Nattaya Lourith • Takeshi Katayama • Toshisada Suzuki

Stereochemistry and biosynthesis of 8-0-4' neolignans in Eucommia ulmoides: diastereoselective formation of guaiacylglycerol-8-0-4'-(sinapyl alcohol) ether

Received: December 20, 2003 / Accepted: June 22, 2004

Abstract

Stereochemistry and biosynthesis of guaiacylglycerol-8-O-4'-(sinapyl alcohol) ether (GGSE), an $8-O-4^{\prime}$ neolignan, which consists of coniferyl and sinapyl alcohol moieties, in Eucommia ulmoides were investigated. Four 8-O-4' neolignans, GGSE, syringylglycerol-8-O-4^{\prime}-(coniferyl alcohol) ether (SGCE), guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (GGCE), and syringylglycerol-8-O-4'-(sinapyl alcohol) ether (SGSE), were synthesized. Their erythro and threo diastereomers were separated through acetonide derivatives, intermediates of the synthesis, and identified by means of nuclear magnetic resonance (NMR) spectroscopy. All of the erythro-acetonide derivatives have larger coupling constants (ca 9 Hz) for the $\mathrm{C}_{7}-\mathrm{H}$ resonances than those of the threo ones $(1.5-2 \mathrm{~Hz})$. In the case of the four $8-O-4^{\prime}$ neolignans, the $\mathrm{C}_{7}-\mathrm{H}$ coupling constants of the threo-isomers are not smaller than those of the erythro ones. GGSE isolated previously from this plant was identified as the erythro isomer by comparison of the ${ }^{13} \mathrm{C}$ NMR data with synthetic erythro-GGSE and threo-GGSE and the other $8-O-4^{\prime}$ neolignans mentioned as above. Administration of a mixture of $\left[8-{ }^{14} \mathrm{C}\right]$ coniferyl alcohol and [$\left.8-{ }^{14} \mathrm{C}\right]$ sinapyl alcohol to excised shoots of E. ulmoides was carried out and the incorporation of ${ }^{14} \mathrm{C}$ into erythro$\left[{ }^{14} \mathrm{C}\right]$ GGSE was found to be higher than that in threo$\left[{ }^{14} \mathrm{C}\right]$ GGSE. The occurrence of diastereoselective formation of erythro-GGSE by cross coupling of coniferyl and sinapyl alcohols is suggested.

Key words Eucommia ulmoides • Neolignan • Diastereomer - Cross coupling • Biosynthesis

[^0]Part of this paper was presented at the 47th Lignin Symposium, Fukuoka, October 2002 and the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, April 2003

Introduction

Lignans and neolignans have been isolated and identified from many higher plants. However, many articles about 8-$O-4^{\prime}$ neolignans have not described the identification of diastereomers. ${ }^{1,2}$ There was confusion about cis and trans forms of the benzofuran ring in naturally occurring 8-5' neolignans in some studies because the 8-5' neolignans were reported as cis forms without strict evidence. ${ }^{3}$ In addition, biosynthesis of neolignans, especially $8-O-4^{\prime}$ neolignans has hardly been studied. Eucommia ulmoides Oliver (Eucommiaceae), Tochu in Japanese (Du-Zhong in Chinese), is a medicinal woody plant whose bark is used as a crude drug in China and whose leaves are used as tea in Japan. Recently, it was reported that this plant has pharmacological effects on coronary blood flow, pain relief, diuresis, blood pressure, and lipid metabolism and other bioactivities. ${ }^{4,5}$ Many bioactive compounds including lignans and neolignans are present in E. ulmoides. ${ }^{1,6}$ Deyama and coworkers ${ }^{1}$ isolated citrusin B, guaiacylglycerol-8-O-4'-(sinapyl alcohol) ether (GGSE) 4-O-glucoside, from this plant, and was identified by its hydrolysis and subsequent spectrometric analysis of the resulting (+)-GGSE. However, its diastereomer, the erythro or threo isomer, has not yet been clarified. Citrusin B was first isolated from peels of Citrus hassaku Hort. and Citrus sinensis Osbeck. by Sawabe and others ${ }^{2}$ with citrusin A [guaiacylglycerol-8- O-4'-(coniferyl alcohol) ether (GGCE) 4-O-glucoside]. However, the stereochemistries of citrusin A and B have not been identified. Recently, Katayama and Kado^{7} discovered that incubation of cell-free extracts from E. ulmoides with coniferyl alcohol in the presence of hydrogen peroxide gave (+)-erythro- and (-)-threo-GGCE (diastereomeric ratio, 3:2). This is the first report on enzymatic formation of optically active $8-O-4^{\prime}$ neolignans from an achiral monolignol. However, few biosynthetic studies on syringyl 8-O-4' neolignans or crosscoupling products of two heteromonolignols (coniferyl and sinapyl alcohols) have been reported.

In this article, to clarify the stereochemistry and biosynthetic pathway of GGSE, (an 8-O-4' neolignan consisting of
coniferyl alcohol and sinapyl alcohol moieties), chemical synthesis of GGSE and its related neolignans, syringylglycerol-8-O-4'-(coniferyl alcohol) ether (SGCE), GGCE, and syringylglycerol-8-O-4'-(sinapyl alcohol) ether (SGSE), was done, and their erythro and threo isomers were obtained separately and identified by means of nuclear magnetic resonance (NMR) spectroscopy during the chemical synthesis. Labeled precursors were then administered to excised young shoots of E. ulmoides and diastereoselective formation of GGSE was observed.

Experimental

Instrumentation and chromatography materials
All reagents and solvents were reagent grade. Column chromatography was performed on the FMI high-performance low-to-medium pressure chromatograph equipped with a column of Merck silica gel 60 (230-400 ASTM mesh). Analytical and preparative thin-layer chromatographies (TLC) were done by using plates precoated with Merck silica gel 60 F254 ($0.25-\mathrm{mm}$ and $0.5-\mathrm{mm}$ thickness, respectively). NMR spectra $(400 \mathrm{MHz})$ were determined on a JNM Alpha 400 FT-NMR spectrometer. Mass spectra were taken on a JMS-SX102A mass spectrometer with electron impact ionization (EI-MS, 70eV). Analytical HPLC was carried out on a Hitachi L-6200 equipped with a Hitachi L-4200 UV/Vis detector $(280 \mathrm{~nm})$ and a Shimadzu chromatopac C-R7A plus using a reversed phase column (Waters, Nova-Pak C C_{18}, $150 \times 3.9 \mathrm{~mm}$, stainless steel, with guard pack insert NovaPak C_{18}). Compounds were separated at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ using the following linear gradient solvent system: methanol $(\mathrm{MeOH}) / 3 \%$ acetic acid (AcOH) in $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$; at $0 \mathrm{~min}, 25: 75$; at 10 min , held at $25: 75$; at $15 \mathrm{~min}, 32: 68$ and at 40 min , held at $32: 68$. Radioactive samples were analyzed in liquid scintillation cocktail consisting of scintiblenderII/toluene/polyethylene glycol mono-p-isooctylphenyl ether ($6 / 54 / 40 ; \mathrm{v} / \mathrm{v} / \mathrm{v})$ (Nacalai Tesque) and measured using a liquid scintillation counter (LSC-1000, Aloka).

Chemical syntheses of guiacylglycerol-8-O-4'-(sinapyl alcohol) ether

Sinapaldehyde was synthesized by the method of Tachibana et al. ${ }^{8}$

1-(4-Benzoyloxy-3-methoxyphenyl)-2-[4-(2-formylvinyl)-2, 6-dimethoxyphenoxy]ethanone (1, step a). To a stirred solution of sinapaldehyde ($80.1 \mathrm{mg}, 0.385 \mathrm{mmol}$) and 1-(4-benzoyloxy-3-methoxyphenyl)-2-bromoethanone ($135.6 \mathrm{mg}, 0.388 \mathrm{mmol}$) in 4 ml of N, N-dimethylformamide (DMF), powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(53.8 \mathrm{mg}, 0.389 \mathrm{mmol})$ and powdered KI ($31.9 \mathrm{mg}, 0.192 \mathrm{mmol}$) were added. The mixture was stirred at room temperature under nitrogen atmosphere for 5 h . The reaction mixture was filtered and the inorganic salts were washed with diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. The filtrate and washings were combined, and partitioned
between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and then saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a syrup containing compound $\mathbf{1}(180.1 \mathrm{mg}, 98.3 \%)$ which was used for the next reaction without further purification. EI-MS m / z (\%): 476 (49.9) $[\mathrm{M}]^{+}, 372$ (8.2), 255 (14.2), 207 (40.7), 105 (100), 77 (33.7).

1-(4-Benzoyloxy-3-methoxyphenyl)-2-[4-(2-formylvinyl)-2,6-dimethoxyphenoxy]-3-hydroxy-1-propanone (2, step b). To a stirred solution of compound $\mathbf{1}(171.4 \mathrm{mg}$, 0.360 mmol) in 5 ml of dimethyl sulfoxide (DMSO), powdered (80%) paraformaldehyde $(14.3 \mathrm{mg}, 0.476 \mathrm{mmol})$ and powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(16.4 \mathrm{mg}, 0.119 \mathrm{mmol})$ were added. The reaction mixture was stirred for 7 h 30 min under nitrogen atmosphere at ambient temperature. The mixture was filtered and the precipitate was washed with 10 ml of ethyl acetate (EtOAc). The filtrate and washings were combined and then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and then saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc/n-hexane, 3:2) to give crude crystals of compound $2(56.2 \mathrm{mg}, 30.8 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 3.71(1 \mathrm{H}, \mathrm{dd}, J=$ 9.39, 4.27, $9-\mathrm{OH}), 3.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{B}-\mathrm{OCH}_{3}\right), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-$ $\left.\mathrm{OCH}_{3}\right), 3.90(1 \mathrm{H}$, ddd, $J=12.44,9.39,3.17, \mathrm{H}-9 \mathrm{a}), 4.05(1 \mathrm{H}$, ddd, $J=12.08,7.69,4.27, \mathrm{H}-9 \mathrm{~b}), 5.22(1 \mathrm{H}, \mathrm{dd}, J=7.56,3.17$, $\mathrm{H}-8), 6.64\left(1 \mathrm{H}, \mathrm{dd}, J=15.86,7.81, \mathrm{H}-8^{\prime}\right), 6.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right.$, H-6' $), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.29, \mathrm{H}-5), 7.40(1 \mathrm{H}, \mathrm{d}, J=15.86, \mathrm{H}-$ $\left.7^{\prime}\right), 7.53(2 \mathrm{H}$, br t, $J=7.69$, BzH-3, BzH-5), $7.66(1 \mathrm{H}, \mathrm{tt}, J=$ $7.45,1.50$, BzH-4), $7.71(1 \mathrm{H}$, dd, $J=8.29,1.95, \mathrm{H}-6), 7.77$ $(1 \mathrm{H}, \mathrm{d}, J=1.95, \mathrm{H}-2), 8.21(2 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=8.42,1.35, \mathrm{BzH}-$ 2, BzH-6), 9.69 (1H, d, $J=7.56, ~ H-9 ') . ~ E I-M S ~ m / z ~(\%): ~ 506 ~$ (0.4) $[\mathrm{M}]^{+}, 476$ (9.6), 105 (100), 77 (33.7).

1-(4-Benzoyloxy-3-methoxyphenyl)-2-[4-(3,3-dimethoxy-1-propenyl)-2,6-dimethoxyphenoxy]-3-hydroxy-1-propanone ($\mathbf{3}$, step c). To a stirred solution of $\mathbf{2}$ in a mixed solution of tetrahydrofuran (THF) $(1 \mathrm{ml})$ and $\mathrm{MeOH}(0.5 \mathrm{ml})$, methyl orthoformate $\left(121 \mu \mathrm{l}, 1.110 \mathrm{mmol}, d_{4}^{25}=0.97\right)$ and a solution of p-toluenesulfonic acid $(316 \mu \mathrm{~g}, 1.664 \mu \mathrm{~mol})$ in MeOH $(0.1 \mathrm{ml})$ were added. The reaction solution was stirred under nitrogen atmosphere at ambient temperature for 5 min , and then neutralized by the addition of powdered NaHCO_{3}. The mixture was stirred for 3 min and filtered. The filtrate was partitioned between EtOAc and brine, the combined EtOAc solution was washed twice with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo to afford a syrup containing $3(56.2 \mathrm{mg}, 91.7 \%)$ which was used for the next step without further purification.

1-(4-Benzoyloxy-3-methoxyphenyl)-2-[4-(3,3-dimethoxy-1-propenyl)-2,6-dimethoxyphenoxy]-1,3- propanediol (4, step d). Crude 3 was dissolved in a mixed solution of THF $(0.5 \mathrm{ml})$ and $\mathrm{MeOH}(0.5 \mathrm{ml})$. The solution was cooled to $0^{\circ} \mathrm{C}$. To the stirred cold solution, $\mathrm{NaBH}_{4}(28.7 \mathrm{mg}$, 0.759 mmol) was added under nitrogen atmosphere and stirred for 10 min . The reaction mixture was extracted with EtOAc three times. The combined EtOAc solution was
washed twice with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness in vacuo to yield a syrup containing 4 ($50.4 \mathrm{mg}, 89.4 \%$). This material was used in the next step without further purification.

Guaiacylglycerol-8-O-4'-sinapaldehyde ether 4-benzoate (5, step e). Crude 4 was dissolved in $90 \% \mathrm{AcOH}$ in $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{ml})$ at room temperature. The solution was stirred for 10 min , and then extracted three times with EtOAc. The combined EtOAc solution was washed twice with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by preparative TLC developed with $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$, giving a high R_{f} band (major) and a low R_{f} band (minor) which were identified as threo- $5(17.7 \mathrm{mg}, 38.3 \%)$ and erythro- $5(3.8 \mathrm{mg}, 8.2 \%)$ as syrups, respectively. Threo-5: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 3.18(1 \mathrm{H}$, br, $9-\mathrm{OH}), 3.45(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.66, \mathrm{H}-9 \mathrm{a}), 3.63(1 \mathrm{H}, \mathrm{dd}, J$ $=12.93,2.93, \mathrm{H}-9 \mathrm{~b}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OCH}_{3}\right), 3.95(6 \mathrm{H}, \mathrm{s}, \mathrm{B}-$ $\left.\mathrm{OCH}_{3}\right), 4.03(1 \mathrm{H}, \mathrm{dt}, J=8.29,2.44, \mathrm{H}-8), 4.19(1 \mathrm{H}, \mathrm{br}, 7-$ $\mathrm{OH}), 5.18(1 \mathrm{H}, \mathrm{d}, J=8.05, \mathrm{H}-7), 6.66(1 \mathrm{H}, \mathrm{dd}, J=15.83$, $\left.7.56, \mathrm{H}^{\prime} 8^{\prime}\right), 6.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.10(1 \mathrm{H}, \mathrm{dd}, J=8.06$, $1.70, \mathrm{H}-6), 7.14(1 \mathrm{H}, \mathrm{d}, J=8.04, \mathrm{H}-5), 7.16(1 \mathrm{H}, \mathrm{d}, J=1.72$, $\mathrm{H}-2), 7.41\left(1 \mathrm{H}, \mathrm{d}, J=15.87, \mathrm{H}-7^{\prime}\right), 7.51(2 \mathrm{H}, \mathrm{brt}, J=7.56$, BzH-3, BzH-5), $7.63(1 \mathrm{H}, \mathrm{tt}, J=7.44,1.55, \mathrm{BzH}-4), 8.21$ (2H, br dd, $J=8.06,1.46$, BzH-2, BzH-6), $9.70(1 \mathrm{H}, \mathrm{d}, J=$ 7.56, H-9'). EI-MS m/z (\%): 508 (3.9) [M] ${ }^{+}, 476$ (0.5), 405 (6.6), 300 (0.2), 105 (100), 77 (26.2). Erythro-5: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $\left(\mathrm{CDCl}_{3}\right): 3.08(1 \mathrm{H}, \mathrm{br}, 9-\mathrm{OH}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=12.32,2.08$, $\mathrm{H}-9 \mathrm{a}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OCH}_{3}\right), 3.94\left(6 \mathrm{H}, \mathrm{s}, \mathrm{B}-\mathrm{OCH}_{3}\right), 3.96$ $(1 \mathrm{H}, \mathrm{dd}, J=13.18,6.10, \mathrm{H}-9 \mathrm{~b}), 3.95-3.99(1 \mathrm{H}, \mathrm{o}, 7-\mathrm{OH})$, $4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 5.12(1 \mathrm{H}, \mathrm{d}, J=3.91, \mathrm{H}-7), 6.68(1 \mathrm{H}, \mathrm{dd}$, $\left.J=15.86,7.57, \mathrm{H}^{\prime}\right)^{\prime}$, $6.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.92(1 \mathrm{H}, \mathrm{dd}$, $J=8.17,1.83, \mathrm{H}-6), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.05, \mathrm{H}-5), 7.13(1 \mathrm{H}, \mathrm{d}$, $J=2.20, \mathrm{H}-2), 7.43\left(1 \mathrm{H}, \mathrm{d}, J=15.86, \mathrm{H}-7^{\prime}\right), 7.51(2 \mathrm{H}, \mathrm{t}, J=$ 7.81, BzH-3, BzH-5), $7.63(1 \mathrm{H}, \mathrm{tt}, J=7.32,1.42, \mathrm{BzH}-4)$, $8.20(2 \mathrm{H}, \mathrm{dd}, J=8.17,1.34$, BzH-2, BzH-6), $9.71(1 \mathrm{H}, \mathrm{d}, J=$ 7.81, H-9').

Guaiacylglycerol-8-O-4'-sinapaldehyde ether 4-benzoate 7,9- O-isopropylideneketal (acetonide derivative, A-GGSE, 6) (step f). To a stirred solution of threo-5 $(17.7 \mathrm{mg}$, 0.035 mmol) in 1 ml of acetone, 2,2-dimethoxypropane ($341 \mu \mathrm{l}, 2.78 \mathrm{mmol}$) and a solution of camphorsulfonic acid (CSA) $(0.485 \mathrm{mg}, 0.002 \mathrm{mmol})$ in acetone were added. The reaction solution was stirred at ambient temperature for 4 h , and then neutralized by the addition of powdered NaHCO_{3}. The mixture was stirred for 3 min and filtered. The filtrate was partitioned between EtOAc and brine. The aqueous layer was extracted with EtOAc. The combined EtOAc solution was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative TLC $(\mathrm{EtOAc} / n$-hexane $=1: 1, \times 2$) to afford threo- 6 ($16.8 \mathrm{mg}, 88 \%$). Similarly, erythro- 5 was transformed into erythro- 6 ($3 \mathrm{mg}, 74 \%$). Threo-6: Data of ${ }^{1} \mathrm{H}$-NMR $\delta\left(\mathrm{CDCl}_{3}\right)$ were shown in Table 1 and as follows (acetonide methyl and benzoyl groups): 1.59 (3H, s, C$\left.\mathrm{CH}_{3}\right), 1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right), 7.50(1 \mathrm{H}, \mathrm{t}, J=7.57, \mathrm{BzH}-3$, BzH-5), 7.62 ($1 \mathrm{H}, \mathrm{tt}, J=7.44,1.55, \mathrm{BzH}-4), 8.20(2 \mathrm{H}, \mathrm{dd}, J$ $=8.42,1.35$, BzH-2, BzH-6). EI-MS m/z (\%): 548 (4.9)
$[\mathrm{M}]^{+}, 460$ (0.5), 355 (0.5), 341 (2), 234 (82), 207 (13.7), 105 (100), 77 (22). Erythro-6: Data of ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)$ were shown in Table 1 and as follows (acetonide methyl and benzoyl groups): $1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right)$, $7.50(2 \mathrm{H}, \mathrm{t}, J=7.93$, BzH-3, BzH-5), $7.63(1 \mathrm{H}, \mathrm{tt}, J=7.44$, $1.42, \mathrm{BzH}-4), 8.19(2 \mathrm{H}, \mathrm{dd}, J=8.06,0.98, \mathrm{BzH}-2, \mathrm{BzH}-6)$.

Guaiacylglycerol-8-O-4'-sinapaldehyde ether 4-benzoate (5, step g). Threo-6 (10.8 mg) was dissolved in $90 \% \mathrm{AcOH}$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$, and the reaction solution was stirred for 4 h at room temperature and then extracted three times with EtOAc. The combined EtOAc solution was washed twice with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness in vacuo to give a syrup of crude threo- $5(8.4 \mathrm{mg}, 83.9 \%)$. This material was used for the next step without further purification. Erythro-5 (1.9 mg , 73%) was also obtained from erythro- $6(2.8 \mathrm{mg})$ by a similar procedure.

Guaiacylglycerol-8- O-4'-(sinapyl alcohol) ether 4-benzoate (7, step h). Crude threo-5 ($7 \mathrm{mg}, 0.014 \mathrm{mmol}$) was dissolved in a mixed solvent of THF $(0.5 \mathrm{ml})$ and $\mathrm{MeOH}(0.5 \mathrm{ml})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To the stirred cold solution, $\mathrm{NaBH}_{4}(15.8 \mathrm{mg}, 0.418 \mathrm{mmol})$ was added under nitrogen atmosphere, and the stirring was continued for 5 min . The reaction mixture was extracted three times with EtOAc , and the combined EtOAc solution was washed twice with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness in vacuo. The residue was purified by preparative $\mathrm{TLC}\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give threo- $7(6.7 \mathrm{mg}, 95.4 \%)$. A similar reaction was also done with erythro-5 to afford erythro-7 (1.8 mg, 95\%). Threo-7: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 1.70\left(1 \mathrm{H}\right.$, br s, $\left.9^{\prime}-\mathrm{OH}\right), 3.35(1 \mathrm{H}$, br d, $J=10.49,9-\mathrm{OH}), 3.41(1 \mathrm{H}, \mathrm{br}$ dd, $J=11.46,10.0, \mathrm{H}-9 \mathrm{a})$, $3.64(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.47, \mathrm{H}-9 \mathrm{~b}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OCH}_{3}\right), 3.88-$ $3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.91\left(6 \mathrm{H}, \mathrm{s}, \mathrm{B}-\mathrm{OCH}_{3}\right), 4.32(2 \mathrm{H}$, br $\mathrm{t}, J=$ $\left.5.37, \mathrm{H}^{\prime} 9^{\prime}\right), 4.37(1 \mathrm{H}, \mathrm{d}, J=0.98,7-\mathrm{OH}), 5.15(1 \mathrm{H}, \mathrm{d}, J=$ $8.29, \mathrm{H}-7), 6.31\left(1 \mathrm{H}, \mathrm{td}, J=15.85,5.52, \mathrm{H}-8^{\prime}\right), 6.55(1 \mathrm{H}, \mathrm{d}$, $\left.J=15.85, \mathrm{H}^{\prime} 7^{\prime}\right), 6.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.12(1 \mathrm{H}$, br d, $J=$ 8.29, H-6), 7.14 ($1 \mathrm{H}, \mathrm{d}, J=8.05, \mathrm{H}-5$), 7.16 (1 H , br s, H-2), $7.50(2 \mathrm{H}, \mathrm{t}, J=7.69$, BzH-3, BzH-5), $7.64(1 \mathrm{H}, \mathrm{dt}, J=7.44$, 1.22, BzH-4), 8.21 ($2 \mathrm{H}, \mathrm{dd}, J=7.44,0.85$, BzH-2, BzH-6). Erythro-7: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 1.48\left(1 \mathrm{H}, \mathrm{br}, 9^{\prime}-\mathrm{OH}\right), 3.15$ $(1 \mathrm{H}, \mathrm{dd}, J=7.93,4.27,9-\mathrm{OH}), 3.54(1 \mathrm{H}, \mathrm{ddd}, J=11.35$, 8.36, 2.57, H-9a), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OCH}_{3}\right), 3.90(6 \mathrm{H}, \mathrm{s}, \mathrm{B}-$ $\left.\mathrm{OCH}_{3}\right), 3.94(1 \mathrm{H}$, ddd, $J=11.71,6.58,4.14, \mathrm{H}-9 \mathrm{~b}), 4.10(1 \mathrm{H}$, br d, $J=3.17,7-\mathrm{OH}), 4.19(1 \mathrm{H}$, ddd, $J=6.34,3.41,2.93, \mathrm{H}-$ 8), $4.35\left(2 \mathrm{H}\right.$, br t, $\left.J=5.25, \mathrm{H}-9^{\prime}\right), 5.10(1 \mathrm{H}$, br t $, J=3.30, \mathrm{H}-$ 7), $6.33\left(1 \mathrm{H}, \mathrm{td}, J=15.85,5.61, \mathrm{H}-8^{\prime}\right), 6.58(1 \mathrm{H}, \mathrm{d}, J=15.85$, H-7'), 6.68 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime} 2^{\prime}, \mathrm{H}^{\prime}$ '), 6.91 ($1 \mathrm{H}, \mathrm{dd}, J=8.17,1.83$, H-6), $7.110(1 \mathrm{H}, \mathrm{d}, J=8.05, \mathrm{H}-5), 7.111(1 \mathrm{H}, \mathrm{d}, J=1.71, \mathrm{H}-$ 2), $7.50(2 \mathrm{H}, \mathrm{t}, J=7.81, \mathrm{BzH}-3, \mathrm{BzH}-5), 7.63(1 \mathrm{H}, \mathrm{t}, J=7.44$, BzH-4), 8.21 ($2 \mathrm{H}, \mathrm{d}, J=7.32, \mathrm{BzH}-2, \mathrm{BzH}-6)$.

Guaiacylglycerol-8-O-4'-(sinapyl alcohol) ether (GGSE, 8) (step i). To a stirred solution of threo-7 $(6.7 \mathrm{mg}$, $0.013 \mathrm{mmol})$ in benzene (0.3 ml , freshly distilled over anhydrous CaCl_{2}), n-butylamine ($65 \mu \mathrm{l}, 0.656 \mathrm{mmol}$) was added. The stirring was continued at room temperature under
nitrogen atmosphere for 78 h . The reaction solution was partitioned between EtOAc and $1 N \mathrm{HCl}$. The organic layer was washed successively with 1 N HCl (twice) and saturated brine (twice), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by preparative TLC ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give threo-8 $(2.8 \mathrm{mg}$, 52.6%). Similarly, erythro-7 was also deprotected to afford erythro-8 ($0.7 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of both diastereomers are shown in Tables 2 and 3, respectively. EI-MS m/z (\%): threo: 406 (1.7) [M] ${ }^{+}, 358$ (3.4), 298 (1.1), 210 (100), 107 (12.3), 93 (24.5), 77 (14); erythro: 406 (2.2) $[\mathrm{M}]^{+}, 358$ (45), 210 (100), 107 (40.4), 93 (19.1), 77 (56.2).

Other syntheses. SGCE and SGSE were synthesized similarly to GGSE. Synthesis of GGCE was summarized in our previous paper. ${ }^{9}\left[8-{ }^{14} \mathrm{C}\right]$ Coniferyl alcohol ($5.51 \mathrm{MBq} / \mathrm{mmol}$) and $\left[8-{ }_{-}^{14} \mathrm{C}\right]$ sinapyl alcohol $(5.76 \mathrm{MBq} / \mathrm{mmol})$ were synthesized by the method of Katayama et al. ${ }^{10}$ and Katayama and Ogaki ${ }^{11}$, respectively.

Plant materials

Eucommia ulmoides plants obtained from Sanyo Nouen were maintained at the Faculty of Agriculture, Kagawa University.

Feeding experiment

Ten excised young shoots of E. ulmoides were each administered $140 \mu \mathrm{l}$ of a mixed solution of 12.5 mM [$\left.8-{ }^{14} \mathrm{C}\right]$ coniferyl alcohol ($5.51 \mathrm{MBq} / \mathrm{mmol}$) and 12.5 mM sinapyl alcohol $(5.76 \mathrm{MBq} / \mathrm{mmol})$ in potassium phosphate (K-Pi) buffer ($0.1 \mathrm{M}, \mathrm{pH} 7$). The shoots were then allowed to metabolize for 3 h at $25^{\circ} \mathrm{C}$ in an environment-controlled room.

Leaves and stems were divided, immediately frozen in liquid nitrogen, individually freeze-dried, reduced into small size pieces $(\sim 2 \mathrm{~mm})$ by means of scissors and extracted five times with MeOH at $65^{\circ} \mathrm{C}$. The extractives were combined, concentrated to small volume (one tenth) and to this was added water. The whole was centrifuged (1500 rpm , $200 \mathrm{~g}, 20^{\circ} \mathrm{C}$ for 20 min) and the supernatant was partitioned between EtOAc (containing unlabelled erythro-GGSE and threo-GGSE as cold carriers) and water. The aqueous layers were extracted twice with EtOAc. The EtOAc solutions were combined, washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness in vacuo. This fraction was named as the "organic layer."

The aqueous layer was freeze-dried and the resulting powder was treated with a mixture of cellulase $[(700 \mathrm{mg})$ (Wako; from Trichoderma viride, 1000 units $/ \mathrm{mg}$)] and β glucosidase [(200 mg) (Oriental Yeast; from sweet almond, 34 units $/ \mathrm{mg}$)] in sodium acetate buffer $(20 \mathrm{mM}, \mathrm{pH} 4.5)$ for 24 h at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere. ${ }^{12}$ The whole was extracted with EtOAc (containing unlabelled erythroGGSE and threo-GGSE as cold carriers), and the aqueous layers extracted twice with EtOAc. The EtOAc solutions
were combined, washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. This fraction was named as the "aqueous layer."

Both of the EtOAc extracts of the organic layer and aqueous layer were subjected to preparative TLC [benzene/ acetone $=2: 1(\times 5)]$ to isolate $\left[{ }^{14} \mathrm{C}\right]$ GGSE, which was then reconstituted in $\mathrm{MeOH}(400 \mu \mathrm{l})$ and filtered. An aliquot $(10 \mu \mathrm{l})$ of the filtrate was subjected to reversed phase C_{18} HPLC. The eluate was collected every 30 s for liquid scintillation counting.

Results and discussion

Synthesis of 8-O-4' neolignans, separation and identification of diastereomers

The synthetic route to GGSE is illustrated in Fig. 1. The route is a modification of the methods of Adler and Eriksoo, ${ }^{13}$ Katayama et al., ${ }^{14}$ and Kawai et al. ${ }^{15}$ Nucleophilic substitution of 1-(4-benzoyloxy-3-methoxyphenyl)-2bromoethanone with sinapaldehyde in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KI in DMF gave compound 1. Aldol-type condensation of $\mathbf{1}$ with paraformaldehyde and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO afforded compound $\mathbf{2}$. Then the terminal aldehyde of $\mathbf{2}$ was protected by dimethyl acetal formation with methyl orthoformate in the presence of p-toluenesulfonic acid as a catalyst to give compound $\mathbf{3}$, whose ketone was reduced with NaBH_{4} to afford diol 4 as a mixture of erythro and threo isomers. The terminal acetal of $\mathbf{4}$ was deprotected to yield compound 5. These three steps from 2 to $\mathbf{5}$ were carried out successively without chromatographic purification of $\mathbf{3}$ and $\mathbf{4}$ due to the poor stability of the dimethyl acetal.

Fortunately, in the case of the small scale used, compound 5 was sufficiently separated into the erythro and threo isomers by means of preparative TLC $(2 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \times 3\right)$. One isomer ($R_{\mathrm{f}} 0.75$) had a coupling constant of 8.05 Hz for the $\mathrm{C}_{7}-\mathrm{H}$ doublet, while the other isomer $\left(R_{\mathrm{f}}\right.$ 0.63) showed a coupling constant of 3.91 Hz for the equivalent resonance. The diastereomers were identified as the threo and erythro isomers, respectively, by independent transformation into acetonide derivatives (6) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis as described below. In the case of a normal preparative-scale reaction, preparative separation of erythro- 5 and threo- 5 is difficult. Preparation of acetonide derivatives is a useful method not only for separation but also for identification of the diastereomers. ${ }^{14}$ The separation of erythro-6 and threo-6 [acetonide derivatives of GGSE (AGGSE)] as well as the other acetonide derivatives of SGCE (A-SGCE), GGCE (A-GGCE), and SGSE (A-SGSE), was successively achieved by silica gel chromatography.

The acetonide derivatives of the four neolignans give characteristic coupling constants (J value) at the $\mathrm{C}_{7}-\mathrm{H}$ resonance (doublet) in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, from which deductions of dihedral angles between the $\mathrm{H}-\mathrm{C}_{7}-\mathrm{C}_{8}$ and $\mathrm{C}_{7}-$ $\mathrm{C}_{8}-\mathrm{H}$ planes can be made (the vicinal Karplus correlation), ${ }^{16}$ and identification of the diastereomers becomes possible

8 (GGSE) : $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OCH}_{3} ; 9(\mathrm{SGCE}): \mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}^{2}=\mathrm{H}$
10 (GGCE) : $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H} ; 11$ (SGSE) $: \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OCH}_{3}$

Fig. 1. Synthetic route for guaiacylglycerol-8- $O-4^{\prime}$-(sinapyl alcohol) ether (GGSE, 8) and the structures of other 8-O-4' neolignans. Reaction conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{KI} / \mathrm{DMF} / \mathrm{rt}$, (b) $-\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}-/ \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMSO} /$ rt, (c) $\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{3} / p$-toluenesulfonic acid/THF/MeOH/rt, (d) $\mathrm{NaBH}_{4} /$ THF $/ \mathrm{MeOH} / 0^{\circ} \mathrm{C}$, (e) $90 \% \mathrm{AcOH} / \mathrm{rt}$; separation of erythro and threo isomers by preparative TLC $\left(\mathrm{SiO}_{2}\right)$, (f) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2} / \mathrm{CSA} /$ acetone/rt, $\left(\mathrm{e}^{\prime}\right) 90 \% \mathrm{AcOH} / \mathrm{rt},\left(\mathrm{f}^{\prime}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2} / \mathrm{CSA}$ /acetone/rt; separation of erythro and threo isomers by column chromatography $\left(\mathrm{SiO}_{2}\right)$, (g) $90 \% \mathrm{AcOH} / \mathrm{rt}$, (h) $\mathrm{NaBH}_{4} / \mathrm{THF} / \mathrm{MeOH} / 0^{\circ} \mathrm{C}$, (i) n butylamine/benzene/rt. $\mathrm{Bz},\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}-\right)$
(Table 1). The $\mathrm{C}_{8}-\mathrm{H}$ resonance is not useful due to its complex splitting pattern. One diastereomer (higher R_{f}) has a larger J value than the other (lower R_{f}) (A-GGSE: 9.27 Hz and $1.71 \mathrm{~Hz}, \mathrm{~A}-\mathrm{SGCE}: 9.02 \mathrm{~Hz}$ and $1.46 \mathrm{~Hz}, \mathrm{~A}-\mathrm{GGCE}$: 8.8 Hz and 1.6 Hz , and A-SGSE: 9.02 Hz and 1.46 Hz , respectively), which are, due to the rigid orientation of the sixmembered cyclic ketal, correlated to the larger dihedral angle $\left(160^{\circ}\right)$ and the smaller one $\left(60^{\circ}\right)$ of the $\mathrm{H}-\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}$ vicinal plane of the erythro isomer and that of the threo isomer, respectively. On the other hand, stable conformation of aryl (A) and aryloxy (B) groups of erythroacetonide is diequatorial (Fig. 1) (dihedral angle of $\mathrm{H}-\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}$ is 180°) and those of the threo isomer are equatorial and axial (dihedral angle of $\mathrm{H}-\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}$ is 60°). Therefore, it was identified that the diastereomers with $J=8.8-9.3 \mathrm{~Hz}$ are erythro isomers and those with $J=1.46-$ 1.71 Hz are threo isomers.

The acetonide derivatives were then deprotected with aqueous acetic acid to give diol $\mathbf{5}$, whose terminal aldehyde was reduced with NaBH_{4} to yield alcohol 7. The benzoyl group of 7 was removed with n-butylamine to afford the final 8-O-4' neolignan, GGSE (8). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of the neolignans are shown in Tables 2 and 3, respectively.

The three $8-O-4^{\prime}$ neolignans SGCE, GGCE, and SGSE were synthesized and their J values of the $\mathrm{C}_{7}-\mathrm{H}$ resonance that could distinguish the erythro isomer from the threo isomer showed the same phenomenon as GGSE (Table 2). It is obvious that the J value of the $\mathrm{C}_{7}-\mathrm{H}$ resonance of the erythro-acetonide is larger than that of the erythro-diol. In contrast, this value of the threo-acetonide is less than that of the threo-diol.

Identification of diastereomer of natural GGSE by ${ }^{13} \mathrm{C}-\mathrm{NMR}$

Table 3 shows that the characteristic ${ }^{13} \mathrm{C}$-NMR peaks that distinguish between the erythro and threo isomers are those of C_{7} and C_{8}, which are chiral centers, as well as that of C_{9} for the four neolignans. It also shows that the differences between erythro-GGSE and threo-GGSE and between erythro-SGCE and threo-SGCE are clear, as well as that the differences between GGSE and SGCE are apparent.

Because Deyama et al. ${ }^{1}$ reported the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of natural GGSE in DMSO- d_{6}, the ${ }^{13} \mathrm{C}$-NMR spectra of synthetic erythro-GGSE and threo-GGSE were determined in DMSO- d_{6} and compared with those of natural GGSE as shown in Table 4. The diastereomer of natural GGSE was identified as the erythro isomer. It is clear that natural GGSE is different from both erythro-SGCE and threoSGCE (Table 5).

Feeding experiment

The feeding experiment using labeled precursors was performed and the results are shown in Table 6. Lignans and neolignans would be extracted in the organic layer and their glycosides in the aqueous layer. When the mixture of [$\left.8-{ }^{14} \mathrm{C}\right]$ coniferyl alcohol and $\left[8-{ }^{14} \mathrm{C}\right]$ sinapyl alcohol was administered into excised young shoots of Eucommia ulmoides, the radioactivity was incorporated into erythroGGSE to a degree that was three times higher than that in threo-GGSE from the organic layer of stems, but such incorporation could not be detected in leaves. However, the radioactivity of their glucosides was detected in both stems and leaves even in small amounts. Overall, formation of the erythro isomer was 2.4 times higher than that of the threo isomer.

This result is consistent with the identification of natural GGSE as the erythro isomer, as described above. Thus, it was suggested that erythro-GGSE is diastereoselectively produced by cross coupling of coniferyl and sinapyl alcohols in E. ulmoides.

Future work will require chiral analysis of each diastereomer to clarify enantioselective formation of $8-O-4^{\prime}$
Table 1. Partial ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra of four acetonide derivatives: comparison between erythro and threo isomers

Proton no.	A-GGSE		A-SGCE		A-GGCE ${ }^{\text {a }}$		A-SGSE	
	Erythro	Threo	Erythro	Threo	Erythro	Threo	Erythro	Threo
2	7.10, o	7.28, d, $J=1.46$	6.82, s	6.80, s	$6.98, \mathrm{~d}, J=1.6$	$7.19, \mathrm{~d}, J=2.0$	6.75, s	6.82 , s
5	$7.05, \mathrm{~d}, J=7.81$	$7.06, \mathrm{~d}, J=7.81$	-	-	$6.84, \mathrm{~d}, J=8.0$	$6.83, \mathrm{~d}, J=7.7$	-	-
6	$\begin{aligned} & 7.09, \mathrm{dd}, \\ & J=7.81,1.71 \end{aligned}$	$\begin{aligned} & 7.04, \mathrm{dd}, \\ & J=8.30,1.47 \end{aligned}$	6.82, s	6.80, s	$\begin{aligned} & 7.00, \mathrm{dd}, \\ & J=8.0,2.0 \end{aligned}$	$\begin{aligned} & 6.88, \mathrm{dd}, \\ & J=8.4,2.0 \end{aligned}$	6.75, s	6.82, s
7	$4.96, \mathrm{~d}, J=9.27$	5.14, d, $J=1.71$	$5.00, \mathrm{~d}, J=9.02$	5.14, d, $J=1.46$	$4.91, \mathrm{~d}, J=8.8$	$5.09, \mathrm{~d}, J=1.6$	4.93, d, $J=9.02$	5.11, d, $J=1.46$
8	$\begin{aligned} & 4.32, \mathrm{td}, \\ & J=8.79,5.37 \end{aligned}$	$\begin{aligned} & 4.39, \mathrm{dd}, \\ & J=4.15,1.95 \end{aligned}$	$\begin{aligned} & 4.27, \mathrm{td}, \\ & J=8.12,5.37 \end{aligned}$	4.24-4.28, o	4.26, m	4.22 , m	$\begin{aligned} & 4.33, \text { ddd, } \\ & J=11.71,8.42,5.61 \end{aligned}$	4.40 , d (with shoulder), $J=1.95$
9 a	$\begin{aligned} & 4.05, \mathrm{dd}, \\ & J=11.71,5.61 \end{aligned}$	$\begin{aligned} & 4.08, \mathrm{dd}, \\ & J=12.93,1.95 \end{aligned}$	$\begin{aligned} & 4.03, \mathrm{dd}, \\ & J=11.71,8.54 \end{aligned}$	4.24-4.28, o	$\begin{aligned} & 4.01, \mathrm{dd}, \\ & J=12.0,8.0 \end{aligned}$	$\begin{aligned} & 4.17, \mathrm{dd}, \\ & J=13.0,2.6 \end{aligned}$	$\begin{aligned} & \text { 4.06, dd, } \\ & J=11.71,5.61 \end{aligned}$	$\begin{aligned} & \text { 4.09, dd, } \\ & J=12.93,2.20 \end{aligned}$
9 b	$\begin{aligned} & 4.11, \mathrm{dd}, \\ & J=11.95,8.66 \end{aligned}$	$\begin{aligned} & \text { 4.14, dd, } \\ & J=12.93,1.95 \end{aligned}$	$\begin{aligned} & 4.19, \mathrm{dd}, \\ & J=11.83,5.25 \end{aligned}$	4.24-4.28, o	4.16, dd, $J=12.0,4.0$	$\begin{aligned} & 4.22, \mathrm{dd}, \\ & J=13.0,2.0 \end{aligned}$	$\begin{aligned} & \text { 4.11, dd, } \\ & J=11.71,8.29 \end{aligned}$	$\begin{aligned} & 4.15, \mathrm{dd}, \\ & J=12.93,1.96 \end{aligned}$
2^{\prime}	6.65, s,	6.69, s	7.01, o	7.01, o	$6.98, \mathrm{~d}, J=1.6$	$7.00, \mathrm{~d}, J=2.0$	6.67, s	6.70 , s
5	-	-	$6.57, \mathrm{~d}, J=8.30$	$6.48, \mathrm{~d}, \mathrm{~J}=8.05$	$6.55, \mathrm{~d}, J=8.4$	$6.48, \mathrm{~d}, J=8.4$	-	-
6^{\prime}	6.65, s	6.69, s	$\begin{aligned} & 7.00-7.04, \text { o, } \\ & J_{2^{\prime} 6^{\prime}}=1.95 \end{aligned}$	$\begin{aligned} & 7.01-7.04, \mathrm{o}, \\ & J_{2^{\prime} 6^{\prime}}=1.95 \end{aligned}$	$\begin{aligned} & 6.95, \mathrm{dd}, \\ & J=8.0,1.6 \end{aligned}$	$\begin{aligned} & 6.95, \mathrm{dd}, \\ & J=8.0,2.0 \end{aligned}$	6.67, s	6.70, s
$7{ }^{\prime}$	7.33, d, $J=15.85$	7.34, d, $J=15.86$	7.36, d, $J=15.86$	7.36, d, $J=15.85$	$7.33, \mathrm{~d}, J=15.9$	$7.33, \mathrm{~d}, J=15.6$	7.34, d, $J=15.86$	7.35, d, $J=15.85$
8^{\prime}	$\begin{aligned} & 6.60, \mathrm{dd}, \\ & J=15.86,7.81 \end{aligned}$	$\begin{aligned} & 6.59, \mathrm{dd}, \\ & J=15.74,7.69 \end{aligned}$	$\begin{aligned} & 6.58, \mathrm{dd}, \\ & J=15.74,7.69 \end{aligned}$	$\begin{aligned} & 6.58, \mathrm{dd}, \\ & J=15.86,8.05 \end{aligned}$	$\begin{aligned} & 6.56, \mathrm{dd}, \\ & J=15.8,8.0 \end{aligned}$	$\begin{aligned} & 6.55, \mathrm{dd}, \\ & J=15.6,7.6 \end{aligned}$	$\begin{aligned} & 6.60, \mathrm{dd}, \\ & J=15.85,7.56 \end{aligned}$	$\begin{aligned} & 6.60, \mathrm{dd}, \\ & J=15.85,7.80 \end{aligned}$
9^{\prime}	$9.65, \mathrm{~d}, J=7.56$	$9.65, \mathrm{~d}, J=7.81$	$9.65, \mathrm{~d}, J=7.80$	9.64, d, $J=7.81$	$9.63, \mathrm{~d}, J=8.0$	$9.63, \mathrm{~d}, J=8.0$	$9.66, \mathrm{~d}, J=7.81$	$9.65, \mathrm{~d}, J=7.60$
$\mathrm{OCH}_{3}(\mathrm{~A})$	3.76, s	3.79, s	3.75, s	3.77, s	3.84, s	3.89, s	3.75, s	3.77, s
$\mathrm{OCH}_{3}(\mathrm{~B})$	3.71, s	3.74, s	3.84, s,	3.81, s	3.85, s	3.82 , s	3.73, s	3.74 , s

[^1]Table 2. ${ }^{1} \mathrm{H}$ NMR spectra of four 8-O-4' neolignans: comparison between erythro and threo isomers

Proton no.	GGSE		SGCE		GGCE		SGSE	
	Erythro	Threo	Erythro	Threo	Erythro	Threo	Erythro	Threo
2	$7.05, \mathrm{~d}, J=1.71$	7.07, d, $J=1.95$	6.78, s	6.79, s	7.11, d, $J=1.95$	7.10, d, $J=1.95$	6.73, s	6.78, s
5	$6.78, \mathrm{~d}, J=8.05$	$6.78, \mathrm{~d}, J=8.30$	-	-	$6.77, \mathrm{~d}, J=8.05$	$6.77, \mathrm{~d}, J=8.29$	-	-
6	$\begin{aligned} & \text { 6.84, ddd, } \\ & J=8.18,1.79,0.61 \end{aligned}$	$\begin{aligned} & 6.91, \mathrm{dd}, \\ & J=8.05,1.95 \end{aligned}$	6.78, s	6.79, s	$\begin{aligned} & 6.89, \mathrm{ddd}, \\ & J=8.29,1.83,0.49 \end{aligned}$	$\begin{aligned} & 6.90, \text { ddd, } \\ & J=7.93,1.95,0.49 \end{aligned}$	6.73, s	6.78, s
7	$4.98, \mathrm{~d}, J=4.39$	5.00, d, $J=7.32$	4.89, d, $J=5.12$	4.90, d, $J=5.61$	$4.90, \mathrm{~d}, J=5.37$	$4.90, \mathrm{~d}, J=5.85$	4.99, d, $J=4.63$	4.99, d, $J=7.07$
8	$\begin{aligned} & 4.18, \mathrm{ddd}, \\ & J=5.73,4.52,3.54 \end{aligned}$	3.93-3.97, o	$\begin{aligned} & 4.35, \mathrm{dt}, \\ & J=5.43,4.03 \end{aligned}$	$\begin{aligned} & 4.32, \mathrm{dt}, \\ & J=5.49,4.15 \end{aligned}$	$\begin{aligned} & 4.33, \mathrm{dt}, \\ & J=5.24,4.03 \end{aligned}$	$\begin{aligned} & 4.27, \mathrm{dt}, \\ & J=5.69,3.98 \end{aligned}$	4.20-4.24, o	$\begin{aligned} & 4.00, \mathrm{td}, \\ & J=7.07,3.54 \end{aligned}$
9a	$\begin{aligned} & 3.45, \mathrm{dd}, \\ & J=11.95,3.42 \end{aligned}$	$\begin{aligned} & 3.30, \mathrm{dd}, \\ & J=12.20,3.42 \end{aligned}$	$\begin{aligned} & 3.73, \mathrm{dd}, \\ & J=11.83,4.03 \end{aligned}$	$\begin{aligned} & 3.52, \mathrm{dd}, \\ & J=11.83,5.73 \end{aligned}$	$\begin{aligned} & 3.71, \mathrm{dd}, \\ & J=11.71,3.90 \end{aligned}$	$\begin{aligned} & 3.50, \mathrm{dd}, \\ & J=11.95,5.61 \end{aligned}$	$\begin{aligned} & 3.49, \mathrm{dd}, \\ & J=11.96,3.42 \end{aligned}$	$\begin{aligned} & 3.35, \mathrm{dd}, \\ & J=12.20,3.41 \end{aligned}$
9b	$\begin{aligned} & 3.85, \mathrm{dd}, \\ & J=11.95,5.85 \end{aligned}$	$\begin{aligned} & 3.67, \mathrm{dd}, \\ & J=12.20,3.66 \end{aligned}$	$\begin{aligned} & 3.83, \mathrm{dd}, \\ & J=11.71,5.37 \end{aligned}$	$\begin{aligned} & 3.74, \mathrm{dd}, \\ & J=11.71,4.15 \end{aligned}$	$\begin{aligned} & 3.82, \mathrm{dd}(\mathrm{o}), \\ & J=11.23,6.01 \end{aligned}$	$\begin{aligned} & \text { 3.71, dd, } \\ & J=11.71,3.90 \end{aligned}$	$\begin{aligned} & 3.89, \mathrm{dd}, \\ & J=11.95,5.61 \end{aligned}$	$\begin{aligned} & 3.70, \mathrm{dd}, \\ & J=12.20,3.66 \end{aligned}$
2^{\prime}	6.81, s	6.82 , s	7.07, d, $J=1.95$	7.10, d, $J=2.20$	$7.07, \mathrm{~d}, J=1.95$	7.11, d, $J=2.20$	6.82 , s	6.82, s
5'	-	-	$6.93, \mathrm{~d}, J=8.05$	$7.09, \mathrm{~d}, J=9.03$	$6.93, \mathrm{~d}, J=8.29$	7.10, d, $J=8.29$	-	-
6^{\prime}	6.81, s	6.82, s	$\begin{aligned} & 6.88, \mathrm{dd}, \\ & J=8.54,1.95 \end{aligned}$	$\begin{aligned} & 6.91, \mathrm{dd}, \\ & J=8.30,1.95 \end{aligned}$	$\begin{aligned} & 6.88, \mathrm{dd}, \\ & J=8.29,1.95 \end{aligned}$	$\begin{aligned} & 6.91, \mathrm{dd}, \\ & J=8.29,2.07 \end{aligned}$	6.82, s	6.82, s
7^{\prime}	$\begin{aligned} & 6.56, \text { td, } \\ & J=15.86,1.46 \end{aligned}$	$\begin{aligned} & \text { 6.56, td, } \\ & J=15.86,1.46 \end{aligned}$	$\begin{aligned} & 6.51, \mathrm{td}, \\ & J=16.10,1.71 \end{aligned}$	$\begin{aligned} & 6.53, \mathrm{td}, \\ & J=16.10,1.46 \end{aligned}$	$\begin{aligned} & 6.52, \mathrm{td}, \\ & J=15.86,1.71 \end{aligned}$	$\begin{aligned} & 6.53, \text { td, } \\ & J=16.10,1.46 \end{aligned}$	$\begin{aligned} & 6.57, \mathrm{td}, \\ & J=15.86,1.46 \end{aligned}$	$\begin{aligned} & 6.56, \mathrm{td}, \\ & J=16.00,1.47 \end{aligned}$
8^{\prime}	$\begin{aligned} & 6.39, \mathrm{td}, \\ & J=15.85,5.13 \end{aligned}$	$\begin{aligned} & \text { 6.39, td, } \\ & J=15.85,5.37 \end{aligned}$	$\begin{aligned} & \text { 6.28, td, } \\ & J=15.86,5.37 \end{aligned}$	$\begin{aligned} & 6.30, \mathrm{td}, \\ & J=15.86,5.37 \end{aligned}$	$\begin{aligned} & 6.28, \mathrm{td}, \\ & J=15.86,5.37 \end{aligned}$	$\begin{aligned} & 6.30, \mathrm{td}, \\ & J=15.86,5.37 \end{aligned}$	$\begin{aligned} & 6.39, \mathrm{td}, \\ & J=15.86,5.25 \end{aligned}$	$\begin{aligned} & 6.39, \mathrm{td}, \\ & J=15.86,5.25 \end{aligned}$
9^{\prime}	$\begin{aligned} & 4.22, \mathrm{dd}, \\ & J=5.12,1.47 \end{aligned}$	$\begin{aligned} & 4.22, \mathrm{dd}, \\ & J=5.12,1.46 \end{aligned}$	$\begin{aligned} & 4.19, \mathrm{dd}, \\ & J=5.00,1.10 \end{aligned}$	$\begin{aligned} & 4.20, \mathrm{dd}, \\ & J=5.00,1.10 \end{aligned}$	$\begin{aligned} & 4.19, \mathrm{dd}, \\ & J=5.37,1.22 \end{aligned}$	$\begin{aligned} & 4.20, \mathrm{dd}, \\ & J=5.49,1.58 \end{aligned}$	$\begin{aligned} & 4.23, \mathrm{dd}, \\ & J=5.12,1.46 \end{aligned}$	$\begin{aligned} & 4.22, \mathrm{dd}, \\ & J=5.36,1.34 \end{aligned}$
$\mathrm{OCH}_{3}(\mathrm{~A})$	3.84 , s	3.82, s	3.80 , s	3.80, s	3.82, s	3.82, s	3.82 , s	3.81, s
$\mathrm{OCH}_{3}(\mathrm{~B})$	3.89, s	3.92, s	3.86, s	3.91, s	3.86, s	3.91, s	3.89, s	3.92, s

Spectra recorded in acetone- $d_{6}+\mathrm{D}_{2} \mathrm{O}$

Table 3. ${ }^{13} \mathrm{C}$ NMR of four 8-O-4' neolignans: comparison between erythro and threo isomers

Carbon no.	GGSE ${ }^{\text {a }}$		SGCE ${ }^{\text {b }}$		$\mathrm{GGCE}^{\text {c }}$		SGSE ${ }^{\text {b }}$	
	Erythro	Threo	Erythro	Threo	Erythro	Threo	Erythro	Threo
1	133.773	133.691	${ }^{\text {d }} 133.156$	${ }^{\mathrm{e}} 132.802$	${ }^{\text {f }} 134.111$	${ }^{\mathrm{g}} 133.798$	${ }^{\text {h }} 134.341$	${ }^{\mathrm{i}} 134.472$
2	110.885	111.478	105.373	105.299	111.864	111.749	104.888	105.348
3	148.006	147.965	148.319	148.368	148.738	148.870	148.376	148.360
4	146.484	146.821	135.986	135.970	147.052	147.216	135.600	135.937
5	115.246	115.237	148.319	148.368	115.674	115.871	148.376	148.360
6	120.009	120.766	105.373	105.299	121.062	120.848	104.888	105.348
7	73.328	74.052	73.806	73.575	74.159	74.061	73.452	73.937
8	88.039	89.972	85.941	87.257	86.220	87.150	87.619	89.388
9	60.914	61.342	61.671	61.646	62.255	61.934	60.848	61.309
1^{\prime}	134.407	134.522	d'132.531	$\mathrm{e}^{\prime} 132.597$	${ }^{\text {f }} 133.066$	$\mathrm{g}^{\prime} 133.181$	${ }^{\text {h' }} 132.605$	${ }^{\text {i }} 132.473$
2^{\prime}	104.616	104.534	110.885	110.754	111.395	111.288	104.616	104.542
3'	154.325	154.012	151.527	151.330	151.939	151.782	154.119	153.864
4^{\prime}	136.019	136.472	148.475	148.985	148.985	149.290	135.904	136.439
5^{\prime}	154.325	154.012	118.397	118.495	118.890	118.849	154.119	153.864
6^{\prime}	104.616	104.534	120.281	120.363	120.692	120.774	104.616	104.542
$7{ }^{\prime}$	129.865	129.791	129.380	129.454	128.508	128.639	130.013	129.898
8^{\prime}	130.902	130.992	129.931	129.906	131.503	131.453	130.597	130.778
9^{\prime}	63.143	63.119	63.102	63.102	63.793	63.785	62.863	62.880
$\mathrm{OCH}_{3}(\mathrm{~A})$	56.241	56.208	56.594	56.578	56.356	56.364	56.611	56.603
$\mathrm{OCH}_{3}(\mathrm{~B})$	56.570	56.594	56.307	56.307	56.529	56.570	56.627	56.636

${ }^{\text {a }}$ Acetone- d_{6}
${ }^{\mathrm{b}}$ Acetone- $d_{6}+\mathrm{D}_{2} \mathrm{O}$
${ }^{c} \mathrm{CD}_{3} \mathrm{OD}$
The assignments of $\mathrm{d}-\mathrm{d}^{\prime}, \mathrm{e}-\mathrm{e}^{\prime}, \mathrm{f}-\mathrm{f}^{\prime}, \mathrm{g}-\mathrm{g}^{\prime}, \mathrm{h}-\mathrm{h}^{\prime}$, and $\mathrm{i}-\mathrm{i}^{\prime}$ might be interchangeable

Table 4. Comparison of ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) between synthesized erythro- and threo-GGSE and that isolated from Eucommia ulmoides by Deyama et al. ${ }^{1}$

Carbon no.	Erythro-GGSE	Δ	$\|\mathrm{x}-\Delta\|$	$\left\|\mathrm{X}_{7,8,9}-\Delta\right\|$	Deyama's GGSE	Threo-GGSE	Δ	$\|\mathrm{x}-\Delta\|$	$\left\|\mathbf{x}_{7,8,9}-\Delta\right\|$
1	133.197	0.097	0.017		133.1	132.860	0.240	0.006	
2	110.819	0.381	0.267		111.2	110.885	0.315	0.069	
3	146.879	0.079	0.035		146.8	146.764	0.036	0.210	
4	145.192	0.008	0.106		145.2	145.209	0.009	0.237	
5	114.579	0.079	0.035		114.5	114.546	0.046	0.200	
6	119.227	0.027	0.087		119.2	119.104	0.096	0.150	
7	71.905	0.095	0.019	0.018	72.0	71.387	0.613	0.367	0.148
8	86.113	0.213	0.099	0.100	85.9	87.084	1.184	0.938	0.424
9	59.630	0.030	0.084	0.083	59.6	60.083	0.483	0.237	0.277
1^{\prime}	132.226	0.026	0.088		132.2	132.276	0.076	0.170	
2^{\prime}	103.538	0.262	0.148		103.8	103.522	0.278	0.032	
3^{\prime}	152.654	0.054	0.060		152.6	152.531	0.069	0.177	
4^{\prime}	134.810	0.090	0.024		134.9	135.468	0.568	0.322	
5^{\prime}	152.654	0.054	0.060		152.6	152.531	0.069	0.177	
6^{\prime}	103.538	0.262	0.148		103.8	103.522	0.278	0.032	
$7{ }^{\prime}$	128.409	0.009	0.105		${ }^{\mathrm{a}} 128.4$	128.376	0.024	0.222	
8^{\prime}	130.021	0.121	0.007		${ }^{\text {a }} 129.9$	130.071	0.171	0.075	
9^{\prime}	61.350	0.250	0.136		61.1	61.350	0.250	0.004	
$\mathrm{OCH}_{3}(\mathrm{~A})$	55.401	0.099	0.015		55.5	55.418	0.082	0.164	
$\mathrm{OCH}_{3}(\mathrm{~B})$	55.837	0.037	0.077		55.8	55.837	0.037	0.209	
Totals			1.617	0.201				3.998	0.849

For total carbons (erythro) $\Sigma=2.273, n=20, x=0.114$. $\mathrm{SD}=0.081$. For carbon no. $7,8,9 \Sigma=0.338, n=3, x=0.113, \mathrm{SD}=0.067$. For total carbons (threo) $\Sigma=4.924, n=20, x=0.246, \mathrm{SD}=0.200$. For carbon no. $7,8,9 \Sigma=2.279, n=3, x=0.760$, $\mathrm{SD}=0.283$
${ }^{\text {a }}$ According to the original report by Deyama et al. ${ }^{1}$, C-7' and C-8' were assigned as 129.9 and 128.4 , respectively. However, the authors corrected their assignment as above
neolignans containing syringyl moieties or enantioselective
cross coupling of coniferyl and sinapyl alcohols.

Acknowledgments The authors wish to thank Yasuhiro Shimizu, Tomoyuki Nakatsubo, Kimiko Ishikawa, and Yukari Tabuchi, graduates from the Faculty of Agriculture, Kagawa University, for the synthesis of compounds, and Shinsuke Kitao and Yousuke Kurita, Masters of Agriculture, Kagawa University, for their help and advice for the experimental work.

References

1. Deyama T, Ikawa T, Kitagawa S, Nishibe S (1987) The constituents of Eucommia ulmoides Oliv. VI. Isolation of new sesquilignan and neolignan glycosides. Chem Pharm Bull 35:1803-1807
2. Sawabe A, Matsubara Y, Kumamoto H, Iizuka Y, Okamoto K (1986) Structure and physiological activity of phenyl propanoid glycosides of Hassaku (Citrus hassaku Hort.) and orange (Citrus

Table 5. Comparison of ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}$) between synthesized erythro- and threo-SGCE and GGSE isolated from Eucommia ulmoides by Deyama et al. ${ }^{1}$

Carbon no.	Erythro-SGCE	Δ	$\|\mathrm{x}-\Delta\|$	$\left\|\mathrm{x}_{7,8,9}-\Delta\right\|$	Deyama's GGSE	Threo-SGCE	Δ	$\|\mathrm{x}-\Delta\|$	$\left\|\mathrm{x}_{7,8,9}-\Delta\right\|$
1	132.193	0.907	6.520		133.1	131.840	1.260	6.264	
2	104.583	6.617	0.810		111.2	103.999	7.201	0.323	
3	147.233	0.433	6.994		146.8	147.298	0.498	7.026	
4	134.300	10.900	3.473		145.2	134.225	10.975	3.451	
5	147.233	32.733	25.306		114.5	147.298	32.798	25.274	
6	104.583	14.617	7.190		119.2	103.999	15.201	7.677	
7	71.716	0.284	7.143	0.830	72.0	70.803	1.197	6.327	0.002
8	83.300	2.600	4.827	1.486	85.9	83.876	2.024	5.500	0.825
9	60.058	0.458	6.969	0.656	59.6	59.976	0.376	7.148	0.823
1^{\prime}	129.791	2.409	5.018		132.2	129.939	2.261	5.263	
2^{\prime}	109.626	5.826	1.601		103.8	109.569	5.769	1.755	
3^{\prime}	149.487	3.113	4.314		152.6	149.487	3.113	4.411	
4^{\prime}	147.438	12.538	5.111		134.9	147.611	12.711	5.187	
5^{\prime}	115.130	37.470	30.043		152.6	115.073	37.527	30.003	
6^{\prime}	118.898	15.098	7.671		103.8	118.948	15.148	7.624	
$7{ }^{\prime}$	128.327	0.073	7.354		${ }^{\text {a }} 128.4$	128.417	0.017	7.507	
8^{\prime}	128.450	1.450	5.977		${ }^{\text {a }} 129.9$	128.450	1.450	6.074	
9^{\prime}	61.506	0.406	7.021		61.1	61.506	0.406	7.118	
$\mathrm{OCH}_{3}(\mathrm{~A})$	55.731	0.231	7.196		55.5	55.689	0.189	7.335	
$\mathrm{OCH}_{3}(\mathrm{~B})$	55.426	0.374	7.053		55.8	55.443	0.357	7.167	
Totals			157.591	2.972				158.434	1.650

For total carbons (erythro) $\Sigma=148.537, n=20, x=7.427, \mathrm{SD}=7.880$. For carbon no. $7,8,9 \Sigma=3.342, n=3, x=1.114$, SD $=0.990$. For total carbons (threo) $\Sigma=150.478, n=20, x=7.524, \mathrm{SD}=7.922$. For carbon no. $7,8,9 \Sigma=3.597, n=3, x=1.199$, $\mathrm{SD}=0.550$
${ }^{\text {a }}$ See Table 4

Table 6. Incorporation of radioactivity into $\left[{ }^{14} \mathrm{C}\right]$ GGSE following administration of a mixture of $\left[8-{ }^{14} \mathrm{C}\right]$ coniferyl alcohol and $\left[8-{ }^{14} \mathrm{C}\right]$ sinapyl alcohol to excised shoots of Eucommia ulmoides

$\left[{ }^{14} \mathrm{C}\right]$ GGSE	Stems			Leaves		
				Total		
	Organic	Aqueous		Organic	Aqueous	
Erythro	0.303	0.002		nd	0.025	0.330
Threo	0.109	0.006		nd	0.022	0.137
Total	0.412	0.008		-	0.047	0.467

nd, not detected
sinensis Osbeck.) peelings (in Japanese). Nippon Nôgeikagaku Kaishi 60:593-599
3. Li S, Iliefski T, Lundquist K, Wallis AFA (1997) Reassignment of relative stereochemistry at C-7 and C-8 in arylcoumaran neolignans. Phytochemistry 46:929-934
4. Kawasaki T, Uezono K, Nakazawa Y (2000) Antihypertensive mechanism of food for specified health use: "Eucommia leaf glycoside" and its clinical application (in Japanese). J Health Sci Kyushu Univ (Ken-ko Kagaku) 22:29-36
5. Nakazawa Y, Odagiri N, Imai R, Yoshii T, Tagashira E, Nakata C, Nakamura T, Asaumi M, Onizuka S, Yahara M, Nohara T (1997) Effect of Eucommia leaf (Eucommia ulmoides Oliver leaf; DuZhong yge) extract on blood pressure (I): effect on blood pressure in spontaneous hypertensive rats (SHR) (in Japanese). Natural Medicines 51:392-398
6. Deyama T, Ikawa T, Nishibe S (1985) The constituents of Eucommia ulmoides Oliv. II. Isolation and structure of three new lignan glycosides. Chem Pharm Bull 33:3651-3657
7. Katayama T, Kado Y (1998) Formation of optically active neolignans from achiral coniferyl alcohol by cell-free extracts of Eucommia ulmoides. J Wood Sci 44:244-246
8. Tachibana S, Ito K, Sumimoto M (1989) A convenient synthesis of p-hydroxy- and p-methoxycinnamaldehydes. Mokuzai Gakkaishi 35:1154-1158
9. Katayama T, Kado Y, Shimizu Y (1999) Formation of lignans and neolignans by enantioselective phenoxy radical coupling in Eucommia ulmoides. Proceedings of the $10^{\text {th }}$ International Symposium on Wood and Pulping Chemistry, Main Symposium, Yokohama, vol 1, pp 110-113
10. Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (-)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)pinoresinol. Phytochemistry 31:3875-3881
11. Katayama T, Ogaki A (2001) Biosynthesis of (+)-syringaresinol in Liriodendron tulipifera I: feeding experiments with L -[U$\left.{ }^{14} \mathrm{C}\right]$ phenylalanine and [$\left.8 \mathrm{-}^{14} \mathrm{C}\right]$ sinapyl alcohol. J Wood Sci 47:41-47
12. Kuriyama K, Murui T (1993) Effect of cellulase on hydrolysis of lignan glycosides in sesame seed by β-glucosidase (in Japanese). Nippon Nôgeikagaku Kaishi 67:1701-1705
13. Adler E, Eriksoo E (1955) Guaiacylglycerol and its β-guaiacyl ether. Acta Chem Scand 9:341-342
14. Katayama T, Nakatsubo F, Higuchi T (1981) Syntheses of arylglycerol- β-aryl ethers. Mokuzai Gakkaishi 27:223-230
15. Kawai S, Okita K, Sugishita K, Tanaka A, Ohashi H (1999) Simple method for synthesizing phenolic $\beta-O-4$ dilignols. J Wood Sci 45:440-443
16. Silverstein M, Webster FX (1997) Spectrometric identification of organic compounds, $6^{\text {th }}$ edn. Wiley, New York, pp 186-187

[^0]: N. Lourith • T. Katayama (\boxtimes) • T. Suzuki

 Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
 Tel. +81 -87-891-3083; Fax +81 -87-891-3021
 e-mail: katayama@ag.kagawa-u.ac.jp

[^1]: Spectra recorded in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR peaks of acetonide moieties, benzoyl groups (A-GGSE, A-SGCE and A-SGSE) and phenolic hydroxyl groups (A-GGCE) are omitted
 s, Singlet; d, doublet; t, triplet; dd, doublet of doublet; ddd, doublet of doublet of doublet; dt, doublet of triplet; td, triplet of doublet; tt, triplet of triplet; o, overlapping; br, broad; m, multiplet ${ }^{\text {a }}$ Acetonide derivatives of GGCE (A-GGCE) had been prepared as guaiacylglycerol-8-O-4'-(coniferaldehyde) ether 7,9- O-isopropylideneketals that have a free 4-phenolic hydroxyl group

