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Abstract The effects of grain angle of face veneer on sur-
face wave velocity and dynamic shear modulus of three
types of wood-based composites were examined using a
surface wave propagation method. It was found that grain-
angle dependence of surface wave velocity and dynamic
shear modulus indeed exists for wood-based composites.
Grain angles of face veneer were found to have substantial
effects on the surface wave velocities and dynamic shear
moduli of wood–plastic composite (WP), wood–fiberboard
composite (WF), and wood–metal composite (WM). The
orthotropic properties of the three composites were defined
as the ratio of surface wave velocities at 0° and 90° grain
angles (V0/V90), which were 3.7, 2.2, and 2.0 for WP, WF,
and WM, respectively. For WP, WF, and WM, the dynamic
shear moduli in the 90° grain angle of face veneer were
approximately 7%, 19%, and 25% of that in the 0° grain
angle, respectively. The relationships between grain angles
of face veneer and the shear moduli of the three types
of wood-based composites could be represented by
Hankinson’s equation, and their optimal n values were 2.1,
1.2, and 1.3 for WP, WF, and WM, respectively.
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Introduction

Wood is an anisotropic, orthotropic material. There are
many reports on the effects of grain angle on ultrasonic
velocity,1–3 but most of them were conducted in wood only
and without consideration of wood-based composites and
surface wave velocity. In other words, few investigations
have been concerned with the effects of the grain angle on
the surface wave velocity and the dynamic shear modulus of
wood-based composites. The dynamic shear modulus is im-
portant for wood and wood-based composites and various
testing methods are available for its determination. How-
ever, there exists a considerable difference between the
shear modulus values determined by different methods.
Furthermore, these tests have their drawbacks.4–6 Soma
et al.7 studied the calculation of grain angle and verified
their results with spherical wood specimens using ultrasonic
waves. Zigzag and diagonal propagation pathways of ultra-
sonic waves were expressed by a simple cell model, and
equations to calculate the ultrasonic propagation time at
arbitrary grain angles from times in the L, R, and T direc-
tions were proposed.7

In our study, the surface wave velocities and dynamic
shear moduli (out-plane shear moduli) of three types of
wood-based composites were measured by surface wave
propagation tests. The effects of grain angles of face veneer
on the surface wave velocities and dynamic shear moduli
and the possibility that the shear moduli can be predicted by
means of an empirical formula were also examined.

Materials and methods

Materials

Experimental materials used for this study consisted of
wood–plastic composite (WP), wood–fiberboard composite
(WF), and wood–metal composite (WM), all with a three-
layer structure. The construction of the materials is shown
in Fig. 1. The face layers of the composite were wood (grain
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angle: 0°, 15°, 30°, 45°, 60°, 75°, 90°) and the core layers of
the composite were plastic, fiberboard, and metal. Japanese
larch (Larix leptolepis Gordon) veneer (density: 0.64g/cm3,
thickness: 3.5mm), was used as the wood element (W).
Polystyrene foam (density: 0.01g/cm3, thickness: 20mm),
insulation fiberboard (density: 0.25g/cm3, thickness:
10mm), and aluminum plate (density: 2.75g/cm3, thickness:
2mm) were used as the plastic (P), fiberboard (F), and
metal (M) elements, respectively. Specimen size was 300 �
100mm.

Surface wave propagation test

As shown in Fig. 2a, the acceleration pickups were glued to
the specimen with adhesive. The specimen was supported at
the nodal points by foamed styrene. One side of the speci-
men was struck with a small wooden bar. The difference in
time (T) in which the surface wave reached the two accel-
eration pickups on the specimen was measured by a fast
Fourier transform (FFT) analyzer as shown in Fig. 2b.

The surface wave velocity and dynamic shear modulus
were calculated from Eqns. 1 and 2.

    V L T � (1)

        G VV  � r 2 (2)

where V is surface wave velocity, L is the distance between
the two acceleration pickups, T is surface wave propagation
time, Gv is shear modulus, and r is the density of the
specimen. The surface wave velocity and dynamic shear

modulus were the average of five specimens for each
condition. The measurements were carried out in a room
maintained at 20°C and 65% relative humidity.

Results and discussion

Surface wave velocity

The relationships between surface wave velocity and grain
angle of face veneer of three types of wood-based compos-
ites are shown in Fig. 3. As is obvious from the figures, the
surface wave velocities decreased with increasing grain
angle. This implies that the grain-angle dependence of sur-
face wave velocity also exists for surface wave propagation
through a wood-based composite. For wood (W), the loss of
surface wave velocity was over 9.3% per degree in grain
angle from 0° to 90°. For WP, WF, and WM, the losses of
surface wave velocity were approximately 8.1%, 6.0%, and
5.6% per degree in grain angle of face veneer from 0° to 90°,
respectively. Because the density and mechanical proper-
ties of plastic and fiberboard elements were smaller than the
wood element, the anisotropy of WP and WF were mostly
affected by the wood element and the effects of the plastic
and fiberboard elements were secondary. However, for
WM, because the density and mechanical properties of the
metal element were much greater than the wood element,
the anisotropy of WM was mostly affected by the metal
element. Therefore, the surface wave velocity of WM
decreased more slowly than those of WP and WF with
increases of grain angle.

The orthotropic properties of the three wood-based
composites were evaluated as the values of V0/V90.
These values were 3.7, 2.2, and 2.0 for WP, WF, and WM,
respectively.

Fig. 1a–c. Construction of wood-based composites. a Wood–plastic
composite (WP), b wood–fiberboard composite (WF), and c wood–
metal composite (WM)

a

b

Fig. 2a,b. Surface wave propagation method. a Measuring system,
b surface wave signals captured by fast Fourier transform (FFT)
analyzer
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Dynamic shear modulus

The relationships between grain angle of face veneer and
dynamic shear modulus of the three wood-based compos-
ites are shown in Fig. 4. As is obvious from the figures, the
dynamic shear moduli decreased with increasing grain
angles. This implies that the grain-angle dependence of the
dynamic shear modulus also exists for wood-based compos-
ites. For wood (W), the shear modulus in the 90° grain angle
was approximately 3% of that in the 0° grain angle. For WP,
WF, and WM, the dynamic shear moduli in the 90° grain

angle of face veneer were approximately 7%, 19%, and
25% of that in the 0° grain angle of face veneer, respec-
tively. The dynamic shear modulus of WM decreased
slower than those of WP and WF with increases of grain
angle because of the effect of the metal plate.

Figure 4 shows the dynamic shear moduli from surface
wave propagation test and those calculated from the
Hankinson equation:8

        
G

G G
G Gn nθ

θ θ
 � 

 � 
0 90

0 90sin cos
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Fig. 3a–c. Relationships between surface wave velocities and grain
angles of face veneer. a Wood–plastic composite, b wood–fiberboard
composite, and c wood–metal composite. W, P, F, M, WP, WF, and
WM represent the surface wave velocities from surface wave propaga-
tion tests of wood, plastic, fiberboard, and metal elements, and wood–
plastic, wood–fiberboard, and wood–metal composites, respectively

Fig. 4a–c. Relationships between dynamic shear moduli and grain
angles of face veneer. a Wood–plastic composite, b wood–fiberboard
composite, and c wood–metal composite. W, P, F, M, WP, WF, and
WM represent the dynamic shear moduli from surface wave propaga-
tion tests of the elements and composites as listed in Fig. 3. W1.8,
WP2.1, WF1.2, and WM1.3 represent the dynamic shear moduli of
wood, wood–plastic, wood–fiberboard, and wood–metal composites,
respectively, calculated from the Hankinson equation
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where Gθ is the shear modulus at angle θ from the grain
direction, G0 is the shear modulus parallel to the grain, G90

is the shear modulus perpendicular to the grain, and n is an
empirically determined constant. For wood, the value of n is
1.8, while those of WP, WF, and WM are 2.1, 1.2, and 1.3,
respectively.

Conclusions

The effects of grain angle of face veneer on surface wave
velocity and dynamic shear modulus of three types of wood-
based composites were examined. The results are summa-
rized as follows:

1. Grain angles of face veneer showed substantial effects on
surface wave velocities and dynamic shear moduli of
three types of wood-based composites. The surface wave
velocities and dynamic shear moduli decreased with
increasing grain angle. This implies that the grain-angle
dependence of surface wave velocities and dynamic
shear moduli also exists for wood-based composites.

2. The orthotropic properties of three types of wood-based
composites were defined as the ratio of V0/V90. These
values were 3.7, 2.2, and 2.0 for wood–plastic composite
(WP), wood–fiberboard composite (WF), and wood–
metal composite (WM), respectively.

3. The dynamic shear moduli of the three types of wood-
based composites were largest at the 0° grain angle of the
face veneer, but decreased rapidly with increasing grain
angle, while the lowest values of the dynamic shear

moduli occurred at the 90° grain angle. For WP, WF, and
WM, the dynamic shear moduli in the 90° grain angle
were approximately 7%, 19%, and 25% of that in the 0°
grain angle, respectively. For wood, the shear modulus in
the 90° grain angle was approximately 3% of that in the
0° grain angle.

4. The relationships between grain angles of face veneer
and shear moduli of three types of wood-based compos-
ites could be represented by the form of Hankinson’s
equation, and their optimal n values were 2.1, 1.2, and 1.3
for WP, WF, and WM, respectively.
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