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Abstract Bolted cross-lapped joints (BCLJs) are one of the
basic jointing methods used in Japan and European coun-
tries. There are, however, some problems in the design of
BCLJs. With increasing use of large-scale wooden frame
structures in Japan, it is necessary to establish proper esti-
mating methods for predicting actual characteristics. A new
approach was developed, using Saint Venant torsion
theory, to estimate the performance of bolted timber joints
in a more practical manner than using computer simula-
tions. The calculated values were compared with the experi-
mental results, indicating that the rotational stiffness and
yield moment of BCLJs would be precisely predicted using
the proposed theory. It was also found that the rotational
stiffness calculated using the design method rooted on
Coulomb’s torsion theory is about two times higher than the
experimental results in the case of a rectangular arrange-
ment of bolts.

Key words Bolted cross-lapped joints · Torsion · Timber ·
Mechanical model

Introduction

Bolted cross-lapped joints (BCLJs) have been used as one
of the basic jointing techniques in large-scale wooden frame
structures. Some effective types of BCLJ were developed
by Leijten,1,2 Haller et al.,3 Haller,4 Leicti et al.,5 Larsen,6

and Rodd.7 There are, however, some problems in the de-
sign methods of BCLJ.

Most designs are based on Coulomb’s torsion theory, the
same as the number of rivets of steel frame structures.8,9

Coulomb’s torsion theory is limited in two conditions: the
twist of circular shafts of constant cross section, and torsion

of a slice of the bar between two cross sections attached to
rigid plate. To simplify, it is thought that the BCLJ can be
divided into the three parts of joint layer, side member, and
main member, as in Fig. 1.

In the case of the number of rivets in steel frame struc-
tures, it can, according to Goodier’s hypothesis,10 be as-
sumed that the distribution of shear force of rivet is
governed by Coulomb’s law. It can be modelled as a slice of
the joint layer between two cross sections attached to the
rigid plate – joint layer assembly. Figure 2 shows the thick-
ness can be assumed to be a slice, the angle at the arbitrary
point through the longitudinal direction of rivet is constant,
and the members made of steel can be assumed to be rigid
bodies. On the other hand, it is questionable to apply
Coulomb’s law to BCLJ without a circular bolt arrange-
ment. If BCLJ has a joint layer, the thickness of the BCLJ
cannot be assumed to be a slice. The angles at the arbitrary
point through the longitudinal direction of rivet are differ-
ent, and members made of timber cannot be assumed to be
rigid bodies, as in Fig. 3.

Ohashi and Sakamoto11 pointed out that timber mem-
bers could not be assumed to be a rigid bodies, but should,
perhaps, be assumed to be elastic bodies. Ono et al.12 also
pointed out that the bolts of the BCLJ may not work as
supposed in conventional theories8,9 without the circular
arrangement of bolts.

To promote the use of large-scale wooden frame struc-
tures in Japan and other countries, it is important to predict
their actual characteristics correctly. In this study, a manual
design method is developed in terms of yield strength and
rotational stiffness of BCLJs by considering timber defor-
mation, and not using Coulomb’s law, but rather using Saint
Venant torsion theory.

Theory

For BCLJs, it had been recognized that beams or columns
transmit bending moment at the panel zone, as in Fig. 4.
Therefore, it can be reasonably assumed that each member
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is subjected to a bending moment M, and a coupling mo-
ment M, which forms a torque M to resist the bending
deformation of bolts. The joint layer, assuming bolts as a
joint layer, is twisted by the torque M. It can be thought that
BCLJ has three deformation factors: shear deformation of

timber, bending deformation of timber, and bending defor-
mation of bolts, as in Fig. 5. Shear forces of bolts are
actually complicated mechanisms that consist of member
deformation at the panel zone, and bending deformation of
the bolt, as in Fig. 6. To derive a simple design method, the
following hypotheses are set:

BCLJ can be divided into the three parts of joint layer, side
member, and main member, as shown in Figs. 1 and 2.

Pi would be composed to the shear force of bolts (PRBi) due
to joint layer, and the shear force of bolt (PjTBi) due to the
member deformation at panel zone, as in Fig. 6.

The shear force of the bolts is decomposed to the shear
force due to shear force and the applied shear force due
to moment.

Joint layer

There are two theories on static torsion, shown in Fig. 7.
The stress distributions, according to Coulomb’s law,10 are
in proportion to the distances from the rotational centers.
The stress distributions, according to Saint Venant’s torsion
theory,13 are not in proportion to the distances from the
rotational center. The stress distributions of shorter sides
are larger than those of longer sides, as shown in Fig. 7.

In this study, Saint Venant’s torsion theory is considered,
because BCLJ that have slender bolts cannot meet
Goodier’s hypothesis, i.e., the panel zone is assumed to be a
rigid body, or bolts do not have the required length. There
are still some problems in using Saint Venant’s torsion
theory to derive a practical design equation. For example,
this theory cannot be calculated without a computer. In
addition, it is impossible to explain the load distribution of
bolts using this theory, because the mechanisms of BCLJ
are not real torsions. Saint Venant’s torsion theory is a
target for a continuum. A boundary condition must be sat-
isfied at the surface, i.e., normal stress is equal to zero at the
surface, as in Fig. 8a. This boundary condition outlines the
character of the stress distribution. The highest stress is
found at the middle of the sides, and the lowest stress is
found at the corner of the sides, as in Fig. 7. In the case of

Fig. 1. Modelling of bolted cross-lapped joints (BCLJ)

x

y0

z

x or y0

Fig. 2. Model of number of rivets of steel frame structures

Fig. 3. Model of BCLJ

Fig. 4. Concept for a mechanical model of a BCLJ
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BCLJ, normal stress is zero at the outermost bolts. There-
fore, it is assumed that the distribution of x and y compo-
nents of shear forces are constant at the same distance from
the y- and x-axes. The distribution of the x and y compo-
nents of shear force is proportional to the distance from the
y- and x-axes, as shown in Fig. 6. The following relationships
exist:

        P xx i x i xRB undetermined coefficient � � � : (1)

        P yy i y i yRB undetermined coefficient � � � : (2)

The relationship between �x and �y is determined by
Saint Venant torsion theory. In the case of Coulomb’s law,
�x and �y are the same value, or are determined by geo-
metry. According to Timosienko and Goodier,13 it was
found that half the torque was due to the x-components of

the shearing stress and the other half to the y-components
in Saint Venant torsion theory. In this study, it can also be
assumed that the moment due to x-components of shear
forces is equal to that due to y-components.

      
M M M Mtx ty �  � 

1
2

1
2

, (3)

Timber deformation

Bending moment M causes two deformations on each mem-
ber, i.e., shear deformation of timber and bending deforma-
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Fig. 5. Shear force of bolts: vari-
ous factors at interface between
member 1 and member 2

Fig. 6. Distribution of shear force of a BCLJ based on proposed theory

Fig. 7. Distribution of shearing stress according to Coulomb’s law and
Saint Venant’s torsion theory

Fig. 8. Boundary condition
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tion of timber. Assuming that shearing stress distribution of
timber at the panel zone is a constant, and PjSDi is also
proportional to the distance from the y-axis, as in Fig. 5.

        P xj i j i jSD undetermined coefficient � γ γ : (4)

Considering timber bending deformation at the panel zone,
shear stress distribution of timber at the panel zone by M
can be assumed to be a constant. Each member is consid-
ered as a beam. Using basic beam theory, the following
relationship exists:

          
Q

M
h

d x

dx
h jjM

j

j i

i
j �  � 

3

3

δ ( )
where,   depth of timber : (5)

Meanwhile, the center of bolt arrangement is thought to be
symmetrical, and the following boundary conditions are
possible:

          Mj j j0 0 0 0 0 0( ) ( ) ( ) �  �  � , , .δ θ and (6)

Using these boundary conditions and Eq. 5, δj (xi) can be
derived as follows:

          
δj i

i

j j j

x
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h E I

( ) � 
3

6
(7)

The load distribution of a bolt due to timber bending at the
panel zone is expressed as the product of the bending defor-
mation of timber δj(xi) and the semi slip modulus16 Kh90ji of
a bolt perpendicular to the grain. From the above, the load
distribution PjTBi of a bolt by bending deformation of timber
has the following form:
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(8)

Corresponding to the x-component, the shear force of bolt
PxMi can be expressed as follows:

      P P P PxMi j i j i j i �  �  � TB RB SD (9)

To simplify, a new parameter α is employed;

        α � γ α �  � x j : undetermined coefficient (10)

Pix can be expressed as follows:

        
P αxMi i

h ji ix
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h E I
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90
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1 1 16
(11)

Moment due to x-component must be satisfied:

        
M P xxMi i

i
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 � 
�1
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From Eqs. 11 and 12, by eliminating α, PxMi is obtained:
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and PyMi can be obtained in the same way as PxMi:
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Here, applied shear force P is assumed to be distributed to
each bolt uniformly, i.e.:

      
P

P
nis  � (15)

The total bolt load, therefore, contains Psi and PxMi.
From the above, Pix and Piy are expressed as:

      
P P

M
nix xMi �  � 
j

(16)

      
P P

M
niy yMi �  � 
ψ

(17)

where, f � P/M, Ψ � P/M.
As the component of shear force due to the coupling

moment is composed torsion moment, it can be thought that
the resultant force Pi consists of Pix and Piy is the shear force
of arbitrary bolt at interface between member 1 and mem-
ber 2, as in Fig. 5a. The resultant force Pi can, therefore, be
simply calculated as:

      
P P Pi ix iy �  � 2 2 (18)

From above, the equation for yield moment of BCLJ (My) is
obtained as:

        
M My yi � min( )
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Estimation of rotational stiffness of BCLJ will be derived as
follows.

Total energy U at joint part is:
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Castigliano’s first theorem is expressed in Eq. 21:

        
θ � 

J
J

U
M

(21)

From Eqs. 20, 21 and basic beam theory, the rotational
stiffness of BCLJ (R) is as follows:
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In the case of ignorance of timber deformation, Eq. 19 can
be expanded as:

        
M My yi � min( )
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In the case of ignorance of timber deformation, Eq. 22 can
be simplified as:
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In the case of cross-grained members, Ksi would be assumed
as a constant value Ks.

8,9 Thus, Eq. 24 can be simplified as:
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Materials and methods

Specimens

Figure 9 shows BCLJ specimens used in this study. Each
BCLJ specimen consists of a column (160 � 500 �
1500mm) and a pair of beams (80 � 500 � 2000mm). They
were joined with bolts and formed a T-shaped assembly.
Bolts were arranged in a rectangle or square with the num-
ber of bolts ranging from 4 to 16, see Fig. 10. Each bolt had

a diameter of 16mm, and a length of 32mm. Clearance
between the bolt and the predrilled hole was 1mm in all
specimens. Columns and beams were made of Douglas-fir
glulam having JAS grade of E105 – f 300, with an average
moisture content of 11%, and mean density of 456kg/m3.

Cyclic load14 was applied, as in Fig. 9. Moment (M) and
rotational angle of BCLJ (θ) are defined as follows:

        M P �  � 1 85. m( ) (26)

      
θ

δ δ# # � 
 � 1 2

500
(27)

where P is applied load (kN), and δ#1 and δ#2 are relative
displacement (mm), shown in Fig. 9.

Results and discussion

Verification

Material properties for numerical calculation were adopted
from previous studies,15,16 except for the bearing properties
of bolts. The bearing property was calculated using the
modulus of elasticity of the laminas. The slip modulus and
the yield strength of single bolted joints were calculated
using the proposed equation,17 as follows:

Slip modulus
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Where;
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Fig. 9. Specimen dimensions (mm) and experimental setup
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Table 1. Definitions of symbols

Symbol Definition

bj Width of member j
di Diameter of i-th bolt
Ej Modulus of elasticity in member j
EIsi Bending stiffness of i-th bolt
Gj Shear modulus of member j
hj Length of member j
i i-th bolt
Ij Moment of inertia of member j
j 1 is main member, 2 is side member
Kh90ij Semi slip modulus of i-th bolt perpendicular to the grain in member j
Khji Semi slip modulus of the i-th bolt in member j
kji Bearing constant of i-th bolt in member j
Ksi Slip modulus of the i-th bolt
Ks Slip modulus
M Working moment at panel zone
Mj(x) The function of moment distribution in member j
Mtx x-component of M
Mty y-component of M
Mv Yield moment of BCLJ
Mvi Yield moment calculated by i-th bolt
n The number of bolt in BCLJ
P Applied load
Phbji Yield strength calculated assuming bolt bending yield of i-th bolt in member j
Phwji Yield strength calculated assuming wood bearing yield of i-th bolt in member j
Phvji Yield strength of i-th bolt in member j
Pi Shear force of i-th bolt
Pix x-component of shear force of i-th bolt
Piy y-component of shear force of i-th bolt
Pji Shear force of i-th bolt due to both coupling moment and shear force in

member j
PxMi The component of shear force of i-th bolt due to moment in member j
PvMi The component of shear force of i-th bolt due to moment in member j
PRBi Shear force of i-th bolt due to torsion of joint layer
PxRBi x-component of shear force of i-th bolt due to torsion of joint layer
PyRBi y-component of shear force of i-th bolt due to torsion of joint layer
PjSDi Shear force of i-th bolt due to timber shear deformation at panel zone of in

member j
Psi Shear force of i-th bolt due to applied shear force
PjTBi Shear force of i-th bolt due to timber bending deformation at panel zone in

member j
Pvj Yield strength of i-th bolt in member j
R The rotational stiffness of BCLJ
ri Distance between the centre of bolt arrangement and i-th bolt
Si The slip of i-th bolt
tji Length of the i-th bolt in member j
U Total energy at joint part
xi The distance from x-axis in i-th bolt
yi The distance from y-axis in i-th bolt
Z Section modulus
α Undetermined coefficient
�x Undetermined coefficient
�y Undetermined coefficient
γj Undetermined coefficient in member j
γsj Shear strain of member j
δ#1 Relative displacement between timber and beam in experimental work in

Fig. 9
δ#2 Relative displacement between timber and beam in experimental work in

Fig. 9
δj(x) The function of bending deformation of timber at x in member j
θ Rotational angle of BCLJ
θj(x) The function of the angle of beam at in member j
λji Coefficient of i-th bolt in member j
σsyi Yield stress of steel in i-th bolt
σyji Bearing yield stress of i-th bolt in member j
QjM The average shear stress of member at panel zone due to moment worked at

panel zone in member j
j Coefficient
Ψ Coefficient
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The comparisons between theoretical calculations and
experimental results, shown in Fig. 11, shows that rotational
stiffness and the yield moment of BCLJ can be precisely
predicted by using the proposed theory without type 1. In
the case of specimen 1, the practical values of yield moment
and rotational stiffness are lower than the calculated values.
It was considered that only a few bolts worked, because the
distance between the bolt and rotational shaft in specimen 1
was much smaller than that of the other specimens. The
influence of clearance is governed by the distance between
the bolt and rotational shaft. Therefore, the mechanism of
specimen 1 is different from the supposed mechanism of the
proposed theory.

For rotational stiffness, the estimated values by conven-
tional theory4 are about two times higher than the experi-
mental results for the rectangular bolt arrangement, as
in Fig. 11. The difference of values between conventional

Fig. 10. Bolt arrangements of
specimens (unit: mm)

theory and experimental data is not thought to be a result
of the clearance between the bolts and the predrilled
holes, but due to shortcoming of Saint Venant’s torsion
theory. If the clearance does have any influence, such a
difference should also exist in the case of the square bolt
arrangement.18,19

Relationship between proposed theory and conventional
theory

In the case of symmetrical arrangement of bolts on both the
x-axis and y-axis, Eq. 30 remains consistent, i.e.:
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2
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Therefore, Eq. 25 can be simplified as:
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Using Eq. 30, conventional theory can be expressed as:
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where;
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In the case of a symmetrical arrangement of bolts on both
the x-axis and y-axis, Eq. 32 can be simplified as:
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Equation 31 is the same as Eq. 33. From this, in the case of
symmetrical arrangement of bolts on both the x-axis and y-
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axis, rotational stiffness determined from the proposed
theory has the same value as that from conventional theories.

Conclusions

A new approach was developed to estimate the perfor-
mance of bolted timber joints in a practical manner, rather
than based on computer simulation. From the theoretical

and experimental results, it can be concluded that the rota-
tional stiffness and yield moment in bolted cross-lapped
joints can be precisely predicted by the proposed theory. In
the case of rectangular bolt arrangement, the rotational
stiffness calculated using conventional theory was about
two times higher than the experimental results. Therefore,
it is not reasonable to use the theory rooted to Coulumb’s
law for estimating rotational stiffness in the case of a rectan-
gular arrangement of bolts.

Fig. 11a–h. Comparison between experimental results and estimated
values using proposed theory in BCLJs for different bolt arrangements.
EXP, experimental result; CAL.C, rotational stiffness calculated by

conventional theory, Eq. 32; CAL.N, rotational stiffness and yield
moment calculated by our proposed theory, Eqs. 22 and 19

a

b

c

d

e

f

g

h
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