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Abstract Splitting failure in beam splice joints with glued-
in rods parallel to grain in endwood subjected to pure shear
is considered. A simple theoretical expression based on
beam-on-elastic-foundation theory and quasi-non-linear
fracture mechanics is presented for calculation of the joint
strength. Tests were conducted on jointed beams in a four-
point bending test setup in which the joints were located at
the point of pure shear force. Hardwood dowels with a
diameter of 12mm and a glued-in length of 120mm were
used as rods, and various beam cross sections and dowel
configurations were tested. The theory presented is found
to agree well with test results in all cases in which the edge
distance of the glued-in rods is relatively small. Some test
results indicate that the theory may be conservative in case
of large edge distances.
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Introduction

Much research on timber joints has recently been dedicated
to pull-out of glued-in rods and to the performance of
moment-resisting joints with glued-in rods.1 Hardwood
dowels have also been investigated as an alternative to steel
rods.2–5 Beam splice joints subjected to pure bending have
previously been tested and simple theoretical expressions
for calculation of their strength and stiffness have been
presented.6–9 However, the shear strength of joints with
glued-in rods seems not to have been investigated so far.

Although glued-in rods are very efficient for making
joints with high bending moment capacity, the shear capac-
ity is low unless special actions are taken. In Fig. 1 is shown
a shear failure mode in a beam with glued-in rods. Failure
occurs as splitting of the beam due to stresses perpendicular
to the grain. To make a joint with high moment capacity, the
most efficient use of the rods is obtained if they are placed
as close as possible to the top and bottom of the beam, i.e.,
using as small effective edge distance, he (as shown in Fig.
1), as possible. However, the shear capacity obviously in-
creases with increasing he.

A simple expression is proposed for calculation of the
strength of a joint with glued-in rods subjected to pure
shear. The expression is derived using beam-on-elastic-
foundation theory and quasi nonlinear fracture mechanics.
Joints in beams with cross-sectional dimensions of 100 �
200mm, 50 � 300mm, and 120 � 420mm and various dowel
configurations were tested in pure shear.

Theory

Introduction

A symmetrical joint as shown in Fig. 1 is considered. Failure
occurs as a splitting failure in the beam (mode I fracture of
the wood due to tensile stress perpendicular to grain) at the
rods located closest to the beam axis as shown in Fig. 1. The
part above the crack of the beam to the right of the joint is
considered and treated as a beam on elastic foundation.
This is a simplifying assumption used in the present theory
and may be regarded as a compromise between the strive
for simplicity and that of accuracy.

The properties of the elastic foundation are chosen so
that the perpendicular-to-grain tensile strength and fracture
energy properties of the wood are correctly represented.
The analysis is linear elastic, but because strength, fracture
energy, and a nonzero size of the fracture process region are
considered in the analysis, the analysis may be called a
quasi-non-linear fracture mechanics analysis. Results of
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linear elastic fracture mechanics are obtained as a special
case by allowing the tensile strength of the wood approach
an infinitely large value.

Stress and energy release rate

Figure 2 shows a beam on elastic foundation subjected
to a shear force, P0, and a moment, M0, at x � 0. If the beam
is supposed to be infinitely long, and if shear deformations
are taken into account, the deflection at x � 0, w0, is given
by10,11
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where b is the beam width, E is the modulus of elasticity
(MOE) in the grain direction of the beam, G is the shear
modulus of the beam, K is the stiffness of the elastic founda-
tion (units: N/m3), I is the moment of inertia, and A is the
cross-sectional area of the beam (rectangular cross section
is assumed).

The rotation, θ0, of the beam end at x � 0 is given by
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The foundation stress acting on the beam (σ), σ � 0 cor-
responding to tensile perpendicular-to-grain stress in the
wood, is given by

σ x Kw x( ) ( ) � � (3)

Pure shear load, i.e., M0 � 0, is assumed. In this case, maxi-
mum deformation and stress occur at x � 0. Eqs. 1 and 3
give
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The crack propagation energy release rate is denoted by G
and is by definition the release of elastic strain energy and
potential energy of loads per unit area of crack extension.
For a linear elastic body loaded by a single load, P0, G is
given by12

G � 
P
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where a is the crack length and C is the compliance given by

C � 
δ

P0
(6)

δ being the deflection at the loading point.
A cantilever beam on elastic foundation, as shown in

Fig. 3 (only the beam axis is shown), is considered. The
projecting length, a, models the crack in the fracture me-
chanics analysis. The total deflection, δ, of the loading point
may be given as

δ δ δ δθ �  �  � a w (7)

where δa is the contribution from the projecting cantilever
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and δw � δθ is the contribution from the beam on elastic
foundation using M0 � P0a in Eqs. 1 and 2

Fig. 1. Splitting failure in a beam
with glued-in rods subjected to
shear loading

Fig. 2. Semi-infinite beam on elastic foundation

Fig. 3. Beam on elastic foundation after development of a crack of
length a
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From Eqs. 6–9, the increase in compliance due to an infini-
tesimal crack extension is found to be
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Inserting Eq. 10 in Eq. 5, and utilizing the fact that maxi-
mum failure load is obtained for a Æ 0, leads to
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Comparison of this equation with Eq. 4 shows a simple
relation between the maximum stress, σ(0), and the energy
release rate, G:
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Foundation properties and failure criteria

The foundation of the beam is intended to model the
strength and fracture performance of the wood perpendicu-
lar to the grain. The damage and fracture performance of
wood is nonlinear. This nonlinear response is represented in
the present analysis by a linear response that is equivalent
in terms of peak stress, ft, and fracture energy dissipation,
Gf. The two parameters determine the fracture stress, ft, and
the foundation stiffness, K. Since the energy dissipation in
the case of linear performance is
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The failure load, here denoted as Pc, can be determined by
a stress criterion or by an energy release rate criterion. The
stress criterion is

σ 0( ) � ft (15)

which, by use of Eq. 4, gives
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The energy release rate criterion is

G G � c (17)

where the critical energy release rate, Gc, is the value of G
when a crack is about to start to propagate. Assuming static
or quasi-static conditions and no energy dissipation outside
the fracture region, Gc is equal to the material property
parameter Gf:

G Gc f � (18)

From Eq. 18, it follows from Eqs. 11 and 17 that
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The value of Pc by the energy release analysis is the same as
the value obtained by the stress analysis because, from Eq.
14, 2K ffG  � t .

The present strength analysis of mode I failure using
beam on elastic foundation and Eq. 14 is a complete anal-
ogy to the fracture mechanics application of the Volkersen
model to strength analysis of mode II failure in lap joints13

and pull-out of glued-in rods.1,5

Equations for the shear failure load

The shear failure load, Vc,L � 2Pc, of the symmetrical joint
shown in Fig. 1 may, by means of Eq. 16 or 19 together with
Eqs. 1 and 14, be written
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The length le may be interpreted as the equivalent length on
both sides of the joint, over which the beam with depth he is
able to distribute the stresses perpendicular to the grain
uniformly.

Equation 20 is based on the present quasi-non-linear
fracture mechanics analysis – the stress analysis is linear, at
the same time as both limited material strength, nonzero
fracture energy, and compliance and nonzero size of the
fracture zone are considered. For the special case of linear
elastic fracture mechanics analysis, the failure load Vc,LEFM

is obtained by letting ft Æ •, or more generally, by letting
ω Æ •, giving

V b G h b G hc,LEFM f e f e � 
20
3

2 58G Gª . (21)

Equation 20 is based on the assumption that the beam end
at the loading point is subjected to a pure shear load and
that no rotational restraints are imposed. This is a lower-
bound solution because the rotational stiffness of the
glued-in dowel group in some cases may be significant as
compared with the bending stiffness of the beam on elastic
foundation. An upper-bound solution, Vc,U, is obtained if it
is assumed that the rotation of the beam-end is zero at
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the loading point. Using the following dimensionless
parameters
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the lower-bound, Vc,L, and upper-bound, Vc,U, solutions ac-
cording to the quasi-non-linear fracture mechanics analysis
may be given in terms of the linear elastic fracture mechan-
ics solution, Vc,LEFM, as shown in Eqs. 23 and 24

V Vc,L c,LEFM � µν (23)

V Vc,U c,LEFM � ν (24)

In Fig. 4, the normalized failure loads µ � Vc,L/Vc,U, ν �
Vc,U/Vc,LEFM, and µν � Vc,L/Vc,LEFM are shown as a function of
he using the material properties E � 10GPa, G � E/18, ft �
4MPa, Gf � 0.25N/mm. The linear elastic fracture mechan-
ics solution as given by Eq. 21 is seen to be a fairly good
approximation to the quasi-non-linear fracture mechanics
upper-bound solution for most practical situations. It is
worth noting that for he Æ 0 (or more generally, ω Æ 0):
ν � Vc,U/Vc,LEFM Æ 0 and µ � Vc,L/Vc,U Æ 1/2. For he Æ •
(or more generally, ω Æ •): ν � Vc,U/Vc,LEFM Æ 1 and µ �
Vc,L/Vc,U Æ 1.

The factors ν and µν maybe interpreted as effectiveness
factors by which the linear elastic fracture mechanics solu-
tion (Eq. 21) is multiplied in order to obtain the quasi-non-
linear fracture mechanics solutions. As indicated by Fig. 4, a
simple and practical approach may be to determine the
effectiveness factors for a certain minimum allowable value
of he, which will then be a safe value for all allowable he.

The quasi-non-linear fracture mechanics solutions given
by Eqs. 21–24 depend in general on the tensile strength
perpendicular to the grain, ft, which is highly volume depen-
dent and difficult to estimate appropriately by testing. For a

problem such as the one considered here, the crack propa-
gation path is predetermined and the tensile strength should
thus be determined using specimens with a very small vol-
ume. Furthermore, tensile strength tests will always give a
lower-bound estimate since misalignments inevitably cause
nonuniform stress distribution. The use of tensile strength
as determined by testing will therefore, in the present con-
text, in general be on the safe side.

Experimental

Tests were conducted in a test setup, as shown in Fig. 5, that
provided pure shear at the location of the joint. The geom-
etry of the eight kinds of joints tested is shown in Fig. 6. The
effective beam depth, he, shown in Fig. 6, is taken as he � hc

� 1/2d, where hc is the distance from the loaded edge of the
beam to the center of the innermost row of dowels, and d is
the dowel diameter.

The glulam beams (30mm laminae) used in the testing
program were made of Japanese cedar (Cryptomeria
japonica), and ordered from the factory as E75-F240
according to the Japanese Agricultural Standard.14 The
dynamic modulus of elasticity (MOE) was determined for
each beam, and is given in Table 2 as the mean value for
each test series. The moisture content (MC) of the glulam
was between 12% and 13%, and the density was about
420kg/m3 at the given MC.

The dowels were made of hard maple (Acer saccharum).
The dowel diameter was 12mm, and the glued-in length was
120mm (in each beam end) in all specimens except speci-
mens A1 and A2, in which staggered glued-in lengths were
used (longest dowels in the outer laminae, shortest dowels
in the row closest to the beam axis). Specimen A1 contained
three dowel rows with glued-in lengths of 120, 110, and
100mm. Specimen A2 contained five dowel rows with
glued-in lengths of 120, 110, 100, 90, and 80mm. The dowel
surface was smooth without grooves, and the dowel holes
were 13mm in diameter. The MOE of the hardwood was
about 15GPa, the MC was about 11%, and the density was
about 740kg/m3 at the given MC.

The adhesive used was one-component polyurethane
C3060 (Nihon Polyurethane) or #930 (Sunstar Engineer-
ing). Previous pull-out tests showed no significant differ-
ence in strength between the two adhesives. Curing time,
i.e., the time from gluing to testing, ranged from 4 to 14
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Fig. 4. Normalized failure loads ν � Vc,U/Vc,LEFM, µ � Vc,L/Vc,U, and
µν � Vc,L/Vc,LEFM as functions of effective beam depth he Fig. 5. Test setup for joints subjected to pure shear
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days. The glulam beams and the dowels, as well as the
specimens after gluing, were stored in the laboratory with-
out controlling temperature or humidity.

The dowels were glued into the beams simply by inject-
ing adhesive into the dowel holes and pressing the dowels
into the holes. In some cases, excessive adhesive was pushed
out and provided the potential to create a bond between the
end surfaces of the jointed beams. In order to avoid transfer
of shear forces through such a bond line (i.e., to ensure
transfer of shear forces through the dowels only), a 3-mm to
6-mm gap was deliberately made between the end surfaces
of the jointed beams, and a double layer of plastic film was
placed in the gap.

Tests were also conducted to determine tensile strength
perpendicular to the grain and fracture energy of the wood
in some of the glulam beams. The tensile strength was
determined using specimens as shown in Fig. 7, and the
fracture energy was determined using Double-Cantilever-
Beam (DCB) specimens as shown in Fig. 8 (the 120-mm
wide glulam beams were cut into three 35-mm wide speci-
mens labeled A, B, C). The material for tensile strength
specimens and DCB specimens was taken without special
selection to avoid defects such as knots.

The fracture energy, assumed to equal the critical energy
release rate, was calculated from the recorded failure load,
Pmax, by15
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where A and I are cross-sectional area and moment of
inertia, respectively, of a cantilever, and a is the initial crack
length (a = 360mm).

Results and discussion

The specimens for determination of the tensile strength
perpendicular to the grain and the DCB specimens were cut

Fig. 6. Geometry of joints with
glued-in hardwood dowels tested
in pure shear

Fig. 7. Specimen for determination of tensile strength perpendicular to
grain

Fig. 8. DCB specimen for determination of fracture energy

Table 1. Tensile strength and fracture energy perpendicular to grain

Specimen MOE ft Gf

(MPa) (MPa) (N/mm)

B07-A 8817 4.0 0.17
B07-B 8817 5.3 0.24
B07-C 8817 3.6 0.16
B08-A 8612 6.2 0.33
B08-B 8612 6.5 0.61
B08-C 8612 3.0 0.36
B09-A 8660 4.2 0.24
B09-B 8660 – 0.35
B09-C 8660 3.2 0.20
B10-A 9288 2.8 0.18
B10-B 9288 3.8 0.15
B10-C 9288 3.4 0.22
B11-A 8324 3.6 0.24
B11-B 8324 2.9 0.58
B11-C 8324 3.3 0.14
B12-A 9504 3.6 0.19
B12-B 9504 6.9 0.39
B12-C 9504 4.2 0.27

Mean � SD 8868 � 445 4.1 � 1.3 0.28 � 0.14

Calculation of Gf based on Gf � Gc and G � E/18
MOE, Modulus of elasticity; ft, fracture stress; Gf, fracture energy
dissipation
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Table 2. Failure shear load of joints subjected to pure shear

Specimen MOE (MPa) b (mm) he (mm) Vc (kN)

Test Eq. 23 Eq. 24 Eq. 21

A1-01 8670 120 72 30.2
A1-02 8670 120 72 28.2
A1-03 8670 120 72 36.2
Mean � SD 8670 120 72 31.5 � 4.2 23.8 29.6 30.5

A2-01 8670 120 120 43.2
A2-02 8670 120 120 66.0
A2-03 8670 120 120 48.2
A2-04 9950 120 120 46.8
A2-05 9950 120 120 55.6
A2-06 9950 120 120 48.1
Mean � SD 9310 120 120 51.3 � 8.2 33.1 40.0 40.8

B1-01 8340 50 46 8.1
B1-02 8340 50 46 7.3
B1-03 8340 50 46 6.4
Mean � SD 8340 50 46 7.3 � 0.9 7.5 9.6 10.0

B2-01 8340 50 106 10.9
B2-02 8340 50 106 12.5
B2-03 8340 50 106 15.3
Mean � SD 8340 50 106 12.9 � 2.2 12.3 14.8 15.1

B3-01 9950 50 106 23.6
B3-02 9950 50 106 22.0
B3-03 9950 50 106 18.5
B3-04 9950 50 106 20.5
B3-05 9950 50 106 15.3
B3-06 9950 50 106 19.1
Mean � SD 9950 50 106 19.8 � 2.9 13.2 16.1 16.5

B4-01 9950 50 26 6.5
B4-02 9950 50 26 7.6
B4-03 9950 50 26 6.9
Mean � SD 9950 50 26 7.0 � 0.6 5.6 7.6 8.2

C-01 8340 100 24 12.4
C-02 8340 100 24 9.2
C-03 8340 100 24 10.4
C-04 8340 100 24 10.8
C-05 8250 100 24 12.5
C-06 8250 100 24 11.7
C-07 8250 100 24 10.1
Mean � SD 8300 100 24 11.0 � 1.2 10.0 13.5 14.4

D-01 9950 50 26 6.1
D-02 9950 50 26 7.0
D-03 9950 50 26 7.7
Mean � SD 9950 50 26 6.9 � 0.8 5.6 7.6 8.2

Calculations based on G � E/18, ft � 4.1 MPa, and Gf � 0.28 N/mm
b, Beam width; he, beam depth; Vc, failure shear load

from the A2-01, A2-02, and A2-03 specimens (Fig. 6), which
were composed of the six beams B07–B12. In Table 1, the
tensile strength and fracture energy perpendicular to the
grain are given along with the measured MOE (the MOE
given in Table 2 for the same specimens is the mean value of
the six beams reported in Table 1 and the six beams used for
specimens A1).

The results in Table 1 show a large variation even among
neighboring specimens taken from the same beam (A, B, C)
due to the presence of knots, which have a reinforcing ef-
fect. Tests on clear specimens therefore tend to underesti-
mate the critical energy release rate. On the other hand, as
is obvious from Table 1, the reinforcing effect of small knots
may be very localized. A small knot that has a significant
reinforcing effect on a 35-mm wide DCB specimen may not
necessarily lead to reinforcement of the 120-mm wide cross

section. For practical use, it is therefore recommended that
either specimens without knots in the vicinity of the crack
tip or specimens with a full-size width be used for determi-
nation of the critical energy release rate.

The results of the pure shear tests of the joints are given
in Table 2 and are compared with the calculated failure
loads according to the linear elastic fracture mechanics solu-
tion, as given by Eq. 21, and the quasi-non-linear lower-
bound and upper-bound solutions as given by Eqs. 23 and
24, respectively.

The B4 and D specimens were tested in order to observe
the effect of beam depth, h, for constant he. Though
the present test results are too sparse to make any final
conclusions, they seem to suggest that the failure load
depends on he, but is not affected by the total beam depth,
h. The fracture mechanics model presented is in agreement



129

with this finding. Comparison of specimens B2 and B3
suggests that the rotational restraint has a significant
effect.

The test results of specimens A2 and B3 show signifi-
cantly higher strength than theoretically expected. All
other theoretically estimated strengths are in good agree-
ment with test results. This might indicate that the theory
presented here is particularly suited to joints with relatively
small edge distances (e.g., he/h � 0.2), which is most
common in practice, while it is somewhat conservative
for large edge distances. However, the reported test data
are too sparse to make final conclusions. Further tests
should be conducted to clarify the validity range of the
theory.

Conclusions

A theoretical model based on beam-on-elastic-foundation
theory and quasi-non-linear fracture mechanics was pro-
posed for calculation of the failure shear load of beam splice
joints with rods glued in parallel to the grain direction and
which fail in splitting due to tensile stresses perpendicular to
the grain. Theoretical failure shear loads were, for the ma-
jority of the test series, found to be in good agreement with
test results. This seems to be particularly so for test series
with relatively small edge distances, while test results of two
test series with relatively large edge distances showed
considerably higher failure loads than expected from the
theory, indicating that the presented theory may be some-
what conservative in case of large edge distance. Further
tests should be conducted to clarify the validity range of the
theory. The present theory is approximate because of the
simplifying assumptions made. A more accurate theory, in-
volving more complicated calculations, may be developed
by taking into account the bending and shear deformations
of the part of the beam below the crack path, which in the
present theory is treated as a fixed foundation. The simplic-
ity of the present theory makes it suitable for practical
design.
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