rotation. Figure 3 shows the forces generated by the
rotational spring following movement of particle element B
from the original point i to i�. The EDEM calculation was
made under the following theoretical concepts.

The motion of particle element i having the mass m is
expressed as follows
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where Fni represents the forces from normal springs; Fsi is
the sum of all forces generated by the relative rotation
against adjacent particle elements; Fi is the sum of all forces
acting on the particle elements; C is the coefficient of vis-
cous damping; and ui is the displacement vector.

The accelerations of the element in x- and y-directions
are then obtained by the following relations
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where Fxit and Fyit are the components of the forces acting on
element i at time t. Velocities and displacement increments
of element i during time increment ∆t are obtained by the
numerical integration of these equations.

Following this calculation, we can obtain the coordinates
of all particle elements consecutively; thus, we can follow
every step of the fracturing process in a computer. The
panel members were made up as a lattice sheet of particles
that connected each other in the horizontal, vertical, and
diagonal directions by spring elements (Fig. 1b).

Determining method of the spring parameters

In our previous report, the EDEM parameters were deter-
mined by the characteristic data of frame members (e.g.,
modulus of elasticity, cross-sectional area, density) deduc-
tively. However, simulated mechanical values by this
method were different from the actual ones, and the results
obtained had rather poor value from a practical viewpoint.
Therefore, we tried to adjust the induced stress and defor-
mation of the EDEM model to the corresponding experi-
mental results at the frame or panel member levels, relating
them using the following methods.

Spring parameters of frame members

We defined spring parameters of frame members by carry-
ing out simulations of four-point bending tests, shown in
Fig. 4. As EDEM is a dynamic analysis, it requires many
cycles of calculation to obtain a convergent solution by
the simulation model, as shown in Fig. 5a. The load–
displacement curves of each spring parameter can be ob-
tained by changing the loading weight (Fig. 5b). From these
curves we obtained a relational equation between the bend-
ing modulus of elasticity (MOE) and the parameter of rota-
tional spring Ks as follows

K ks bN m MOE GPa( ) ( ) �  � (4)

where kb is a constant. For the frame member of 10 �
10cm cross-sectional area, kb is 2.03 � 104. The parameters

Fig. 1. Modeling of structural components by particle elements and
spring elements

Fig. 2. Spring elements

Fig. 3. Forces that act on the rotational spring. A, B, C, particle ele-
ments; Ks, a constant; α, �, relative rotational angles; Fα, F�, forces
acting on the particle element, generated by the rotational spring
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of a normal spring is defined as: MOE � cross-sectional
area.

Spring parameters of panel members

We defined the parameters for spring elements of the panel
members by simulations of the two-rail shear test, as shown
in Fig. 6. The same procedure as in the preceding section
was carried out to obtain load–displacement curves. As a
result, the following relational equation between the shear
modulus G and the parameter for a normal spring Kn was
obtained

K k Gn gN m  GPa( ) ( ) �  � (5)

where kg is a constant. For plywood of 8.9mm thickness, kg

is 5.2 � 104.

Springs parameters of nailed joints

Spring parameters of the nailed joint were determined by
the results of single shearing tests. We approximated load–
displacement curves of the shear tests under monotonic
loading by trilinear curves and adapted them to the nonlin-
ear spring of nailed joints in our simulation models (Fig. 7).
Representative data for the CN50 nail corresponding to this
curve are shown in Table 1.

Spring parameters of joints between frame members

Spring constants of the joints between frame members were
determined by approximating load–displacement curves of

experimental results under monotonic loading reported in
the literature,2,3 where the characteristic values for the me-
chanical properties of the joint part between sill/beam and
column with a hold-down fastener (type S-HD20), a corner
fastener (type CPT), and a clamp iron (type C120) were
reported. Considering embedment, the parameters for the

Fig. 4. Simulation of the four-point bending test

Fig. 5. Method to determine bending rigidity. a Transition of deflec-
tion by extended distinct element method (EDEM) calculation. b
simulated load–deflection relation

Fig. 6. Simulation of two-rail shear test. a Schema of two-rail shear
experiment. b EDEM model of two-rail shear test

Fig. 7. Nonlinear relation between load and displacement for the
nailed joint springs. P1, P2, P3, D1, D2, and D3 are the specific values on
the envelope curve of the tension side (see Table 1)

Table 1. Representative data in the load–displacement curves of
nailed joints in the simulation with type CN50

Parameter Result

Load (kN)
P1 0.75
P2 1.75
P3 1.25

Displacement (mm)
D1 0.6
D2 15.0
D3 40.0
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Fig. 8. Nonlinear relation between load and displacement for the joint
springs at the joints between frame members. P1, P2, P3, D1, D2, D3 (see
Fig. 7). P4, P5, D4, D5, specific values on the envelope curve of compres-
sion side (see Table 2)

Table 2. Representative data in the load–displacement curves of joints between frame members
in the simulation

Fastener type Load (kN) Displacement (mm)

P1  P2  P3  P4  P5  D1  D2  D3  D4  D5

S-HD20 21.5 41.4 40.0 12.0 25.0 5.19 25.0 40.0 2.00 16.0
CPT 8.16 14.2 10.00 12.0 25.0 0.690 10.0 30.0 2.00 16.0
C120 3.20 8.50 6.00 12.0 25.0 0.500 13.0 18.0 2.00 16.0

S-HD20, hold-down fastener; CPT, corner fastener; C120, iron clamp
Data are from Ohno et al.,2 Nagaoka et al.,3 and Inayama4

compression side were determined using the experimental
results under monotonic loading reported in the literature.4

Combining two curves obtained from monotonic loading
tests reported in the literature, the load–displacement curve
of this joint spring is shown in Fig. 8. Representative data
corresponding to the curve of Fig. 8 are shown in Table 2.

The value of the damping coefficient C in Eq. 2 was
obtained using the following equation5

C h mk � 2 (6)

where h is the damping factor; and k is a spring constant.

Fracture condition

In the EDEM calculation, the fracture condition is gener-
ally defined by the concept of the maximum deformation
theory as follows

D Lij ij � (7)

where Dij is the distance between the particle elements i and
j; and Lij is maximum displacement of nailed joints or frame
joints in experiments. Lij corresponds to the displacement
D3 in Figs. 7 and 8. If these fracture conditions are satisfied
at any step of the EDEM calculation, spring elements
connecting the relating two elements to each other are
eliminated.

Fig. 9. Specimen and simulation model of the shear test. a schema for
the experimental specimen. b EDEM model (only main elements are
shown). Heavy black dots, nailed position; A loading point; heavy U
lines, position of the C120 iron clamp

Evaluation of the EDEM simulation by the sheathed
shear wall test

Shear experiments of a simple wood-framed shear wall with
plywood sheathing were carried out to verify the validity of
our method to deterdmine EDEM parameters. We con-
ducted the EDEM simulation under similar conditions.

Specimens and experimental method

A wood-framed shear wall shown in Fig. 9a was the target
specimen. The size and species used for the frame members
are shown in Fig. 9a. Specimens were sheathed by a soft-
wood plywood of 8.9 mm thickness on one side. The
nails used were CN50 type (JIS A 5508), 50.8mm length
and 2.87 mm diameter, and the distance for each nail
was 150 mm. Columns were connected to sills and beams by
iron clamps (C120). A tie-rod system restrained the
upstroke of the specimen. Loading was done at a rate of
5mm/s by an oil jack under monotonic loading until the
load decreased to 80% of the maximum value. Four speci-
mens were tested.
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Simulation model

The simulation model used in our calculations is shown in
Fig. 9b. This model assumed a real nailed shear wall. The
model was 900 � 2500mm. The modulus of elasticity of
frame members was set at 7.5 GPa, and the shear modulus
of the panel member was set at 0.5GPa. To simulate tie-rod
system behavior, the upstroke movement of the top left side
element was limited by a roller. The reaction force of the
model panel was estimated to be the force induced in the
normal spring between the top left element and the loading
(point A in Fig. 9b), which was added for the convenience of
calculation. Nailed points by CN50 nails were modeled by
nonlinear joint springs, and the positions are indicated in
Fig. 9b. As the loading is monotonic in our experiment, the
same load–displacement relation shown in Fig. 7 was used
for all nailed joints. The column and beam/sill were con-
nected by a joint spring simulating a C120 iron clamp. The
time increment for a single calculating cycle was 1.0 �
10�5 s. Loading was done under monotonic loading until
displacement reached 200mm. The calculated cycles num-
bered two million.

Results and discussion

Load–displacement curves

Figure 10 shows load–displacement curves of the shearing
tests of shear walls and that of our simulation. It is apparent
that the shapes of these curves are similar. Table 3 shows
characteristic values for four experiments and the simula-
tion. These values were calculated from the load–actual
shear deformation angle relation based on Japanese struc-
tural design guidelines.6 The averages of experimental val-
ues showed good agreement with the simulated result.
Here, the structural characterization factor (Ds) indicates
the reducing ability of the shearing force by the elastoplastic
deformation of the structure. It is defined by the following
equations
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where δu and Py are yield displacement and yield load,
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Symbols used here are depicted in Fig. 11.

Table 3. Characteristic values for the specimens of shearing tests of shear walls

Parameter Experiment Simulated

1 2 3 4 Ave. SD
values

Pmax (kN) 10.2 10.6 10.4 9.79 10.3 0.355 10.5
Py (kN) 2.23 3.39 3.00 1.95 2.64 0.667 3.32
Pu (kN) 8.67 8.78 9.22 8.95 8.90 0.242 8.92
P1/150 (kN) 6.00 6.11 7.19 5.58 6.22 0.684 5.64
Ds 0.234 0.254 0.239 0.244 0.243 0.009 0.240

Pmax, maximum load; Py, yield load; Pu, ultimate load of perfect elastoplastic model; P1/150, load at
shear deformation of 1/150 rad; Ds, structural characterization factor; 1–4, specimen codes

Fig. 10. Comparison of experimental and simulated results of the
shearing tests of shear walls

0.8 Pmax

Pmax

Fig. 11. Definitions for calculating structural characterization factors.
I, connecting line between the 0.1 Pmax and 0.4 Pmax on the load–
displacement (1 – d) curve; II, connecting line between the 0.4 Pmax and
0.9 Pmax on the 1 – d curve; III, tangential line to 1 – d curve parallel to
II; Py, yielding load defined as crossing point of lines I and III; δy,
yielding deformation corresponding to Py on the 1 – d curve; IV, line
connecting origin and point (δy, Py); δu, ultimate displacement corre-
sponding to the 0.8 Pmax on the 1 – d curve; V, line parallel to x-axis
drawn so the area surrounded by this line, line IV, x-axis, and line y �
δu is equal to the area surrounded by the 1 – d curve (see Eq. 8); Pu,
ultimate load corresponding to line V



504

The Ds value is postulated to be used under cyclic load-
ing conditions, but we adapted it to our experimental results
and simulated one under monotonic loading. The Ds value
obtained from experimental results agrees with the simu-
lated value. Thus, it was found that the ductility of shear
walls was also simulated well by this method.

Sequence of failure

Figure 12 shows the sequence of failure at nailed joints and
shear deformation of nails. At first, failure occurred in the
nailed joint at the lower right-hand corner of the simulation
models, after which the failures spread to adjacent nailed
joints. After all the nailed joints of the right side column
were broken, failures developed at the sill and beam. Gen-
erally, it is difficult to formulate the failure of nailed joints
in the actual experiments because failure patterns of nailed
joint are various (e.g., punching out, pull out, cutoff of nail).
Despite that, the fracture sequence of the model simulation

Fig. 12. Collapsing process of
EDEM simulation model. Arrows
indicate breaking points. Num-
bers are the sequence of the
failure

Fig. 13. Load–displacement curves of joint springs corresponding to
the C120 iron clamp between the column and the beam/sill. The x-axis
is equal to the displacement shown in Fig. 10. The positive direction of
the y-axis indicates the tensile load

expresses breaking phenomena qualitatively, which corre-
sponds well with the observed results of the actual experi-
ments. Figure 13 shows the load–displacement relations of
joint springs between column and beam/sill. The nonlinear
characteristic is observed in Fig. 13.

Conclusions

Simulated load–displacement curves of the plywood-
sheathed wall were similar to those obtained in the experi-
ments, and the sequence of failure at nailed joints of the
simulation model agreed well with experimental collapsing
processes qualitatively. Consequently, it turned out that our
newly developed EDEM modeling method and the method
to determine EDEM parameters are adequate for analysis
of timber-frame structures. This method thus, proved to be
useful for quantitative analysis of the fracture process of
timber-frame structures.
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