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Abstract A quasi-simple shear test, which is the most direct
method for examining the shear properties of sheet metals,
has been applied to measure the shear moduli of wood.
Buna (Fagus crenata Blume) with variously sized shear re-
gions was used for the test specimens. Strain gauges were
mounted in the center of the shear regions to measure the
shear strains. The shear tests were carried out to determine
the shear moduli in the radial and tangential planes. Appar-
ent shear moduli obtained from the experimental results
were corrected by finite element method (FEM) simulation
of the shear region, where both shearing and bending are
produced. It was found that the corrected shear moduli are
roughly independent of test conditions, and their values
are in good agreement with the data obtained from
bending-shear tests. This suggests that the method em-
ployed here can effectively estimate the shear moduli of
wood.

Key words Shear modulus · Quasi-simple shear test · Ap-
parent shear modulus · Stress analysis

Introduction

The torsion test and off-axis tension or compression test are
commonly used to measure the shear modulus of wood,1

although in some cases the static bending test or flexural
vibration test is utilized instead.2,3 Research on application
of the Iosipescu shear test to this measurement was also
reported.4 Having different features, these conventional
tests are used depending on the requirements for accuracy
and simplicity of the experiment.
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In this paper, the feasibility of a simple shear test as an
alternative method for evaluating the shear modulus of
wood is discussed from the aspects of both experimental
and finite element method (FEM) simulation. Although the
simple shear test is basically the most direct method for
investigating the shear properties of materials, it is difficult
to obtain the shear modulus of wood by this method. This is
because we cannot measure exactly the small deformations
in the shear regions of the test specimen without accurate
equipment. To overcome the experimental difficulty, strain
gauges were used here. In general, shearing and bending,
which is a minor deformation, take place simultaneously in
the shear regions. The more the shear regions are governed
by shear, the more fully are the simple shear deformations
attained. The possibility of simple shear depends on the
dimensions of the shear zones. Taking this point into ac-
count, we propose a simplified procedure to obtain the
proper shear modulus value.

Experiment

Specimens

Buna (Fagus crenata Blume) was used for the specimens.
The density and moisture content of the specimens were in
the range of 0.71–0.76g/cm3 and 6.9%–8.7%, respectively.

Quasi-simple shear tests

The simple shear test was originally developed for sheet
metals.5 The features of this test as shown in Fig. 1 are that
shear zones are disposed symmetrically to produce a stable
deformation and that only simple shear is expected to occur
in the shear zones with the strong restraint as the specimen
dimension c becomes sufficiently small.

The test specimen used here is shown in Fig. 2. As illus-
trated in Fig. 3, the specimen, having a thickness of 5mm,
was fixed tightly to the shearing test jigs with eight bolts to
generate the shear deformations within the shear zones,
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where c is 10 and 15mm. In this case, because the coexisting
bending cannot be ignored, we defined this test as the quasi-
simple shear test. To measure the shear strains in the center
of the shear zones, biaxial strain gauges (gauge length 2mm,
base circle diameter 7mm) (Tokyo Sokki) were bonded
on the specimen’s surface. The corners of the shear zones
were rounded to a radius of 1mm to avoid the stress
concentrations.

We measured the shear moduli in the longitudinal-radial
(LR) and longitudinal-tangential (LT) planes. Two speci-
mens were prepared for each measurement: One test speci-
men was loaded in a direction parallel to the longitudinal
direction (LR specimen), and a second one was loaded

perpendicular to the longitudinal direction (RL specimen).
Great care was taken during specimen preparation to
achieve a radial or tangential plane as precisely as possible,
particularly in the LT specimens. The tests were performed
by applying the shearing load in a computer-controlled test-
ing machine (Shimadzu AG-10TA) at a constant crosshead
speed of 0.05mm/min. The measured values of load and
strains were then sent to a personal computer via a data
logger (NEC San-ei D5100). Five specimens were used for
each test condition.

Bending-shear tests

Four-point bending tests were also carried out for compari-
son purposes. The testing method is shown in Fig. 4. Beam
specimens with the dimensions of 25 mm (radial direction)
� 25 mm (tangential direction) � 480mm (longitudinal
direction) were prepared from the same lumber. To mea-
sure the shear strains in the middle between the loading
point and support, biaxial strain gauges, which are the same
as those used in the shear tests, were bonded on the speci-
men. Loading heads with a radius of 30 mm were used. The
speed of loading was 1mm/min. Five specimens were used
for each test condition.

FEM simulation of quasi-simple shear

Quasi-simple shear tests were simulated by a three-
dimensional FEM program6 modified for orthotropic mate-
rials. Figure 5 shows the FEM model for the LR or RL
specimens with c at 10mm, where the z-axis is taken in the
loading direction. The models were divided into the finite
elements having the dimensions of 5 � 1 � 1mm. The

Fig. 1. Simple shear test. t, thickness; c, shear zone size

Fig. 2. Geometry of test specimen with thickness t of 5mm (c � 10,
15mm)

Fig. 3. Quasi-simple shear test
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lowermost elements lying outside the shear zone in the y-
axis were fixed, whereas the uppermost ones were given a
prescribed displacement λ along the z-axis. The elastic con-
stants used for RL specimens are shown in Table 1. These
values were obtained from the literature7 except for
Young’s modulus Ey, which was obtained from compression
tests. The listed shear modulus Gyz, which is the most effec-
tive parameter on the shear deformations, is regarded as the
average value for buna.

Results and discussion

Numerical stress distribution

Figure 6 shows the distributions of the shear stress τyz for λ
of 0.1mm in the LR plane. Compared with the LR speci-

Fig. 4. Four-point bending test

Fig. 5. Coordinate system and finite element mesh for shear zone of
LR/RL specimen. L, R, T, longitudinal, radial, and tangential direc-
tions, respectively

Table 1. Elastic constants used for FEM calculations

Parameter Constant

Young’s modulus (GPa)
Ex 0.588
Ey 11.760
Ez 1.176

Shear modulus (GPa)
Gxy 0.637
Gyz 0.980
Gzx 0.196

Poisson’s ratio
νxy 0.025
νyz 0.400
νzx 0.650

The data are for a specimen loaded in a direction perpendicular to the
longitudinal direction (RL)
FEM, finite element method

Fig. 6. Distributions of shear stress. Stress values were obtained at
points x � 0, y � c/2 � 1 mm when the prescribed shear displacement
λ is 0.1mm

mens, the RL specimens have the approximately constant
values of τyz over a wide range of the z-axis, and these values
are nearly equal to (τyz)simple, which denotes the shear stress
for simple shear and is given by

τ  
λ

yz yzG
c

( ) ◊
simple

� (1)

For the LR specimens, the shear stresses in the central
part of the shear zone on which the strain gauge is mounted
are also close to (τyz)simple; the other stress components can
be neglected there. Similar tendencies were observed for
the shear stresses in the LT plane. Figure 7 shows the rela-
tion between the ratio of the average shear stress (τyz)av to
(τyz)simple and the dimension c. The stress (τyz)av was defined
as

τ  yz
zF

lt
( )

av
� (2)

where Fz is the summation of the nodal forces associated
with the specified displacement λ. As mentioned above, the
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(τyz)av/(τyz)simple ratio, which is unity for simple shear, de-
creases linearly with increasing c because of bending.

Apparent stress-strain relation

Figure 8 shows an example of apparent shear stress-strain
relations obtained from the quasi-simple shear tests. The
apparent shear stress (τyz)exp and the shear strain γyz were
given by

τ  yz

P
lt

( )
exp

� 
2

(3)

γ  ε  ε  ε  εyz � � � � 
1
2 2 1 3 4( ) ( )[ ] (4)

where P is the applied load, and ε1–ε4 are the normal strains
measured here. The apparent shear modulus (Gyz)exp was
determined from the initial linear segment of the apparent
shear stress-shear strain diagram.

Correction of apparent shear modulus

The shear modulus must be evaluated with the actual shear
stress (τyz)ctr in the central part of shear zones. Here we
assumed that the apparent shear stress (τyz)exp is equivalent
to the average shear stress (τyz)av obtained from the numeri-
cal results by FEM, and that (τyz)ctr is approximated by the
calculated value. According to these assumptions, the ap-
parent shear modulus (Gyz)exp was corrected to estimate the
proper value of the shear modulus (Gyz)est as follows:

G Gyz yz( ) ◊ ( )
est exp

 α� (5)

α τ τ� yz yz( ) ( )
ctr av

(6)

Because (Gyz)est obtained from Eqs. (5) and (6) generally
differs from the provisional value (Table 1) used for FEM
calculations, an iterative approach was employed. Once the
shear modulus (Gyz)est is obtained, it is used to obtain a more
proper value of α in the next step (Fig. 9). It was found that

Fig. 7. Influence of shear zone size c on the degree of simple shear
deformation

Fig. 8. Typical relations between apparent shear stress and shear strain

Fig. 9. Flow chart of determination technique of correction factor αc
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the correction factor α rapidly reaches a constant value αc

after a few iterations. The effects of Young’s modulus on αc

were also investigated numerically. The results (Table 2)
showed that αc does not vary much for �25% (�33% for
LT specimens) changes in Young’s modulus used for FEM
calculations, especially for RL or TL specimens.

The shear moduli corrected using αc are shown in Table
3 together with the apparent shear moduli. It is clear that
the corrected shear moduli are tolerably equal to each other
irrespective of the test conditions, whereas this is not the
case with the apparent shear moduli. Furthermore, it should
be noted that (Gyz)exp obtained for RL or TL specimens with
c at 10 mm is closest to (Gyz)est. These results were compared
with those obtained from the four-point bending tests em-
ploying the same method as we proposed here. They are
close to each other, as shown in Table 4. Moreover, the
shear modulus was determined by Fonselius’s method2 in
which the correction factor is written as
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V
(7)

where V equals lg/÷2
—

h ; lg is the gauge length; and h is the
depth of the cross section. Close agreement is demonstrated
between the results obtained by the quasi-simple shear tests
and those obtained by Fonselius’s method (Table 4). From

Table 2. Change of correction factor αc with Young’s modulus (c � 10 mm)

Specimen Young’s modulus (GPa) Shear modulus (GPa)

Ex Ey Ez Gxy Gyz Gzx αc

LR 0.588 0.882 11.76 0.196 0.98 0.637 1.52
1.176 1.45
1.47 1.41

RL 0.588 8.82 1.176 0.637 0.98 0.196 1.12
11.76 1.10
14.7 1.09

LT 1.176 0.392 11.76 0.196 0.637 0.98 1.55
0.588 1.50
0.784 1.46

TL 1.176 8.82 0.588 0.98 0.637 0.196 1.10
11.76 1.08
14.7 1.07

LR, loaded in a direction parallel to the longitudinal direction in the radial plane; LT, loaded in
a direction parallel to the longitudinal direction in the tangential plane; TL, loaded in a direction
perpendicular to the longitudinal direction in the tangential plane

Table 3. Apparent and corrected shear moduli for various test
conditions

Specimen c (Gyz)exp CV αc (Gyz)est

(mm) (GPa) (%) (GPa)

LR 10 0.89 6.7 1.45 1.29
15 0.75 5.4 1.54 1.16

RL 10 1.10 3.6 1.10 1.21
15 1.04 4.7 1.18 1.23

LT 10 0.63 3.5 1.50 0.95
15 0.61 3.9 1.55 0.94

TL 10 0.84 5.3 1.08 0.91
15 0.81 4.5 1.14 0.93

(Gyz)exp, apparent shear modulus; (Gyz)est, corrected shear modulus;
CV, coefficient of variation

the above findings, it can be concluded that the newly pro-
posed quasi-simple shear test is useful for estimating the
shear moduli of wood. Thus, we believe that the correction
factors approximated from Table 2, which are about 1.1 for
RL or TL specimens and 1.5 for LR or LT specimens, are
also used in the experiments conducted on other species.

Conclusions

A quasi-simple shear test was undertaken to ascertain
the feasibility of measuring the shear moduli of wood. The
shear moduli can be obtained appropriately, provided the
correction factors αc are determined from a FEM simula-
tion. Approximate values of αc were found to be about 1.1
and 1.5 for RL or TL specimens and LR or LT specimens,
respectively. Further work is required to examine the
validity of this measuring method using other species.
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