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Abstract Distortions due to moisture changes during dry-
ing or in service are a major problem for construction tim-
ber. Twist, caused mainly by the cylindrical geometry, the
orthotropic nature of the wood material, and the tendency
of the wood fibers to grow in a spiral around the stem, is
often regarded as the most detrimental distortion of sawn
timber. There is a need for a basic mechanical understand-
ing of how the twist distortion arises and also a need for a
simple formula to predict the amount of twist distortion. In
this article such a formula is proposed, and theory and
experimental data that indicate the validity of the formula
are shown. The first term in the formula is a modification of
a traditional expression which is proportional to the mean
value of the spiral grain angle in the cross section in ques-
tion. The second term in the formula is new and is propor-
tional to the gradient of the spiral grain angle, and this term
normally counteracts the first term so that a stud with a
left-handed spiral grain might achieve a right-handed twist.
Linear elastic finite element method (FEM) results and
comparisons with experimental data show that the formula
works well and that linear FEM calculations exaggerate the
twist, which is probably partly due to nonlinear effects. The
formula could be used to predict the twist of sawn timber
from measured spiral grain angles on the log surface.
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Introduction

The goal of the sawmill industry is to produce straight sawn
timber to be used as building material. Thus, distortions due
to moisture changes during drying and during service are a

major problem for construction timber. Distortion is di-
vided into crook, bow, cup, and twist, although twist is often
regarded as the most detrimental distortion. The causes of
distortions are mainly the cylindrical geometry caused by
the growth rings and the orthotropic nature of the wood
material, i.e., varying shrinkage and elasticity in the radial,
tangential, and longitudinal directions. Twist is mainly
caused by the tendency of the wood fibers to grow in a spiral
around the stem, which causes the sawn and dried timber to
twist. Knots and other kinds of local fiber variations also
influence distortion to a great degree.

Spiral grain angle can be measured in studs and in logs
with older manual methods1 or automatically2 or by com-
puterized means.3 Measurements of spiral grain angle and
its correlation to twist angle and other parameters, such as
distance from pith, log diameter, compression wood, and
growth conditions, have been made by many researchers.
Sawn timber in general is a material with varying properties
due to circumstances such as the different growth condi-
tions of individual trees, and statistical methods must be
used in order to handle the large spread in the measured
data. Nyström2 has measured twist angle and spiral grain
angle on log surfaces and found a strong correlation.
Forsberg and Warensjö4 have found that the spiral grain
angle on a log surface and the slope of the spiral grain angle
curve are strongly correlated to twist angle. Säll5 and
Johansson et al.6 have measured twist and spiral grain angle
in different ways and found correlation. Older experimental
results are described by, among others, Forsberg and
Warensjö.4 Ormarsson et al.7 have calculated twist distor-
tions for sawn timber using finite element methods (FEM).

Even though FE calculations can give detailed informa-
tion about drying distortions such as the twist of sawn
timber, there is a need for a basic mechanical understanding
of the cause of twist distortion, and, preferably, a simple
formula to make rapid calculations and predict twist distor-
tions. Until now, the formula
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derived in the late 1950s by Stevens and Johnston8 has often
been used to calculate twist distortions. The formula is valid
for the twist angle � of a thin-walled cylinder of wood with
the center axis along the pith axis, length l, radius r, thick-
ness t, where t �� r, spiral grain angle θ, and the relative
shrinkage s across the grain. In spite of the formula’s valid-
ity only for thin cylinders of wood, it is also often used for
the prediction of all sorts of twist in sawn timber. In these
cases the distance from the pith to some point in the cross
section in question, e.g., the middle point, is used as the
“mean” radius r in the formula.

In this article, the shortcomings of using Eq. 1 for calcu-
lating theoretical twist angles for sawn timber are discussed,
and a new formula is proposed where the spiral grain angle
and the gradient of the spiral grain angle with respect to the
radius and the distance to pith are included. A physical
explanation and motivation for the terms in the formula are
given, as are FE calculations and measurements which jus-
tify the modified formula.

Theory

Twist of a thin-walled cylinder

A thin-walled cylinder (cf. a single growth ring) is consid-
ered (see Fig. 1). The length is l, the radius is r, the spiral
grain angle is θ (�0 for right-handed spiral grain), and the
shrinkage coefficients are αt in the cross-fiber direction and
αl in the fiber direction. The wall thickness is negligible
compared to the radius, and the shrinkage coefficients are
defined as relative length change per change in moisture
ratio ∆w. ∆w (�0 for drying) is the ratio of the change of
mass of the moisture to the mass of the dry wood, but only
the moisture mass change below the fiber saturation point is
considered. A fibre coordinate system r-t-l is defined for a
point on the cylinder surface in the radial, tangential, and

fiber directions and a cylinder coordinate system x-y-z is
defined along the radial, tangential, and axial directions.
Presuming we have no stresses, the normal strains due to
∆w are εt � αt∆w and εl � αl∆w. After a rotation θ in the
t-l plane, by using Mohr’s strain circle, we get

ε α ε α γ α α θy t z l yz t lw w w �   �   � �  � D D D, , 2 ( ) , (2)

where it is assumed that θ is small. The strains εy and εz

represent changes in circumference and length of the cylin-
der, respectively, and the shear strain γyz leads to a twist of
the cylinder. From the elementary theory of torsion of cir-
cular shafts (e.g., see Timoshenko and Goodier9) we have
the kinematic relation

γyzl r �  j (3)

where � is the twist angle of the cylinder (�0 for right-
handed twist). Eliminating γyz with Eqs. 2 and 3 we get

j D � �  � 
l
r

w t l2 α α θ( ) (4)

which is essentially the same formula as that of Stevens and
Johnston8 if �∆wαt is replaced with s and αl is set to zero.
Because αt � αl, drying (∆w � 0) will give � the same sign
as θ, i.e., a right-handed spiral grain will result in a right-
handed twist and vice versa. The twist distortion appears
without stresses.

Twist of a circular, thick, solid cylinder

Here we disregard radial shrinkage and approximate a solid
cylinder with outer radius ry as a set of concentric thin-
walled cylinders with varying radii coupled in parallel via
end torques. Each thin-walled cylinder has the same shear
modulus and is able to twist due to the end torques. The
spiral grain angle is considered a function of the radius, θ �
θ(r). We use the condition that the angle of twist is equal
and that the resulting torque is zero from all the thin-walled
cylinders and we get the twist angle

j D � �  � 
l

r
w r dr

y
t l

ry

4
2

0

8 α α θ( )Ú . (5)

If θ is constant and not a function of the radius, then using
Eq. 5 we find that Eq. 4 can be used for a solid cylinder if r
� rm � 3ry /4 is used as a “mean” radius in Eq. 4. If θ(r) is a
linear function

θ θ
θ

r
d
dr

r( ) Ê
ËÁ

ˆ
¯̃

 �  � 0
0

(6)

where 
d
dr
θÊ

ËÁ
ˆ
¯̃  is the (constant) gradient of the spiral grain

angle function, then using Eq. 6 in Eq. 5 we conclude that
Eq. 4 gives the same result as Eq. 5 if “mean” values r � rm

� 3ry/4 and θ � θm � θ(3ry/4) is used in Eq. 4. In this case the
resulting twist distortion creates self-equilibrating shear

Fig. 1. Thin-walled cylinder with radius r, length l, and spiral grain
angle θ
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stresses in the cylinder, but the twist angle is not dependent
on the size of the shear modulus.

Twist of thin-walled and solid cylinders with axial cuts

In both of the two cases treated above, the cross sections of
the twisted bodies will not warp; i.e., they will remain plane
due to the cylindrical symmetry. However, when timber is
sawn, the growth rings are cut and the cross sections of the
sawn timber will consist of only parts of growth rings. Thus,
there is no cylindrical symmetry, and the cross sections may
warp; i.e., the cross sections do not remain plane. As an
example we may think of a thin-walled cylinder with an
axial cut. If the cylinder surface exhibits a shear strain γyz,
then the cut axial adjacent edges may move axially relative
to each other (i.e., the cross section warps) and form what is
called a screw dislocation instead of receiving a twist distor-
tion (see Fig. 2). In practice, a thin-walled cylinder with an
axial cut will receive a combination of twist and warp, and
thus the twist angle is reduced compared with the twist
angle of an uncut cylinder. Likewise, a solid cylinder with an
axial cut from the outside to the pith will also have cross
sections which will warp, and the twist angle will be less
than the twist angle for an uncut solid cylinder. In practice
we may multiply Eq. 4 with a constant factor C, 0 � C � 1
in order for it to be valid also for a thin-walled or solid
cylinder with an axial cut

j D � �  � C
l

r
w t l

m
m2 α α θ( ) . (7)

Twist of a thin strip

The twist of a thin strip is interesting to study as a simple
extreme case, because sawn timber with cross sections lying
near the outside of thick logs will have rather flat growth
rings. Here the thin strip is interpreted as a part of the

surface of a thin-walled cylinder with a very large radius.
The twist of a thin strip loaded with torques at the ends is
treated in elementary solid mechanics textbooks (e.g., see
Timoshenko and Goodier9), but instead, here we treat a
variant of the elementary problem where the twist angle �
of the strip as a function of the shear strain γyz due to
shrinkage is sought. We study the strip in a Cartesian coor-
dinate system x-y-z, where x is pointing in the radial direc-
tion, y in the tangential direction, and z in the axial direction
of the strip (see Fig. 3). The strip is thin in the x-direction,
and thus the shear strains γxy � γxz � 0, and the only nonva-
nishing shear strain is γyz. Therefore, γyz from Eq. 2 and a
linear θ variation from Eq. 6 give

γ α α θ
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γ
γ
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(8)

We now divide the influence on the twist angle � from γyz

into two separate parts, namely, first the influence of the

first term γ0 and the influence of the second term  
d

dx
xyzγÊ

ËÁ
ˆ
¯̃

0
.

We then realise at first that the constant part γ0 will not
affect the twist, because the strip is able to get a simple
shear deformation in the y-z plane due to γ0. However,
when it comes to the influence of the second term, which is
proportional to x, such a simple shear deformation is not
possible. Instead, the result is a twist angle � which we show
as follows. Twist deformation of the thin strip gives
displacements

u
l

yz u
l

xz u
l

x yx y z � �   �   � 
j j j

, , ,ψ( ) (9)

according to Saint-Venant’s theory of torsion.9 ux, uy, and uz

are displacements in the x, y, and z directions, respectively;
ψ is the warping function, and l is the length of the strip. The
displacement/strain relations give zero normal strains, but
the shear strains become

γ γ
ψ

γ
ψ

xy yz xzl
d
dy

x
l

d
dx

y �   �  �   �  � 0, ,
j jÊ

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ . (10)

Since γxz � 0 is a condition due to the thinness of the thin
strip, Eq. 10 gives the solution ψ � xy. This solution also
fulfils Laplace’s equation ∆ψ � 0, which is a necessary
requirement in torsion theory. Now Eq. 10 with ψ � xy
gives

Fig. 2. Warp of a thin-walled cylinder with an axial cut exposed to a
shear strain γyz

Fig. 3. Thin strip to be twisted around z-axis
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γyz x
l

 � 2
j

, (11)

which is the relation between shear strain and twist we seek.
Equation 11 with γyz from the second term of Eq. 8 finally
gives the twist angle

j D � �  � l w
d
dxt lα α

θ( )ÊËÁ
ˆ
¯̃

0
. (12)

Thus, the twist of a thin strip is not dependent on the
constant part of θ(x) but instead is proportional to the
gradient of θ. Because αt � αl, drying (∆w � 0) will give �

the same sign as  
d
dx

θÊ
ËÁ

ˆ
¯̃

0
; i.e., a positive spiral grain gradient

(θ increases with increasing radius) will give a positive �
and vice versa. The sum of influences on � of Eqs. 12 and 4
contains two terms which can act opposite to each other, as
is the case for Norway spruce. Norway spruce normally has
a left-handed spiral grain (θ0 � 0) at the pith which linearly
changes toward a right-handed spiral grain at the log

surface (  
d
dx

θÊ
ËÁ

ˆ
¯̃

0
 �0).2,5

Twist of studs with arbitrary cross sections

A dimensional analysis of the twist angle of a stud with a
specified cross section b � h cut from a log at different
distances rm from the pith (see Fig. 4) is done under the
following assumptions: θ is a linear function (see Eq. 6)
which here is characterised by a value θm in the middle of

the cross section, and the constant gradient  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
. � is

proportional to �∆w(αt � αl)l and is a function of θm,

 
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, rm, and the cross section width b and height h. Then

�/[�∆w(αt � αl)l] is a function of θm, 
 

d
dr
θÊ

ËÁ
ˆ
¯̃

0
, rm, b, and h.

According to standard theory of dimensional analysis, �rm/
[�∆w(αt � αl)l] must then be a function of the four dimen-

sionless variables θm,  
d
dr

rm

θÊ
ËÁ

ˆ
¯̃

0
, b/h, and b/rm. Rewriting and

expanding � as a series according to Taylor’s formula,
retaining only the linear, first-order terms and using the

condition that � � 0 if   �  � θ
θ

m
d
dr

Ê
ËÁ

ˆ
¯̃

0

0  gives as the only

option the first-order approximation

j D � �  �  � l w C
r

D
d
drt lα α

θ θ( ) Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2

0

m

m
(13)

where C and D are undetermined constants. The reason for
choosing 2C and not C as a constant is in order to keep
similarity with Eqs. 4 and 7. Now, in view of the discussion
of the case of the twist of a thin-walled cylinder and the
twist of a thin strip, the two terms in Eq. 13 can be physically
explained as follows: realistic studs have cross sections that
consist of more or less complete growth rings, growth-ring
half rings, or parts of growth rings that are quite flat. The
twist angle can be approximated as a sum of contributions
from both the effect of spiral grain of growth ring cylinders
according to Eqs. 4 and 7 and the effect of the spiral grain
gradient of flat growth rings according to Eq. 12. The C and
D constants determine the contribution of each term, and
we expect them to be of the order of magnitude �1. The
second term explains the perhaps surprising result from FE
calculations that Eq. 4 does not explain, namely, that a stud
with a cross section where the middle point and also all
other points in the cross section have a left-handed spiral
grain can still exhibit a right-handed twist after drying.

With Eq. 6 we can substitute θm for θ0 in Eq. 13 and get

j D � �  �  �  � l w C
r

C D
d
drt lα α

θ θ( ) ( )ÊËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2
20

0m
. (14)

Solving for the cross section radius rm0 which will give twist
angle � � 0, gives

r
C

C D d
dr

m0 � �
 � 

2
2

0

0

( ) Ê
ËÁ

ˆ
¯̃

θ
θ . (15)

If the r value where θ � 0 is notated as rθ0, then from Eq. 15
we get

r
C

C D
rm0 � 

 � 

2
2 0( ) θ . (16)

Equation 16 shows that if rm0 � rθ0, then D � 0 and no
gradient term exists. If rm0 � rθ0 then the gradient term exists
and D � 0. This fact can be used to experimentally prove
the existence of the second term; i.e., that D � 0. There is no
influence from the cross section dimensions b and h in the
first-order approximation according to Eq. 13, but such an
influence will exist if a second-order analysis is made.Fig. 4. Place of cross section of stud in log
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Materials, methods, and results

FEM calculations were made using ABAQUS10 with a cylin-
drical, linear elastic orthotropic material model for 50 �
100-mm cross sections. The FEM model has 50 � 10 � 50
parabolic elements and the boundary conditions only re-
strict rigid-body movements. The elastic, orthotropic mate-
rial data (see Table 1), are valid for Norway spruce and
taken from Ormarsson et al.7 A typical deformed stud is
shown in Fig. 5.

Twist angles when drying studs are calculated with FEM

for different values of θm,  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, and rm. The FEM results

for rm � 25mm and rm � 50mm are shown in Fig. 6a and 6b

as the influence of  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
 on � for constant θm and the

influence of θm on � for constant  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, respectively. The

linear behaviour shown in Fig. 6a and 6b agrees with the
predicted linear behaviour of Eq. 13 and an evaluation of C
and D by fitting Eq. 13 to the FEM results for varying rm

values gives the C and D values shown in Fig. 7. C � 0.48
and D � 1.05 are chosen here as the C and D values that
make Eq. 13 agree with linear FEM.

Twist angles � for studs have been measured11 and corre-
lated to the spiral grain angle measured on the stud surface

θstud. The result is � � 1.23 θstud for 50 � 100-mm cross
sections with rm � 25mm, ∆w � �0.1, l � 1m, and αt � αl �
0.345. This result corresponds to Eq. 13 with C � 0.37 and
D � 0.74.

Table 1. Orthotropic material constants

Direction

Radial (r) Tangential (t) Fiber (l)

Elastic modulus Er, Et, El (MPa) 400 220 9700
Shear modulus Grt, Grl, Gtl (MPa) 25 400 250
Poisson’s ratio Jr�, Jrz, J�z 0.55 0.0124 0.0136
Moisture expansion coefficients αr, αt , αl 0.19 0.35 0.0045

Fig. 5. Finite element method (FEM) calculated deformed shape of 50

� 100-mm stud with rm � 25mm, θm � �3°, l � 3m, 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

0  � , ∆w �

�0.11, αt � αl � 0.345. The deformation is exaggerated by a factor 2
a

b

m

m

m

m

m

Fig. 6. a Twist angle � as a function of 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

 for θm � �1.5°. b Twist

angle � as a function of θm for 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

 � 0.044°/mm. Calculated with

FEM for rm � 25 mm and 50mm for a 50 � 100-mm cross section with
l � 3 m, ∆w � �0.11 and αt � αl � 0.345
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Figure 8 shows the influence of each of the two terms of
Eq. 13 on � for the two sets of C and D constants mentioned
above, namely, C � 0.48 and D � 1.05 from linear FEM and
C � 0.37 and D � 0.74 from Trätek11 measurements. Equa-
tion 1 is also shown in Fig. 8.

Discussion

Figure 7 shows that the C and D values are reasonably
constant, and therefore Eq. 13 has good accuracy compared
with the FEM calculations for rm values in the interval of

25 to 225mm. The linear relation between  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
 and � for

constant rm and θm shown in Fig. 6a indicates the validity of
Eq. 13 and the influence of the second term in Eq. 13. In the
same way, Fig. 6b shows the linear relation between � and

θm for constant  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
 and rm, which shows the influence of

the first term of Eq. 13. The FEM results confirm that a
cross section with negative θ values in all material points all
over the cross section may achieve a positive twist if the

gradient  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
 is positive enough.

Comparison with the experimental results obtained at
Trätek11 (see Fig. 8 and Table 2) show that Eq. 13 overesti-
mates the twist if the C and D values which conform to
linear elastic FEM calculations are used. If the C and D
values are chosen to make Eq. 13 fit to the Trätek11 experi-

mental results, then we get lower C and D values. The
reason for the overestimation of twist in the FEM calcula-
tions may be the linear elastic assumption in the FEM calcu-
lations, which excludes plastic and creep effects. In practice,
this reduces the drying deformations and makes the FEM
calculation exaggerate the twist. Also, ∆w is not constant in
practice, as is assumed in the FEM calculations, but instead
can vary over the cross section. Thus, Eq. 13 with C � 0.48
and D � 1.05 gives an upper limit for the twist angle �,
which can possibly be reached for a stud with no constraints
during drying and exposed to a very slow low-temperature
drying course of events with small creep or plastic effects.
Figure 8 shows the relationship between the C term and the
D term in Eq. 13 and that the D term is larger than the C
term for rm � 35mm. Also Fig. 8 shows that Eq. 1 overesti-
mates � for small rm values. This behavior was also observed
by Säll5 and Johansson et al.6

Equation 13 with C and D values adjusted to fit the
situation in question, whether it is an experimental or a

Fig. 7. C and D constants for varying radii rm evaluated from FEM

calculations on 50 � 100-mm cross sections with θ0 � �3° and 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

�

0  and 0.03°/mm, respectively. l � 3m, ∆w � �0.11, αt � αl � 0.345

Table 2. Evaluated C and D factors

Method C D

From linear FEM 0.48 1.05
From experiments by Trätek11 0.37 0.74

Fig. 8. Twist angle � according to Eq. 13 shown as divided in the C
term and the D term and the sum of the terms and according to Eq. 1.
Linear FEM has C � 0.48 and D � 1.05 and the Trätek11 measurement

has C � 0.37 and D � 0.74. θ0 � �3.3°, 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

 � 0.044°mm , l � 3.0 m,

∆w � �0.10, and αt � αl � 0.345
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theoretical situation, could be a good choice for calculating
the twist angle � for a stud, knowing the spiral grain angle
θ at an arbitrary point in the log cross section, e.g., a point
on the log surface or a point on the stud surface. One
practical use of the formula is to predict the twist a certain
stud will achieve after drying with the aid of measured θ
angles on the log surfaces, e.g., in a sawmill.
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