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Abstract A comparative study on decomposition of
cellulose between supercritical water (400°C, 40MPa) and
subcritical water (280°C, 40MPa) treatments was made to
elucidate the difference in their decomposition behavior.
Consequently, the supercritical water treatment was found
to be more suitable for obtaining high yields of hydrolyzed
products. However, cellulose was found to be more liable to
fragment under supercritical water treatment, resulting in a
decrease in the yield of hydrolyzed products. On the con-
trary, cellulose was found to be liable to more dehydration
in the subcritical water treatment. Based on these results,
we have proposed the combined process of short
supercritical water treatment followed by subcritical water
treatment so as to inhibit fragmentation. Consequently, this
combined treatment was able to effectively control the
reaction condition, and to increase the yield of hydrolyzed
products.
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Introduction

The conversion of biomass into energy and chemicals has
gained considerable attention in recent years because of
depletion of fossil fuel resources. Minami and Saka1,2 re-
ported that total quantities of biomass annually generated
and available in Japan are about 370 million and 77 million
tons, respectively. Efficient utilization of these resources
must be an obligatory subject of our future, and that of
lignocellulosics is particularly important because these
materials are abundant and do not compete with food
resources.

For the conversion of lignocellulosics into energy and
chemicals, saccharification of cellulose and hemicellulose
followed by fermentation is one of the methods to obtain
ethanol which can be used not only as a useful chemical
but also as liquid fuel. The two major methods for hydroly-
sis of lignocellulosics are by the use of acid3,4 and enzyme.5

Apart from these approaches, subcritical and supercritical
water (�374°C, �22.1MPa) treatments have also been
investigated.6–14

Bobleter6 proposed the hydrothermal treatment
with subcritical water of lignocellulosics without using any
catalyst. Recently, Sasaki et al.10 conducted supercritical
water treatment of cellulose, and found that cellulose can
be converted to water-soluble saccharides more effectively
in supercritical water than in subcritical water. In addi-
tion, Sasaki et al.15 and Antal et al.16 conducted research on
a decomposition mechanism of saccharides in subcritical
and supercritical water. It was found that the main reactions
of saccharides involve hydrolysis, dehydration, and
fragmentation.

We also reported that lignocellulosics can be separated
to carbohydrate-derived and lignin-derived products by
supercritical water treatment.17 The former, which mainly
consists of polysaccharides, oligosaccharides, monosaccha-
rides, and their decomposed products, are an appropriate
source of ethanol fermentation,12,14,18 while the latter,
which mainly consists of monomeric and oligomeric lignin-
derived products, may be useful as alternatives to aromatic
chemicals from fossil fuel resources.13,19 Therefore, we pro-
posed the ethanol-producing process from lignocellulosics
using supercritical water technology followed by fermenta-
tion.20–22 To realize this process, the treatment conditions
must be improved and optimized to produce a high yield of
fermentable sugars. Thus, optimization of these reactions
has been attempted by developing various treatment sys-
tems with appropriate treatment time, temperature, and
pressure.

The treatment system can be broadly categorized into
batch-type and flow-type systems.23 Batch-type systems are
not flexible enough to control treatment time, temperature,
and pressure, and excessive decomposition of hydrolyzed
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products from cellulose inevitably takes place. On the other
hand, a flow-type system can flexibly regulate these
treatment conditions, and can hydrolyze cellulose without
excessive decomposition.14 However, this system is not
enough to regulate the decomposition pathway of cellulose
in supercritical and subcritical water. Because the proper-
ties of supercritical water and subcritical water can be regu-
lated by their temperature, pressure, and density,24,25 it is
important to select the pressure and temperature for con-
trolling the decomposition pathway of cellulose.

In this study, we developed an instrument with a flow-
type system so as to compare decomposition behaviors of
cellulose in supercritical water, subcritical water, and their
combined treatments, to increase the yield of water-soluble
saccharides.

Materials and methods

Samples and chemicals

Microcrystalline cellulose (Avicel PH-101, Asahi Kasei)
was used as a sample. Distilled water were used in high
performance liquid chromatography (HPLC) grade, while
other chemicals were of reagent grade, and were used with-
out purification.

Treatment system

Figure 1 shows the modified flow-type system that can con-
duct subcritical, supercritical, and their combined treat-
ments of cellulose. This system can be divided into a
slurry-pumping section, a solvent-pumping section, a short
reaction tube (19mm in length, 4mm in inner diameter), a
long reaction tube (7000mm in length, 5mm in inner dia-
meter), and a cooling system. Both reaction tubes were
made of hastelloy C-276. For the slurry-pumping section,
the slurried cellulose in water (4.0% w/w) was routinely
stirred by the circulating pump to prevent the sample

from precipitating. The sample was injected into the short
reaction tube pressurized by the slurry injector up to an
appropriate pressure, and was mixed with the supercritical
water or subcritical water provided by the solvent-pumping
section.

For supercritical water treatment at 400°C and 40MPa, a
five-fold volume excess of cold water was injected into the
reactant in supercritical water to quench the reaction. The
mixture was further cooled by passing through external
cooler A. For subcritical water treatment at 280°C and
40MPa, cold water was not injected and the reactant was
treated further in the long reaction tube. The reactant was,
then, cooled by external cooler B. For the combined
treatment in supercritical water and subsequent subcritical
water, the treatment was conducted first in the short reac-
tion tube. An appropriate volume of cold water was then
injected into the reactant to cool the supercritical water to
subcritical water conditions. The subsequent subcritical
treatment was then carried out in the long reaction tube,
and was completed by external cooler B.

Treatments were conducted by injecting slurry (1.0g cel-
lulose in 25ml water) to the reaction tube. The treatment
time was defined as the residence time of slurried Avicel in
the reaction tube, which was calculated from the volume of
the reaction tube, the mass flow rate at room temperature,
and the density of water at the reaction temperature and
pressure.

Fractionation of the treated samples

The treated sample was separated into the supercritical
water-soluble portion and supercritical water-insoluble
residue by filtration. On standing for 12h, the precipitates
were generated from the former portion due to the change
of dielectric constant of water from the supercritical state to
the ordinary one. The precipitates were collected by
filtration. The treated sample was finally separated into the
water-soluble portion, precipitates, and supercritical water-
insoluble residue.14

Fig. 1. Flow-type supercritical water
biomass conversion system
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Analytical methods

Analysis of the water-soluble portion was carried out by the
HPLC (Shimadzu LC10-A) using refractive index detector.
The column was an Ultron PS-80P (Shinwa Chem) which
has ligand-exchange function. HPLC was operated at 80°C
with a water flow rate of 1.0ml/min.

High-resolution mass spectra (matrix-assisted laser des-
orption ionization time of flight, MALDI-TOF) were ac-
quired from the Axima-CFR instrument (Shimadzu),
operating in the linear mode with an accelerating potential
of 20kV and equipped with a UV pulsed laser (N2, λ �
337nm, 200µJ per shot). The data were acquired by scan-
ning the sample spot manually and averaging 100 laser
shots. The samples were prepared by mixing 0.5µl of the
matrix solution, which was 10mg/ml of 2,5-dihydroxy-
benzoic acid, with 0.5µl of water-soluble portion directly
on the sample slide and allowing the solvent to evaporate
under air.

Results and discussion

Yield of the fractionated portions

Table 1 shows the yield of the fractionated portions of
cellulose as treated in supercritical water, subcritical water,
and their combined treatments. For the supercritical water
treatment at 400°C and 40MPa for longer than 0.1s, cellu-
lose was decomposed and converted to the supercritical
water-soluble portion in a yield of over 90%. The
supercritical water-soluble portions treated for 0.1, 0.2, and
0.3s generated 49.0%, 41.7%, and 6.1% of precipitates, re-
spectively. It has already been found that these precipitates
are polysaccharides which can be soluble in supercritical
water but are insoluble in ordinary water.14,26 It was also
found that the degree of polymerization (DP) of the pre-

cipitates was widely distributed between 13 and 100.14 For
the subcritical water treatment at 280°C and 40MPa, how-
ever, 17.3% of subcritical water-insoluble residue still re-
mained even if the treatment time was prolonged to 240s,
and no precipitates were found from the subcritical water-
soluble portion. These lines of evidence suggest that not
only the reaction rate but also the decomposition mecha-
nism of cellulose are different between conditions in
supercritical water and subcritical water.

For the combined treatment with 0.1s supercritical water
treatment and subsequent subcritical water treatment for
15, 30, or 45s, cellulose was completely decomposed and
converted to the subcritical water-soluble portion. How-
ever, in supercritical water alone, only the 0.1-s treatment
resulted in supercritical water-insoluble residue (9.8%). In
subcritical water alone, cellulose was incompletely decom-
posed, and the precipitates from the subcritical water-
soluble portion were depressed in quantity as compared
with the case of 0.1-s supercritical water treatment. The
combined treatment for 45.1s could convert the cellulose to
the water-soluble portion without producing any precipi-
tate. This result suggests that the polysaccharides, which are
produced by 0.1-s supercritical water treatment, are further
decomposed by subsequent subcritical water treatment.

Characterization of oligosaccharides

To ascertain the decomposition behavior in detail, MALDI-
TOFMS analysis of the water-soluble portion was
conducted. Figure 2 shows MALDI-TOFMS spectra of
the water-soluble portions from cellulose treated in
supercritical, subcritical water, and by their combined
treatments. The oligosaccharides with DP up to 12
(cellododecaose) were observed in the 0.1-s supercritical
water treatment. On the other hand, in subcritical water
treatment, the oligosaccharides with DP of up to 7 were
observed, which was smaller than those in the supercritical

Table 1. Yield of fractionated portions of cellulose as treated in supercritical water, subcritical water, and their combined treatments

Treatment Time (s) Yield (%)

Supercritical/subcritical water-soluble Supercritical/subcritical

Water-solublea Precipitates
water-insoluble

Supercritical water (400°C, 40 MPa)
0.1 41.2 49.0 9.8
0.2 58.3 41.7 0.0
0.3 93.9 6.1 0.0

Subcritical water (280°C, 40MPa)
120.0 49.5 0.0 50.5
180.0 58.7 0.0 41.3
240.0 82.7 0.0 17.3

Combinedb (400°C, 40 MPa and 280°C, 40 MPa)
15.1 81.9 18.1 0.0
30.1 88.9 11.1 0.0
45.1 100.0 0.0 0.0

a This portion was estimated by subtracting the yields of precipitates plus supercritical water-insoluble residue or subcritical water-insoluble
residue from the total
b Supercritical water treatment (0.1 s) and subsequent subcritical water treatment for 15, 30, or 45s
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water treatment. In addition, the above-mentioned precipi-
tates, which were in a DP range of 13 to 100, were not
produced by subcritical water treatment (Table 1). These
lines of evidence suggest that internal cleavage of glucosidic
bonds in cellulose macromolecules takes place more fre-
quently in the supercritical water. Such a reaction in
supercritical water must be caused by cleavage of hydrogen
bonds27 in cellulose macromolecules, and provides a great
advantage to yield the hydrolyzed products such as polysac-
charides and oligosaccharides.

It is known that the reducing ends of oligosaccharides
are fragmented to erythrose and glycolaldehyde in
supercritical water.14,15,28 These fragmented products were
found in the water-soluble portion after supercritical water
treatment, as depicted by the asterisks in Fig. 2. However,
these products were not detected in the subcritical water
treatment. Therefore, the fragmentation reaction barely
occurred in subcritical water.

The oligosaccharides in the combined treatment were
similar in DP but were less fragmented in their reducing
ends, compared with the supercritical water treatment
alone. It is, therefore, suggested that the combined treat-
ment can convert cellulose to the hydrolyzed products inter-
nally just as in the supercritical water treatment but without
introducing fragmented oligosaccharides.

We have proposed that the hydrolyzed products pro-
duced by supercritical water treatment of lignocellulosics
are further hydrolyzed to monosaccharides by dilute
sulfuric acid or cellulase and are available for ethanol
fermentation.20–22 However, cellulase activity, particularly
exo-type-cellulase, would possibly be inhibited by the
fragmented reducing end groups in oligosaccharides.
Therefore in oligosaccharides, the combined treatment in
which the fragmentation reaction can be avoided, may be
appropriate for the subsequent saccharification of oligosac-
charides using the enzyme.

Yield of products in water-soluble portions

The water-soluble portions were analyzed by HPLC to
identify the products and determine their yields. The same
products were observed in the water-soluble portions for all
treatment conditions; hydrolyzed products of cellulose
were oligosaccharides, glucose, and fructose, while dehy-
drated products of monosaccharides were levoglucosan,
5-hydroxymethyl furfural (5-HMF), and furfural, and
fragmented products were erythrose, methylglyoxal, glyco-
laldehyde, and dihydroxy acetone.14 Besides these products,
organic acids, such as pyruvric acid, glycolic acid, lactic acid,
acrylic acid, acetic acid, and formic acid, were included
(shown as others in Table 2).22

Table 2 shows the yield of products in the water-soluble
portions from cellulose as treated in supercritical water,
subcritical water, and by their combined treatments. The
yields of hydrolyzed products in the supercritical water
treatment were higher than the subcritical water treatment.
This may be due to the short reaction time which can keep
these hydrolyzed products without further decomposition.
The result is consistent with the previous reports that
showed that the hydrolysis rate of cellulose becomes larger
than the decomposition rate of its hydrolyzed products
around the critical point of water (374°C, 22.1MPa).10,29

However, the yields of fragmented products from
supercritical water treatment were much higher than those
from the subcritical water treatment in spite of its short
reaction time. On the contrary, the yields of dehydrated
products in the supercritical water treatment were much
lower than those in the subcritical water treatment. These
results indicate that the excessive decomposition of hydro-
lyzed products in supercritical water and subcritical water is
mainly caused by fragmentation and dehydration, respec-
tively. In addition, there was no difference in the yield
of monosaccharides (glucose and fructose) between the

Fig. 2. MALDI-TOFMS spectra of
water-soluble portions from cellulose
as treated in a supercritical water, b
subcritical water, and c their combined
treatments. The numbers and asterisks
correspond to the degrees of polymer-
ization of oligosaccharides and the
fragmented products of their reducing
end groups, respectively
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supercritical water and the subcritical water treatments,
suggesting that the subcritical water treatment is enough to
hydrolyze water-soluble oligosaccharides to monosaccha-
rides. Goto et al.30 and Sasaki et al.15 reported that fragmen-
tation of glucose and cellobiose in hot compressed water
becomes predominant at higher temperatures, while dehy-
dration becomes significant at lower temperatures. Our
finding in this study is consistent with their reports.

Table 3 shows the density, ionic product, and dielectric
constant of supercritical water and subcritical water applied
in this study. The density of the supercritical water is lower
than that of the subcritical water. Similarly, the ionic prod-
uct and dielectric constant of the supercritical water are
smaller.31,32 These differences in the properties of water
must contribute to the difference in the reaction between
supercritical water and subcritical water treatments.

In the combined treatment, the yield of hydrolyzed prod-
ucts was successfully increased as compared with that of the
supercritical water treatment or the subcritical water treat-
ment alone, and reached 66.8% for 30.1-s treatments. The
yields of the fragmented products for 15.1-s, 30.1-s, and
45.1-s treatments were 4.9%, 5.8%, and 9.7%, respectively.

Table 2. Yield of products in water-soluble portions from cellulose as treated in supercritical water, subcritical water and their combined
treatments

Classification Yield (%)
Product name

Supercritical water Subcritical water Combineda

0.1 s 0.2 s 0.3 s 120s 180s 240 s 15.1 s 30.1 s 45.1 s

Hydrolyzed
Oligosaccharides 28.8 28.8 32.2 8.8 8.8 5.6 42.9 55.4 16.5
Glucose 1.9 9.4 10.5 4.5 8.3 14.8 6.6 9.5 29.2
Fructose 0.0 3.6 4.0 1.4 2.4 2.3 1.7 1.9 6.4

(Subtotal) (30.7) (41.8) (46.7) (14.7) (19.5) (22.7) (51.2) (66.8) (52.1)
Dehydrated

Levoglucosan 0.0 1.6 1.8 0.3 0.6 1.1 0.8 0.4 2.4
5-HMF 0.0 0.1 0.1 1.9 3.7 11.9 0.6 1.0 7.3
Furfural 0.7 0.3 0.3 0.2 0.8 1.7 0.2 0.3 1.0

(Subtotal) (0.7) (2.0) (2.2) (2.4) (5.1) (14.7) (1.6) (1.7) (10.7)
Fragmented

Erythrose 0.0 0.4 0.4 0.0 0.0 0.4 0.0 0.0 0.2
Methylglyoxal 0.9 1.5 1.8 0.0 0.3 0.8 2.9 3.0 4.2
Glycolaldehyde 3.9 8.9 9.6 0.6 1.6 2.7 2.0 2.8 4.6
Dihydroxy acetone 0.0 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.7

(Subtotal) (4.8) (11.2) (12.3) (0.6) (1.9) (3.9) (4.9) (5.8) (9.7)
Othersb 5.0 3.3 32.7 31.8 32.2 41.4 24.2 14.5 27.5

Total 41.2 58.3 93.9 49.5 58.7 82.7 81.9 88.8 100.0

5-HMF, 5-hydroxymethyl furfural
a Supercritical water treatment (0.1s) and subsequent subcritical water treatment for 15, 30, or 45 s
b Others were estimated by subtracting the yields of all identified products listed from the total

Table 3. The density, ionic product, and dielectric constant of supercritical water and subcritical water in this study

Treatment Temperature Pressure Density Ionic producta logKw Dielectric constantb

 (°C)  (MPa) (g/cm3) (mol2/l2)

Supercritical water 400 40 0.5 �12.8 9.6
Subcritical water 280 40 0.8 �10.9 25.2
a Ionic product estimated according to reference 31
b Dielectric constant estimated according to reference 32

These results were lower than that in supercritical water
treatment for 0.3s. The yields of dehydrated products for
15.1-s, 30.1-s, and 45.1-s treatments were 1.6%, 1.7%, and
10.7%, respectively. These yields were also lower than that
for the 240-s treatment in subcritical water. Thus, the com-
bined treatment can successfully increase the yield of
hydrolyzed products.

Such an increase in yield of hydrolyzed products can be
predicted as follows: cellulose is hydrolyzed to polysaccha-
rides and oligosaccharides by the supercritical water treat-
ment for 0.1s. The polysaccharides and oligosaccharides
must be soluble in supercritical water but the former of
these must be insoluble in ordinary water. These products
are further hydrolyzed in the subsequent subcritical water
to water-soluble oligosaccharides and monosaccharides
without introducing fragmented products. This means
that in case of the combined treatment, the first stage of
the supercritical water treatment may permit a near-
homogeneous reaction field for hydrolysis of polysaccha-
rides to the subsequent subcritical water treatment. It seems
evident because of the difficulty in controlling hydrolysis
in the extremely short supercritical water treatment.
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Therefore, it is concluded that the combined treatment is
effective to control the excessive fragmentation and dehy-
dration in cellulose decomposition in supercritical water.
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