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Abstract The object of this study was to investigate the
inhomogeneity of density within a beam from a relationship
between the dynamic Young’s moduli from the Euler-
Bernoulli elementary theory of bending (En) and resonance
mode numbers (n), which is plotted as the “E–n” diagram in
this article. Rectangular beams with dimensions of 300 (L) ¥
25 (R) ¥ 5mm (T) of Sakhalin spruce (Picea glehnii Mast.),
Sitka spruce (Picea sitchensis Carr.), Japanese red pine
(Pinus densiflora Zieb. et Zucc.) and white oak
(Cyclobalanopsis myrsinaefolia Oerst.) were used for speci-
mens. Small parts of beams were replaced with a small
portion of another species to examine the influence of the
inhomogeneity of density on En. A free–free flexural vibra-
tion test was undertaken and En was calculated by the
Euler-Bernoulli theory. The resonance frequency of a
specimen with inhomogeneity of density was simulated by
modal analysis. The density distribution in the longitudinal
direction of the specimen for which En did not decrease
monotonically with n was obtained. From the modal analy-
sis, the inhomogeneity of density was equivalent to a con-
centrated mass attached to a uniform beam. The pattern of
the E–n diagram was changed by replacing a part of the
specimen with another species. Specimens for which En did
not decrease monotonically with n had a high density part
because of indented rings, knots, or resin.

Key words Euler-Bernoulli bending theory · Flexural
vibration test · Inhomogeneity of density · Resonance mode
number · Young’s modulus

Introduction

In a previous report,1 we investigated the influence of a
concentrated mass attached to a wooden beam on its
Young’s modulus (En) based on the Euler-Bernoulli el-
ementary theory of bending. As a result, En decreased with
an increase in the resonance mode number (n) without iron
pieces used as additional mass, but there was no such
tendency when the concentrated mass was bonded to the
specimen: the relationship between En and n, which is called
the “E–n diagram” in this article, corresponded to the posi-
tion of the bonded mass. This occurred because the con-
stants used in the Euler-Bernoulli theory were changed by
the additional mass. Thus, an equation to correct the influ-
ence of the additional mass was developed. This equation
was effective wherever concentrated mass existed in a
beam.

Given these results, it is possible that the inhomogeneity
of density within a wooden beam can be shown by the E–n
diagram. In this study, a wooden rectangular beam that was
partly replaced by a small piece of another species was used
as the simplest model of the specimen with the inhomoge-
neity of density and En was investigated.

Experimental

Specimens

Sakhalin spruce (Picea glehnii Masters), Sitka spruce (Picea
sitchensis Carriége), Japanese red pine (Pinus densiflora
Ziebold et Zuccarini), and white oak (Cyclobalanopsis
myrsinaefolia Oerstedt) were used for specimens. The di-
mensions of the base wood were 300mm (longitudinal, L) in
length, 25mm (radial, R) in width, and 5mm (tangential, T)
in thickness. A 25 (R) ¥ 5 (T) ¥ 20mm (L) piece was elimi-
nated from the base wood, and a small piece of the same
dimensions of another species was fixed with an epoxy resin
adhesive between the two parts of the base wood. The small
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piece was inserted at x = 0.1l, 0.2l, 0.3l, 0.4l, and 0.5l, where
l is the total length of the specimen (Fig. 1).

There were several specimens for which En did not de-
crease monotonically with n, as shown later. It is thought
that such specimens had inhomogeneity of density. Hence,
these specimens were divided into small pieces after mea-
suring En and the change in density in the L-direction was
examined.

The specimens were conditioned at 20°C, and 65% rela-
tive humidity (RH) for several months. The tests were con-
ducted under the same conditions.

Vibration test

To obtain En by bending, free–free flexural vibration tests
were conducted by the following procedure. The test beam
was suspended by two threads at the nodal positions of the
free–free vibration corresponding to its resonance mode.
Vibration was excited in the direction of the thickness at
one end by a hammer. Motion of the beam was detected by
a microphone at the other end. The signal was processed
through a fast Fourier transform (FFT) digital signal ana-
lyzer to yield high-resolution resonance frequencies.

Estimation of the pattern of the E–n diagram by
vibration test

According to the Euler-Bernoulli elementary theory of
bending, En is calculated as follows:
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where r, f, m, and h are density, resonance frequency, con-
stant, and thickness, respectively, and subscript n is reso-
nance mode number.

The constant mn of a beam with additional mass (M)
satisfies the following equation:1
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where a and b (a + b = 1) indicate the position of the
inserted small piece (Fig. 1), m = M/rAl (A is cross-sectional
area) is the ratio of the additional mass to the mass of the
beam. In this study, m was used as the index of the inhomo-
geneity of density and was calculated as follows:

        
m = -( )W W WM U U (3)

where WU and WM are weights of a specimen before and
after inserting the small piece, respectively. In other words,
the change in weight caused by inserting the small piece was
regarded as the additional mass. We used the density of the
base wood before and after inserting the small piece sup-
posing that the inserted small piece is composed of the base
wood and additional mass. The superscripts “U” and “M”
mean “uniform” and “additional mass,” respectively, and
do not represent mathematical exponents.

In the case of m = 0, Eq. 2 becomes:

      cosm mn ncosh .- =1 0 (4)

This is the equation for a beam that has both ends free
without the additional mass.

The En of wood with the inhomogeneity of density was
estimated as follows. The resonance frequency of a uniform
beam before dividing into two parts (fn

U) was measured.
Then, because only the resonance frequency and mn in
Eq. 1 were changed by the additional mass, the resonance
frequencies of a beam with the inhomogeneity of density
(fn

M) were estimated by Eq. 5:
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where, mn
U and mn

M are calculated from Eqs. 4 and 2, respec-
tively. Then En is estimated from Eq. 1 using fn

M and mn
U. The

estimated En was compared with the experimental value of
a beam with the small piece from Eq. 1 using the measured
resonance frequency and mn

U.

Modal analysis

To simulate the resonance frequency, modal analysis
was conducted using the finite element method program
ANSYS 5.7 (ANSYS Inc.). The resonance frequencies of
the first to fifth modes were calculated with the block
Lanczos method. The dimensions of the specimen were
25mm in width, 5mm in thickness, and 300mm in length.
Dividing the length into 20 two-dimensional isotropic
elastic beam-type elements, the size of each element was
25mm in width, 5mm in thickness, and 15mm in length. The
element numbers ranged from 1 at one end to 20 at the
other end. The parameters for the modal analysis were as
follows: density was 0.461g/cm3 and Young’s modulus was
14.0GPa. These values were the averages of the Sakhalin
spruce used in this study. Simulating the case of the inhomo-
geneity of density at x = 0.1l, 0.2l, 0.3l, 0.4l, and 0.5l, the
density of the adjacent elements (2, 3), (4, 5), (6, 7), (8, 9),
and (10, 11) were all doubled (m = 0.1). The simulated
resonance frequency was compared with the theoretical

Fig. 1. Specimen with inhomogeneity of density. The hatched part
shows inhomogeneity of density
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value calculated using density = 0.461g/cm3, Young’s modu-
lus = 14.0GPa, and Eqs. 1 and 2.

Results and discussion

Table 1 shows the simulated resonance frequencies for the
modal analysis, which were compared with the theoretical
values. The results of the modal analysis were similar to the
theoretical values. This indicates that the inhomogeneity of
density can be equivalent to a concentrated mass attached
to a uniform specimen in Eq. 2.

Figure 2 shows the influence of the inhomogeneity of
density on the E–n diagram. Before inserting the small
piece (crosses), En decreased with an increase in the reso-
nance mode number.

The En after inserting the small piece was estimated by
the procedure mentioned above. The averages of the
Young’s modulus and density of the base wood (Sakhalin
spruce) were 0.461g/cm3 and 14.0GPa, respectively, as men-
tioned above and those of the inserted small piece (white
oak) were 0.842g/cm3 and 18.4GPa, respectively; these
were used for calculation.

It can be considered that En is not subject to the addi-
tional mass if the small piece is inserted at a nodal position
of the specimen. Hence, from Table 2, the position of the
inserted small piece and the estimated En, which is similar
to the initial value, are supposed to be the following cases:
x = 0.1l: E2 and E3; x = 0.2l: E1 and E5; x = 0.3l: E1, E3, and E4;
x = 0.4l: E3 and E5 ; x = 0.5l: E2 and E4. In other cases, the
Young’s modulus will be decreased by the inhomogeneity
of density: x = 0.1l: E1, E4, and E5 ; x = 0.2l: E2, E3, and E4;
x = 0.3l: E2 and E5; x = 0.4l: E1, E2, and E4; x = 0.5l: E1, E3,
and E5. The estimated En (unfilled circles in Fig. 2) showed

Table 1. Theoretical and simulated resonance frequencies

m a n mn fn (Hz)

Theoretical Simulated Ratio

0 (Initial) 1 4.730 315 315 1.000
2 7.853 867 866 0.999
3 10.996 1701 1697 0.998
4 14.137 2811 2803 0.997
5 17.279 4200 4182 0.996

0.1 0.1 1 4.630 301 300 0.997
2 7.825 861 853 0.991
3 10.993 1700 1673 0.984
4 14.042 2774 2731 0.984
5 16.967 4049 4035 0.997

0.1 0.2 1 4.726 314 313 0.997
2 7.748 844 842 0.998
3 10.649 1595 1603 1.005
4 13.813 2684 2687 1.001
5 17.180 4152 4081 0.983

0.1 0.3 1 4.699 311 310 0.997
2 7.580 808 810 1.002
3 10.871 1662 1654 0.995
4 14.081 2789 2745 0.984
5 16.724 3934 3970 1.009

0.1 0.4 1 4.620 300 300 1.000
2 7.707 836 834 0.998
3 10.901 1671 1658 0.992
4 13.657 2624 2641 1.006
5 17.264 4192 4089 0.975

0.1 0.5 1 4.582 295 296 1.003
2 7.853 867 862 0.994
3 10.577 1573 1582 1.006
4 14.137 2811 2760 0.982
5 16.705 3925 3966 1.010

The theoretical and simulated resonance frequencies were obtained from Eqs. 1–3 and the modal
analysis, respectively. Ratios were obtained by the simulated / theoretical resonance frequencies.
Inhomogeneity existed at x = al. mn was obtained by Eq. 2. m, Degree of inhomogeneity of density
(Eq. 3); n, resonance mode number; fn, resonance frequency

Table 2. Nodal points of the free–free vibration

Resonance mode

1st 2nd 3rd 4th 5th

0.2242l 0.1321l 0.0944l 0.0735l 0.0601l
0.7758l 0.5000l 0.3558l 0.2768l 0.2265l

0.8679l 0.6442l 0.5000l 0.4091l
0.9506l 0.7232l 0.5909l

0.9265l 0.7735l
0.9399l

Values calculated from Eq. 4
l, length of a beam



23

such tendencies. The En was compared with the measured
value (filled circles in Fig. 2). Both Young’s moduli were
very similar. The unfilled and filled circles of x = 0.3l were
overlapped. Hence, Eq. 2 is effective when considering that
the inserted small piece consists of the base wood and addi-
tional mass. The influence of adhesive layers was not
thought to be serious.

In practical cases, because it is difficult to guess the de-
gree of the inhomogeneity of density within a beam, that is
to say, to estimate m by its looks, the average density of the
beam is used for Eq. 1. Thus, En using the average density
after inserting the small piece is also shown in Fig. 2 (filled
triangles). Although the Young’s moduli were changed
by the density used as a matter of course, the patterns of the
E–n diagram themselves were the same.

The position of the inhomogeneity was predicted
based on the E–n diagram shown in Fig. 2 as follows.
Figure 3 shows typical examples of the density change in the

L-direction of the specimens for which En did not decrease
monotonically with n. A small piece was not inserted in
the case of Fig. 3. Although the ratio of the density of
each small piece to that of the initial specimen is
different from m, this value is useful to express the density
distribution.

In the case of Fig. 3a, because E1 is smaller than E2, the
density around x = 0.1l would be larger than that at other
positions. As expected, the density around x = 0.1l is the
highest. This is a similar pattern to that seem in Fig. 2, x =
0.1l. In the case of Fig. 3b, it was supposed that inhomoge-
neity of density existed at x = 0.2l because E5 is larger than
E4. The density is largest around x = 0.2l and resin existed
there (Fig. 2, x = 0.2l). In the cases of Fig. 3c,d, the large
density part is around x = 0.3l because E2 < E3. The predic-
tion was correct and there were indented rings2–4 in the case
of Fig. 3c and a knot in the case of Fig. 3d around x = 0.3l
(Fig. 2, x = 0.3l and x = 0.4l). In the case of Fig. 3e, given that
En values of even-resonance modes increased, the high den-
sity part would be around x = 0.5l. Such parts were around
x = 0.5l and 0.9l and there were indented rings there. We
think that the influence on En was larger around x = 0.5l
than around x = 0.9l (Fig. 2, x = 0.5l).

Fig. 2. Influence of the inhomogeneity of density on the E–n diagram.
The base wood and small piece were Sakhalin spruce and white oak,
respectively. The positions of the inhomogeneity of density were x =
0.1l, 0.2l, 0.3l, 0.4l, and 0.5l. Crosses, initial values before inserting a
small piece; unfilled circles, values estimated from Eq. 1 using fn

M and
mn

U; filled circles, measured values using the density before inserting a
small piece; triangles, measured values using the density after inserting
a small piece

Fig. 3. Estimation of the inhomogeneity of density by the E–n diagram
for different samples. Crosses, En; circles, relative density (each small
piece / initial specimen)
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In order to precisely determine whether inhomogeneity
of density exists in a beam, and if so, where its position is, a
huge number of beams should be examined. However, it is
safe to state that inhomogeneity of density exists at some
place in a beam when En does not decrease with n. There is
some research on the influence of partial density variation
on the flexural vibrational properties.5–8

Additionally, Fig. 3 indicates that the indented rings as
well as the resin and knot were causes of the inhomogeneity
that were significant enough to change En. Although it is
natural that wooden beams with resin and knots are not
used as a clear specimen, beams with indented rings
also cannot be used. The existence of the indented rings
should be checked, especially when the shear modulus of a
thin wooden beam is measured with the flexural vibration
test.9–12 If En does not decrease with an increase in n because
of the indented rings, the shear modulus cannot be calcu-
lated adequately with the Goens-Hearmon regression
method13,14 based on Timoshenko theory of bending.15

In the case of lumber for actual use, this simplest
model may not be useful because such long lumber has
inhomogeneity of density at various positions in it. How-
ever, specimens without any defect are needed in basic
experiments: when some treatments to wood, such as
chemical treatments and compressing are investigated with
high accuracy, small clear specimens are used. In these
cases, unless properties of the specimens before the treat-
ment can be obtained properly, the effect and mechanism
of the treatment cannot be understood. Thus, it is useful
to guess the inhomogeneity of density of a small clear
specimen. Specimens with inhomogeneity of density can be
eliminated before the treatment from the pattern of the
E–n diagram.

Conclusions

The inhomogeneity of density within a beam was investi-
gated. Simulating the resonance frequency with the modal
analysis, the inhomogeneity of density was equivalent to a
concentrated mass attached at a uniform beam. The pattern
of the E–n diagram was changed by replacing a part of the
specimen with another species. The En of a specimen with
inhomogeneity of density did not decrease monotonically

with n. Therefore, we think that the E–n diagram is useful
for finding the inhomogeneity of density.
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