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Abstract To discuss the role of the gelatinous layer (G-
layer) on the origins of the physical properties peculiar to
the tension wood fiber (TW fiber), the deformation process
of an isolated TW fiber caused by a certain biomechanical
state change was formulated mathematically. The mechani-
cal model used in the present formulation is a four-layered
hollow cylinder having the compound middle lamella
(CML), the outer layer of the secondary wall (S1) and its
middle layer (S2), and the G-layer (G) as an innermost
layer. In the formulation, the reinforced matrix mechanism
was applied to represent the mechanical interaction be-
tween the cellulose microfibril (CMF) as a framework
bundle and the amorphous substance as a matrix skeleton in
each layer. The model formulated in the present study is
thought to be useful to investigate the origins of extensive
longitudinal drying shrinkage, large tensile growth stress,
and a high axial elastic modulus, which are rheological
properties peculiar to the TW. In this article, the detailed
process of the mathematical formulation is described. In a
subsequent article, some TW properties from a 70-year-old
Kohauchiwakaede (Acer sieboldianum Miq.) will be ana-
lyzed using the newly developed model.

Key words Gelatinous fiber · Tension wood · Cell wall ·
Reaction wood · Growth stress

Introduction

Tension wood (TW) consists of abnormal tissue called
gelatinous fiber (G-fiber) because it contains a gelatinous
layer (G-layer) as the innermost layer of the secondary wall.
The TW often shows characteristic behavior that is different

from the normal wood (NW). A high-tensile growth stress is
generated on the surface of the xylem in the TW region that
often becomes ten times as large as that in the NW region.1,2

The longitudinal Young’s modulus of the TW becomes sig-
nificantly higher than that of the NW.1,3 Furthermore, the
axial shrinkage in the TW tends to exceed more than 1%
during water desorption,3 while that in the NW becomes
less than 0.5%. Some authors attribute these behaviors to
the intrinsic properties of the G-fiber.1,3

On the other hand, more than a few researchers believe
that the G-layer is mechanically too compliant to bear a
large stress generation. They base their argument on the
facts that the G-layer is often convoluted in the lumen of the
transverse section that is sampled from the water-swollen
block, and it can be easily peeled off the lignified layer in the
same direction during microtoming. This gives the impres-
sion that it is attached only loosely to the remainder of the
secondary wall.4 From those observations, they consider
that the various characteristics of the TW should be attrib-
uted not to the flexible G-layer but to the relatively thicker
outer layer of the secondary wall (S1),5 and/or to the rela-
tively thinner middle layer of the secondary wall (S2) whose
microfibril angle (MFA) is expected to be more or less
different from that in the NW fiber.6,7

It is impossible to adjudge which possibility holds until
we succeed in directly measuring the mechanical properties
of the G-layer and the lignified layer which requires isolat-
ing them from each other. However, it may be quite natural
to consider that the lignified layer in the G-fiber would be
essentially same as that in the NW fiber, because there is no
specific difference in anatomical and chemical aspects be-
tween them as pointed by Okuyama et al.1 Thus, the author
expects that characteristic behaviors peculiar to the TW
may be attributed to the G-layer.

Simulation using a wood fiber model is one of the most
effective methods to estimate the internal properties and
fine structures of each constituent material in wood cell
walls.8,9 In our previous studies, we developed a wood fiber
model consisting of the compound middle lamella (CML),
S1 and S2. A basic formula was derived to simulate the
deformation process of an isolated wood fiber when a
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certain biomechanical change occurs, such as lignin deposi-
tion,10,11 water adsorption,12,13 or external load induction.9,14

The basic formula contained several parameters that were
derived from the composite structure of the cell wall layer.
When comparing the simulated results with the experimen-
tal one, concrete values need to be assigned to the param-
eters in a rational manner. We consider that those values
reflect intrinsic information on the internal properties and
fine structure of cell wall constituents.

The objective of the present study was to clarify the role
of the G-layer in the origin of characteristic behaviors of the
TW, and then, to improve our previous wood fiber model12,15

into a four-layered model having the G-layer as the inner-
most layer. In the present article, the detailed process of
the formulation on the deformation process of the G-
fiber model which is induced by a certain biomechanical
state changes is described. In a subsequent article, some
TW properties of 70-year-old kohauchiwakaede (Acer
sieboldianum Miq.) will be analyzed by using the newly
developed model, including a high-tensile growth stress
generation, a large longitudinal Young’s modulus, and a
large axial shrinkage due to water desorption.

Formulation of the deforming wood

Wood fiber model

Figure 1 shows a schematic model of the typical G-fiber
which consists of the CML, the S1, the S2, and the G-layers.
Each layer can be approximated as a “two-phase structure”,
specifically the unidirectional reinforcing element of the
polysaccharide framework and the encrusting matrix (MT)
of lignin–hemicellulose compound. The former is mainly
composed of highly crystallized cellulose microfibril
(CMF), which is oriented in a certain direction to the fiber
axis in each layer except the CML. This makes the second-
ary wall and the G-layer mechanically anisotropic. On the
other hand, in cases in which the orientation of the CMF is

randomly distributed in the CML, it is considered to be
mechanically isotropic.

In the case of softwood secondary wall, oriented polyose,
such as (acetyl-) glucomannan, is often arranged along and
around the CMF, forming the polysaccharide framework
with the highly crystallized CMF. No oriented polyose has
been detected in the hardwood cell wall.16–18 Disoriented
polyose, that is mainly xylan, is blended with lignin, forming
the isotropic skeleton of the MT substance.

In the present study, a single G-fiber is simplified into a
complex hollow cylinder consisting of the CML, the S1, the
S2, and the G-layers, as shown in Fig. 1b.

Constitutive equations

Under low magnification, the reinforcing element of the
polysaccharide framework is spatially dispersed uniformly
in each cell wall layer to form the framework bundle. Simi-
larly, the lignin–hemicellulose compound is diffused in each
layer forming the isotropic MT skeleton. Therefore, it is
considered that both the framework bundle and the MT
skeleton occupy the same domain in the macroscopic limit.
Based on such an idea, Barber and Meylan hypothesized
the mechanical interaction between the polysaccharide
framework and the lignin–hemicellulose MT in each layer
as the following conditions: 12,19,20

σ σ σ ε ε εij ij
f

ij ij ij ij �  �  �  � m f m, (1)

where σf
ij, σ

m
ij , and σij are the stress tensors in the framework

bundle, MT skeleton, and cell wall layer as a whole, respec-
tively. εf

ij, ε
m
ij , and εij, on the other hand, are their respective

strains.
In the present study, the deformation of the wood fiber

model is assumed to be symmetric with respect to the cen-
tral axis (see the condition C4). Thus, we can express the
fact that torsional deformation of an individual fiber is com-
pletely restricted by the force of binding fibers inside the
wood specimen. Then a cylindrical coordinate system (O-
�tr, where �, t, and r represent longitudinal, tangential, and
radial components, respectively) can be applied to the
present model as shown in Fig. 2a.

A visible deformation induced at each point in the cell
wall is expressed by the observable strain tensor compo-
nents (εij, where i, j � �, t, r) in the O-�tr coordinate system.
The stress component induced in the MT skeleton of each
layer (σm

ij ) is related to the observable strain component
caused in the matrix skeleton (εm

ij , where i, j � �, t, r) as the
following constitutive equation:

σ ε αij ijkl kl klCm m m m �  � ( ) (2)

Cm
ijkl is an elastic constant tensor, and αm

kl is a tensor of
internal expansion which is caused by a certain biomechani-
cal change. αm

kl is observed such that in each layer, αm
kl �

εmδkl, where δkl is Kronecker’s symbol. εm is a scalar. Cm
ijkl and

αm
kl are both assumed to be isotropic. The elastic constants of

the isotropic MT skeleton (nonzero terms) are denoted as
follows:

Fig. 1. Multilayered structure of the gelatinous fiber (a), its mechanical
model (b), and the crosscut surface (c). Each fiber consists of the
compound middle lamella (CML), the outermost layer of the second-
ary wall (S1), its middle layer (S2), and the gelatinous layer (G)
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where K � 3λ � 2µ, S � 2µ. λ and µ are Lame’s constants.
Figure 2b shows a small flat-board element of the frame-

work bundle in the S2 layer, provided that the positive
direction of normal axis (z-axis) is coincident with the radial
direction (r-axis) of the fiber model. In this model, the CMF
and other oriented polyose in the S2 layer are assumed to be
oriented in an S-helix at an angle of θ, and the one in the S1
layer is assumed to be aligned normally to the fiber axis.
The relationship between stress (σf*

ij ) and strain (εf*
ij) compo-

nents induced in the framework bundle of each layer of the
secondary wall can be written as the following constitutive
equation in the O-xyz orthogonal coordinate system:

σ ε αab abcd cd cdCf f f f* * * * �  � ( ) (4)

where Cf*abcd is the elastic constant of the framework bundle
in each layer in the O-xyz coordinate system. αab

f* is an
internal expansive strain, caused by a certain biomechanical
change, that is a diagonal tensor whose components are

diag *f f f fα ε ε εab( ) ( )¢ ¢ � , ,

where εf and εf� are the internal expansive strains induced in
the framework bundle in the directions parallel and perpen-
dicular to the cellulose molecular chain, respectively.

We supposed that the framework bundle is considerably
compliant in its transverse direction. Therefore, all shear
moduli, Poisson’s ratios, and the Young’s modulus in the
transverse direction are small enough to be neglected. This
means that the CMF including other oriented polysaccha-
ride cannot be kept in a bundle shape without a reinforcing

agent. The reinforcing agent is considered to be the lignin–
hemicellulose isotropic matrix. Then, we may consider the
stiffness components Cf*abcd are all nil except Cf*xxxx (�E).

By transforming the coordinate system from O-xyz into
O-�tr system, Eq. 4 is rewritten into a new expression as
follows:

σ ε αij ijkl kl klCf f f f �  � ( ) (5)

where

C R R R R C R Rijkl ia jb kc ld abcd ij ia jb ab
f f f f* * �  � , α α (6)

Rij is a transformation matrix between both coordinate sys-
tems. The nonzero terms of the stiffness components of the
framework bundle (Cf

ijkl) are expressed as
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provided that we considered Cf
ijkl � Cf

jikl � Cf
jilk and Cf

ijkl �
Cf

klij, where c � cos�, s � sin�, and E is Young’s modulus of
the framework bundle in the direction along the cellulose
molecular chain. E, S, εm, εf, r (�rout/rin), and � take respec-
tive values in each layer as assumed in Table 1. They are not
unknown values to be solved but known constants to be
given in advance.8,13 S is the shear modulus (�2) of the
matrix skeleton in each layer. In the same way as E, S takes
a respective value in each layer. S is denoted as S0, S1, S2, and
S3 in the CML, S1, S2, amd G-layers, respectively.

By rearranging Eqs. 1 using Eqs. 2, 3, 5, and 7, and con-
sidering the compatibility of strains for the axisymmetrical
deformation without torsion,

ε ε
ε

r t
t �  � r

d
dr
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where σ� � σ��, σt � σtt, σr � σrr, ε� � ε��, εt � εtt, εr � εrr. r is
a radial distance from the central axis. Among the shear

Fig. 2a,b. Coordinate system used in the formulation. a O-�tr local
orthogonal coordinate system. b Flat board element of the CMF frame-
work bundle. O (in a) is an arbitrary point in the cell wall. Direction of
x-axis (in b) is parallel to the CMF molecular chains in the S1 or S2
layers
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stress components, only σ�t is not null, which is an inevitable
consequence from the assumption of the axisymmetrical
deformation, i.e., ε�t � 0. In this study, stress equilibrium for
axisymmetrical deformation was assumed as follows:

σ σ
σ

t r
r �  � r

d
dr

(9)

Deriving the basic equations

Assumptions

The dimensional change of the wood fiber model can be
expressed as a set of normal strains, namely, ε� in the longi-
tudinal direction, and εt(r)|r�r0

, εt(r)|r�r1
, εt(r)|r�r2

, εt(r)|r�r3
,

and εt(r)|r�r4
 in the tangential directions at the respective

radius. In the same way as described in previous work,11,12,14

based on Eqs. 8, we solve ε�, εt(r)|r�r0
, εt(r)|r�r1

, εt(r)|r�r2
,

εt(r)|r�r3
, and εt(r)|r�r4

 under the conditions C1, C2, C3, and
C4, and assumptions A1, A2, and A3:

C1. ε� is constant for all r. This is based on the assumption
that the wood fiber model is an infinitely long cylinder in
the �-direction. We denote ε� as εL hereafter.

C2. [σr(r)]r�r4
 � �P4, [σr(r)]r�r0

 � �P0. P0 � P4 � 0. These
boundary conditions mean there are no internal and ex-
ternal pressures acting on the wood fiber model (see
Table 1).

C3. The external force (PL) induced parallel to the wood
fiber model satisfies the following equation:

P L dA rdrd r r drl l lr

r

L

crosscut
surface

crosscut
surface

 �  �  �  � 2 2
4

0p pσ σ θ σÚ Ú Ú ( )

(10)

C4. The deformation of the wood fiber model is assumed to
be symmetric with respect to the central axis.

In addition to the conditions, the assumptions A1, A2,
and A3 were made at processing:

A1. K �� S, so that S/K is enough small to be negligible in
each layer. This hypothesizes that the bulk modulus of
the MT skeleton (K) is larger than S. This postulates

that the Poisson’s ratio of the matrix skeleton is almost
0.5, similar to a kind of elastomer.

A2. It is considered that E, S, εm, εf, and r (�rout/rin) tend to
change their values during a certain biophysical change;
however, those changes can be neglected in the case
that biomechanical changes were infinitesimally small.

A3. E � 0 in Eq. 7 in the CML. Namely, E0 � 0. This does
not mean that there is no oriented polysaccharide
framework in the CML, but means that mechanical
contribution of the randomly distributed polysaccha-
ride framework in the CML should be isotropic. For
convenience, we assume that S0 means the shear modu-
lus (�2) of the CML itself. Moreover, (h/r1)

2 � 0, εf
0 �

0 and ε0
m � 0 in the CML. These conditions assume that

h (thickness of the CML) is smaller than the S1 and the
S2 layers.

Basic formula A

Solving the second and third formula in Eqs. 8 for εt and
rdεt/dr, and eliminating the term of σt using the equilibrium
condition of Eq. 9, we obtain
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where u � S/K and G � E/S. Moreover, combining them by
eliminating the term of εt, we obtain a differential equation
of r:

Table 1. List of the parameters in the basic formulae A and B

Layer � rin rout r S E Pin Pout L εm εf

CML – r1 r0 (�r1 � h) r0
0

1

 �
r
r

Ê
ËÁ

ˆ
¯̃ S0 E0 (�0) P1 P0 (�0) L0 0 0

S1 90deg r2 r1
r1

1

2

 �
r
r

Ê
ËÁ

ˆ
¯̃ S1 E1 P2 P1 L1 ε1

m ε1
f

S2 θ r3 r2
r2

2

3

 �
r
r

Ê
ËÁ

ˆ
¯̃ S2 E2 P3 P2 L2 ε2

m ε2
f

G 0deg r4 r3
r3

3

4

 �
r
r

Ê
ËÁ

ˆ
¯̃ S3 E3 P4 (�0) P3 L3 ε3

m ε3
f

�, the microfibril angle; rin, inner radius of each layer; rout, outer radius of each layer; r � rout/rin; S, shear modulus (�2) of the matrix skeleton;
E, Young’s modulus of the framework bundle in the direction along the cellulose molecular chain; Pin, inner pressure; Pout, outer pressure; L, see
Eqs. 10; εm, inelastic strains in the matrix skeleton; εf, inelastic strains of the framework bundle in the direction parallel to cellulose molecular
chains; CML, compound middle lamella; G � E/S; G1 � E1/S1; G2 � E2/S2; G3 � E3/S3; Q � F/E1; F � S0·h/r1; M � S2/S1; N � S3/S2
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General solution of Eq. 12 is given as
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where C1 and C2 are integral constants, and α is described as
follows:
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Then, we substitute the above solution into the first part of
Eq. 11, and we obtain basic formula A:
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Coefficients Γ, Λ, X, and ∆ are dependent on G, �, r, rout,
and r, provided that these variables take their respective
values in each layer as shown in Table 2.

Basic formula B

We solve Eqs. 8 for εL and integrate it over the crosscut area
of each layer. When integrating it, we assume that εm and εf

are independent of r in the respective layers, and ε� takes a
constant value (εL) over the crosscut surface of the cell wall
because of condition C1. As a result, we obtain basic for-
mula B:
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Table 2. List of the coefficients in the basic formulae A and B

Layer Location Γ Λ X ∆ Ω F Σ

CML r � r0 Γ0� (�1) Λ0� (�2) X0� (�3) ∆0� (�0) Ω0 (�1) F0 (�1) Σ0(�0)
r � r1 Γ0 (�1) Λ0 (�2) X0 (�3) ∆0 (�0)

S1 r � r1 Γ1� Λ1� X1� ∆1� Ω1 F1 Σ1

r � r2 Γ1 Λ1 X1 ∆1

S2 r � r2 Γ2� Λ2� X2� ∆2� Ω2 F2 Σ2

r � r3 Γ2 Λ2 X2 ∆2

G r � r3 Γ3� (�1) Λ3� (�2) X3� (�3) ∆3� (�0) Ω3 F3 (�1) Σ3

r � r4 Γ3 (�1) Λ3 (�2) X3 (�3) ∆3 (�0)
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Coefficients Ω, F, and Σ are dependent on G, �, and r,
provided that these coefficients take their respective values
in each layer as shown in Table 2.

Formulae to describe the deforming G-fiber

In the G-fiber model as the whole, twelve equations are
obtained based on the basic formulae A and B. The equa-
tions are as follows:

Basic formula A in CML at r � r0 (a0),
Basic formula A in CML at r � r1 (a0�),
Basic formula B in CML (b0),
Basic formula A in S1 at r � r1 (a1),
Basic formula A in S1 at r � r2 (a1�),
Basic formula B in S1 (b1),
Basic formula A in S2 at r � r2 (a2),
Basic formula A in S2 at r � r3 (a2�),
Basic formula B in S2 (b2),
Basic formula A in G at r � r3 (a3),
Basic formula A in G at r � r4 (a3�),
Basic formula B in G (b3).

These equations constitute simultaneous equations whose
unknown variables are

ε ε ε ε ε εL t t t t t

1 2 3 4 0 1 2 3

     

        

, , , , , ;

, , , , ; , , ,
r r r r r r r r r r

P P P P P L L L L
� � � � �0 1 2 3 4

0

According to the assumption A3, Eqs. a0 and a0� are degen-
erated by each other, which yields

ε εt tr r
 

� �r r0 1
ª

Therefore, the unknown variables become

ε ε ε ε εL t t t t

1 2 3 4 0 1 2 3

    

        

, , , , ;

, , , , ; , , ,
r r r r r r r r

P P P P P L L L L
� � � �1 2 3 4

0

To solve Eqs. a0�–a3�, and Eqs. b1–b3 for the unknown
variables, the following conditions based on conditions C2
and C3 are imposed:

P P L L L L L0 4 0 1 2 30 1 0 2 �  �  �  �  �  � c c c3( ) ( ) ( ), ,

The unknown variables explicitly required in our study are
εL, εt|r�r1

, εt|r�r2
, εt|r�r3

, and εt|r�r4
. Thus, by eliminating the

unknown variables P0, P1, P2, P3, P4, L0, L1, L2, L3, and L in
the following manner, we degenerated the simultaneous

equations into simpler ones in which the unknown variables
are εL, εt|r�r1

, εt|r�r2
, εt|r�r3

, and εt|r�r4
.

The first equation

From Eqs. a0�, b0, a1�, b1, a2�, b2, b3, c1, c2, and c3, we
eliminate P0, P1, P2, P3, P4, L0, L1, L2, L3, and L. Thus, we
obtain the first equation

a a a a a

b b b c c c d P

r r r r r r r r11 12 13 14 15

11 1 12 2 13 3 11 1 12 2 13 3 11

1 2 3 4
ε ε ε ε ε

ε ε ε ε ε ε

L t t t t

m m m f f f
L

 �  �  �  � 

�  �  �  �  �  �  � 

� � � �

(15)

where coefficients a11, a12, a13, a14, a15, b11, b12, b13, c11, c12, c13,
and d11 are respective functions whose concrete forms are
composed of θ, r1, r2, r3, Q(�F/E1), G1, G2, G3, M(�S2/S1),
and N(�S3/S2). Detailed shapes of those coefficients are
described in the Appendix. PL stands for the external force
induced parallel to the wood fiber model, which is related to
L0, L1, L2, and L3 as follows:

P L L L L L rdrd

rdr
r

r

L

crosscut
surface
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The second equation

εL, εt|r�r1
, εt|r�r2

, εt|r�r3
, and εt|r�r4

 are unknown variables to be
solved as solutions of an algebraic equation (Eq. 15). To
solve Eq. 15 for εL, εt|r�r1

, εt|r�r2
, εt|r�r3

, and εt|r�r4
, there must

be at least four equations that are constituted by the same
unknown variables. These equations can be derived from
basic formula A.

From Eqs. a0�, a1�, a2�, a3, c1, and c2, we eliminate P0, P1,
P2, P3, and P4. Thus, we obtain

a a a a a

b b b c c c d P

r r r r r r r r21 22 23 24 25

21 1 22 2 33 3 21 1 22 2 23 3 21

1 2 3 4
ε ε ε ε ε

ε ε ε ε ε ε

L t t t t

m m m f f f
L
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(16)

The third equation

From Eqs. a0�, a1�, a2, a3, c1, and c2, we eliminate P0, P1, P2,
P3, and P4. Thus, we obtain

a a a a a

b b b c c c d P

r r r r r r r r31 32 33 34 35

31 1 32 2 33 3 31 1 32 2 33 3 31

1 2 3 4
ε ε ε ε ε

ε ε ε ε ε ε

L t t t t

m m m f f f
L
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(17)

The fourth equation

From Eqs. a0�, a1, a2, a3, c1, and c2, we eliminate P0, P1, P2,
P3, and P4. Thus, we obtain

a a a a a

b b b c c c d P

r r r r r r r r41 42 43 44 45

41 1 42 2 43 3 41 1 42 2 43 3 41

1 2 3 4
ε ε ε ε ε

ε ε ε ε ε ε

L t t t t

m m m f f f
L
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(18)
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d f d f d f d f d

f d f d f dP
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The Eqs. 20� are divided by dt, and are converted into the
following differential equations:
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where the raised dot notation represents the derivative by t.
Furthermore, r1, r2, and r3 among the components of p
should be rewritten into the differential quantities dr1, dr2,
and dr3, because they depend on the elapsed time during a
certain biomechanical change. Due to the assumption of
axisymmetrical deformation, the following relations are in-
quired among respective layers:
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Because dr3dεt
r4, dr2dεt

r3, and dr1dεt
r2 are regarded as higher

order infinitesimal quantities, from Eqs. 22, we can obtain
the following differential forms:

d d d d d d

d d d

r r r r

r r

r r r r

r r
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3 3

1 2 2 3

3 4

 �  �  �  � 

 �  � 

ε ε ε ε

ε ε

t t t t

t t

( ) ( )
( )

, ,
(22�)

These equations can be rewritten as differential equations
of t as follows:

˙ ˙ ˙ , ˙ ˙ ˙ , ˙ ˙ ˙r r r r r r1 1 2 2 3 3
1 2 2 3 3 4 �  �  �  �  �  � ε ε ε ε ε εt t t t t t
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(23)

Equations 21 and 23 constitute a system of simultaneous
differential equations whose unknown functions are εL, εt

r1,
εt

r2, εt
r3, εt

r4, r1, r2, and r3. On the other hand, ε1
m, ε2

m, ε3
m, ε1

f, ε2
f,

ε3
f, and PL are the functions whose t-dependent shapes

should be given in advance.

The fifth equation

From Eqs. a0�, a1�, a2�, a3�, c1, and c2, we eliminate P0, P1,
P2, P3, and P4. Thus, we obtain

a a a a a

b b b c c c d P

r r r r r r r r51 52 53 54 55

51 1 52 2 53 3 51 1 52 2 53 3 51

1 2 3 4
ε ε ε ε ε

ε ε ε ε ε ε

L t t t t

m m m f f f
L
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where coefficients a21–a55, b21–b53, c11–c53, and d11–d51 are re-
spective functions whose concrete forms are described in
the Appendix.

Equations 15–19 constitute the simultaneous algebraic
equations whose unknown variables are εL, εt

r1(�εt|r�r1
),

εt
r2(�εt|r�r2

), εt
r3(�εt|r�r3

), and εt
r4(�εt|r�r4

). The values of ε1
m, ε2

m,
ε3

m, ε1
f, εf

2, ε
f
3, and PL should be given in advance. From the

simultaneous equations, the solutions should be expressed
in the following forms:
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where coefficients f11–f57 are functions of p, and p is a param-
eter vector whose components are θ, r1, r2, r3, Q, G1, G2, G3,
M, and N. Among the solutions, εL represents the strain of
the G-fiber model in the axial direction. According to
the condition C4, the wood fiber model deforms
axisymmetrically so that εt

r1(�εt
r0), εt

r2, εt
r3, and εt

r4 are equiva-
lent strains to the diametral deformations at their respective
radii. These strains are induced by a certain biomechanical
change in the G-fiber. The thickness of the CML is small
enough to be negligible if compared to those of the S1 and
S2 layers. Therefore, εt

r1 can be regarded as the strain of the
diameter in the wood fiber model (�εT).

Developing Eqs. 20 into differential equations

According to assumption A2, Eqs. 20 are valid under the
condition that the biomechanical change is infinitesimally
small enough to be neglected. This means that εL, εt

r1, εt
r2, εt

r3,
and εt

r4 in addition to ε1
m, ε2

m, ε3
m, ε1

f, ε2
f , ε3

f, and PL in Eqs. 20
should be replaced as differential quantities, i.e., dεL, dεt

r1,
dεt

r2, dεt
r3, dεt

r4, dε1
m, dε2

m, dε3
m, dε1

f, dε2
f, dε3

f, and dPL. Then, each
expression in Eqs. 20 should be rewritten as a simple differ-
ential form, e.g.,
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Solving the simultaneous differential equations (Eqs. 21
and 23)

Solutions

Equations 21 and 23 give the deformation of the wood fiber
model, which is induced by a certain biomechanical change
occurring in the cell wall. In our case, examples of biome-
chanical change are the growth strains (maturation strains)
during cell wall lignification, which is measured as the re-
leased strains of the growth stress; the swelling strains due
to moisture adsorption; and the elastic deformation caused
by external load.

We assume that change in the physical state in the cell
wall starts at t � 0 and ends at t � Z. By integrating Eqs. 21
and 23 from t � 0 to t � Z, we can solve them for εL, εt

r1, εt
r2,

εt
r3, εt

r4, r1, r2, and r3. As the initial conditions at t � 0, we
assume

ε ε ε ε εL t t t t0 0 0 0 0 0

0 0 0

1 2 3 4

1 1 2 2 3 3

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
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Then, we divide the integral interval into n small parts, and
denote the integrals of Eqs. 21 in the i-th small interval
[(i � 1)Z/n � t � iZ/n, i � 1, 2, . . . , n] as ∆iεL, ∆iεt

r1,
∆iεt

r2, ∆iεt
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r4. For example, ∆iεL is calculated as
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In each small integral interval, the functions ε1
m(t), ε2

m(t),
ε3

m(t), ε1
f(t), ε2

f(t), ε3
f(t), and respective components in p, in-

cluding r1, r2, and r3, must be given in advance. However,
r1, r2, and r3 are unknown functions to be solved from
simultaneous differential Eqs. 21 and 23. The values of r1,
r2, and r3, which should be used in the i-th small interval,
can be estimated in the following process. At first, we inte-
grate Eqs. 23 in the (i � 1)-th small interval. Then, we
obtain
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If n is taken as a large enough number, this equation gives
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where r1
i�2 is equal to r1(t) at t � (i � 2)Z/n. Thus, the

value of r1
i�1, which is r1(t) in the i-th small interval, is given

as

r r r r1
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1
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1
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By using simultaneous recurrence equations (Eqs. 25 and
27), we can integrate simultaneous differential Eqs. 21 and
23 numerically.

Thus, the natural strain of the deforming wood fiber
model at a certain time t (� j · Z/n, j is positive integer
smaller than n ) can be derived as follows:
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Strains εL(t) and εT(t) give natural strains of the dimensional
changes induced in the wood fiber model. However, the
released strain of the growth stress and the swelling due to
water sorption are measured as the nominal strains in the
deforming wood specimen. Then, we need to solve Eqs. 21
and 23 to give anisotropic dimensional changes of the wood
fiber model as nominal strains.

The nominal strain of the deforming wood fiber model at
a certain time t (� j · Z/n) in respective directions can be
derived as follows:
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If the values of α(Z) and (Z) are smaller than 1%, changes
of r1, r2, and r3 are small enough to be neglected. In that
case, we can obtain the α(t) and (t) from the first and the
second formulae of Eqs. 21, which simplifies Eqs. 29 as
follows:
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Examples of simulations

Generation of the maturation strains due to cell
wall lignification

Soon after the deposition of the CMF and the highly ori-
ented polysaccharide framework in the secondary wall of
the tracheid or libriform wood fiber, the matrix substance of
hemicellulose and lignin deposits among the gaps of the
framework bundle. In this process, the wood fiber tends to
swell or shrink anisotropically, which generates anisotropic
growth stress in the newly formed xylem. This is because
free deformation of the individual fiber is restricted to in-
side the actual xylem. This process was formulated by using
a wood fiber model of the CML, S1, S2, and G layers. In this
case, irreversible deposition of the MT substance and the
maturation of the CMF framework are postulated to cause
a change in the biomechanical state of the tracheid or libri-
form fiber wall.

In the present study, the free dimensional change of the
G-fiber is simulated during the wall maturation. PL should
be null in Eqs. 21. The integral interval is from the deposi-
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tions of the CMF framework (t � 0) to the completion of
the G-fiber wall (t � Z). In this interval, the t-dependent
patterns of ε1

m, ε2
m, ε3

m, ε1
f, ε2

f, ε3
f, and every component in p

should be given in advance. As the initial conditions at t �
0, we adopt Eq. 24. According to the observations, the
released strains of the growth stress are less than 0.5% both
in the � and the t directions. Then, the simplified formulae
(Eqs. 30) can be used instead of Eqs. 29 when simulating the
maturation strains α(t)|t�Z and (t)|t�Z. In such a case, r1(t),
r2(t), and r3(t) are regarded as approximately constant.

As the preliminary simulation, we calculated the values
of α(t)|t�Z (�εL) and (t)|t�Z (�εT) under the conditions of
the parameters assumed in Tables 3 and 4. The values in
Tables 3 and 4, except those related to the G-layer, were
used in our previous simulations on the generation of
growth strains in the latewood tracheid of sugi (Cryptom-
eria japonica).8 In the present simulation, the various cases
for the percentage of the cellulose crystal in the G-layer are
displayed in Table 3, and the relationship between εL, εT

and ε3
f(t)|t�Z was calculated for each case of framework

crystallinity.
The result is shown in Fig. 3. According to the observa-

tion in the normal fiber of the softwood or the hardwood
xylem, the released strain of the surface growth stress be-
comes �0.02% to �0.06% in the longitudinal direction, and
0.05%–0.1% in the tangential direction. In the TW xylem,
on the other hand, the longitudinal released strain often
becomes several times as large as in the NW xylem, and in
some species forming considerably thick G-layers, such as
Robinia pseudoacacia, it exceeds �0.5%.2 The present
simulation explains these phenomena well when the G-
layer is assumed to shrink considerably in its axial direction
during the G-fiber maturation.

Longitudinal elastic constants

At present, the longitudinal Young’s modulus (EL) of the
wood fiber model is calculated based on Eqs. 21 and 23
under the assumption of the moisture steady state. There-
fore, it is assumed that every component in p is constant.
Moreover, dε1

m, dε2
m, dε3

m, dε1
f, dε2

f, and dε3
f are all nil. Then,

from Eqs. 21, we obtain the longitudinal Young’s modulus
of the G-fiber (EL) as follows:

E
r

dP
d r fL

L

L

 �  � 
1 1 1

0
2

0
2

17p pε p( ) (31)

The substantial Young’s modulus of the G-fiber can be
calculated as

E
r r

dP
d r r fL

w � 
 � 

 � 
 � 

1 1 1

0
2

4
2

0
2

4
2

17p p( ) ( ) ( )
L

Lε p
(31�)

In this case, an increase in the strain energy induced by
external load is regarded as the biomechanical state change.

As a preliminary simulation, the values of EL at t � T3

were calculated under the conditions of the parameters
given in Tables 3 and 4. The result is shown in Fig. 4. In the
case in which the G-layer contains a certain amount of
crystalline cellulose, calculated values of EL become larger
with the thickness of the G-layer; however, it is almost
constant when the G-layer contains no crystalline cellulose.

Swelling and shrinkage strains due to the moisture
adsorption

In the same way as the growth stress case, free dimensional
change of the G-fiber due to moisture adsorption were
simulated. Thus, PL should be null in Eqs. 21. The integral
interval is from the oven-dried state (u � 0) to the fiber

Table 3. Assumed values for the chemical compositions in each layer of the green G-fiber wall

Layer Cellulose crystal Oriented polyose Isotropic matrix Crystallinity in the
(non-crystalline) in the polysaccharide
poly-saccharide framework framework

CML 15 (%) 0 (%) 85 (%) 100 (%)
S1 15 5 80 75
S2 30 10 60 75
G

Case a 40 40 20 50
Case b 60 20 20 75
Case c 80 0 20 100

Fig. 3. An example of the simulation on the relations between
the growth strains and the values of ε3

f at t � Z (� T3) in the G-fiber.
Values of the parameters assumed here are displayed in Table 4. Con-
ditions for the crystallinity of the polysaccharide framework in the G-
layer (see Table 3), solid lines, case a; dashed lines, case b; shaded lines,
case c
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saturation point (u � Z). Therefore, it is regarded that the
moisture content change u is equivalent to the elapsed time
t. In the integral interval from u � 0 to u � Z, u-dependent
patterns of ε1

m, ε2
m, ε3

m, ε1
f, ε2

f, ε3
f, and every component in p

must be given in advance. In this case, the moisture sorption
in the cell wall causes the biomechanical state change in the
G-fiber.

The shrinkage strain of wood cannot be regarded as a
reciprocal of the swelling strain because two different refer-
ence bases are used in their measurements. If the hysteresis
effect between shrinkage and swelling processes is small
enough to be neglected, we can convert the swellings α(u)
and (u) into shrinkages α�(u) and �(u) at a certain mois-
ture content (u) by using the following formulae:

¢( ) ( ) ( )
( ) ¢( ) ( ) ( )

( )α
α α

α


 


u

Z u

Z
u

Z u

Z
 � 

 � 

 � 
 � 

 � 

 � 1 1
, (32)

In the case that the oven-dried shrinkage of the wood be-
comes more than several percent in the transverse direc-
tion, we should use Eqs. 29 when calculating α(u) and (u)
[or α�(u) and �(u)].

In the same way as in the case of growth stress genera-
tion, we can reasonably expect that the longitudinal drying
shrinkage α�L(u)|u�Z becomes considerably larger with the
thickness of the G-layer and with the negative value of ε3

f|u�Z.

Concluding remarks

In the subsequent report, further concrete simulations will
be demonstrated, and the results will be compared with the
experimental results obtained from the TW of a 70-year-old
Kohauchiwakaede (Acer sieboldianum Miq.), which are
already reported.3 Examples include high tensile growth
stress generation, large longitudinal Young’s modulus, and
large axial shrinkage due to water desorption in the G-fiber.

Fig. 4. An example of the simulation on the relations between the
longitudinal Young’s modulus and the value of r3 in the green G-fiber.
Conditions for the crystallinity of the polysaccharide framework in the
G-layer (see Table 3), solid line, case a; dashed line, case b; shaded line,
case c
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Appendix

Detailed expressions of coefficients a11–a55; b11–b53; c11–c53; d11–d51 in Eqs. 15–19.
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