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Abstract Resonance frequencies of beams with various
types of end supports were examined for flexural vibration.
Rectangular beams with dimensions of 300 (L) ¥ 25 (R) ¥ 5
or 10mm (T) were used as the test specimens. Various
compressing stresses were applied to the parts around both
ends of a test beam and flexural vibration tests were con-
ducted. The measured resonance frequency started to in-
crease from the resonance frequency of a beam with simply
supported ends and was stable around the resonance fre-
quency of a beam with fixed ends as the compressing stress
increased. The stable resonance frequency was lower than
the theoretical value because perfect fixation of a beam to a
post was difficult. From these results, the temporal change
in resonance frequency itself, rather than the stable reso-
nance frequency, is effective to examine whether a beam
has enough strength as a guardrail.

Key words Boundary conditions · Fixed ends · Flexural
vibration test · Resonance frequency · Timber guardrail

Introduction

In 1998, timber guardrails were approved for use in national
and prefectural roads if they could pass a crash test with
cars and trucks. Various timber guardrails have been subse-
quently developed and more than 50km of timber guard-
rails are in use today.1,2

A method to estimate deterioration of wood used for
guardrails, however, has not been established. Conse-
quently, it is difficult to decide when the guardrails should
be replaced.

For this purpose, obtaining the changes in strength over
time of the wood for the timber guardrail is important.
Although the strength can be measured accurately by re-
moving the wood from a guardrail, this method is difficult to
adopt because it takes much time. Hence, a testing method
by which the appropriate strength can be measured in the
lumber fixed to a post of a guardrail is needed. Naturally,
the test should be conducted without rupturing the
specimen.

Young’s modulus is one of the properties that is related
to the strength and can be obtained without damaging the
specimen. One method for measuring Young’s modulus is a
flexural vibration test.

The flexural vibration test has been widely used because
of its simplicity. There have been several studies on its
testing method: for example, the supporting position of a
specimen, the distance between a specimen and a head of a
vibration generator,3 and gripping of a cantilever-type
specimen have been examined. However, these studies do
not assume measurements in actual end conditions of a
beam used as a guardrail but rather for typical end condi-
tions: hinged, clamped, sliding, and free.

A beam for a timber guardrail is fixed to a post by a bolt
through a bracket (Fig. 1). Therefore, the end conditions of
the beams used as timber guardrails are thought to be be-
tween those of simply supported ends and fixed ones. In
actual structures, however, the resonance frequency of
beams with simply supported ends is increased by 20%
when taking the restriction by joints and the effect of floor
joists into account.4–6

On the other hand, the resonance frequency of a beam
with fixed ends is about twice as large as that of a beam with
simply supported ends, according to the Euler-Bernoulli
elementary theory on bending. Hence, end conditions of a
beam must be understood to accurately measure the
Young’s modulus of wood lumber in actual structures. We
investigated matters that require attention in conducting
the fixed–fixed flexural vibration test.
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Theory

An elastically supported beam

According to the Euler-Bernoulli theory, the differential
equation for the bending of a beam is
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where E, I, y, x, r, A, and t are Young’s modulus, moment
of inertia of a cross section, lateral deflection, distance
along the beam, density, cross-sectional area, and time,
respectively.

Solving Eq. 1 gives us
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where C1–C4 are constants, and
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where fn and n are resonance frequency and resonance
mode number, respectively. Then, resonance frequency is
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where mn = lnl and l is length.
The first resonance mode is discussed in this study. For

symmetric modes, C2 = C4 = 0.
When the ends of a beam are restricted by springs for

vibration in the y-direction (k1 and k3 in Fig. 2) and rotation
(k2 and k4 in Fig. 2), the boundary conditions are
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Substituting Eq. 2 into Eq. 5 under conditions of k1 = k3

and k2 = k4 gives
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When the solution of Eq. 6 is not C1 = C3 = 0, the deter-
minant of the matrix is 0. Then, the following equation is
obtained.
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With both end parts of a specimen being supported by
posts in our experiment, k1 is assumed to be •. Conse-
quently, Eq. 7 is
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If k2 = 0, Eq. 8 becomes
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Hence, m1 is p. This is the value for a simply supported
beam.

If k2 = •, Eq. 8 becomes
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Fig. 1. Timber guardrail

Fig. 2. A test beam supported elastically
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Hence, m1 is 4.730. This is the value for a beam with fixed
ends.

The m1 of Eq. 8 is plotted to k2 as shown in Fig. 3.

Timoshenko theory of bending

Flexural vibration is influenced by shear and rotary inertia.
Timoshenko added these terms to the Euler-Bernoulli el-
ementary theory of bending and developed the following
differential equation of bending:9
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where G is shear modulus and s = 1.18 is the shear deflection
coefficient.10

When Eq. 11 is solved under the fixed–fixed condition,
the resonance frequency fn can be written as follows:
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The value of pn in Eq. 11 is obtained by the following
transcendental equations:
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for symmetric modes, where
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Experimental

Specimens

To investigate wood species with various density, kiri (pau-
lownia, Paulownia tomentosa Steud.), sugi (Japanese cedar,
Cryptomeria japonica D. Don), akaezomatsu (Sakhalin
spruce, Picea glehnii Mast.), shioji (ash, Fraxinus spae-
thiana Lingelsh.), and shirakashi (white oak, Quercus
myrsinaefolia Blume) were used as specimens. The dimen-
sions of each specimen were 300mm (longitudinal, L) in
length, 25mm (radial, R) in width, and 5 or 10mm (tangen-
tial, T) in thickness.

The specimens were conditioned at 20°C and 65% rela-
tive humidity for several months. The tests were conducted
under the same conditions.

Vibration test

To obtain the resonance frequency of the first mode by
bending, flexural vibration tests were conducted by the fol-
lowing procedure. An apparatus (End condition controller
KS-200 Takachiho Seiki) shown in Fig. 4 was used to pro-
vide various end conditions. The regions of 25 (L) ¥ 25mm
(R) from both ends were supported by the posts of the
apparatus, the cross section of which was 25 ¥ 25mm. By
screwing a bolt attached to a load cell, the test beam was
compressed. The compressing load was measured by the
load cell and recorded by a data logger. The vibration was
excited in the direction of the thickness at the center part by
a hammer. Motion of the beam was detected by a micro-
phone in the center part. The signal was processed through
a fast Fourier transform (FFT) digital signal analyzer to
yield high-resolution resonance frequencies.

A free–free flexural vibration test was also undertaken to
measure the Young’s and shear moduli. A test beam was

Fig. 3. Solutions of Eq. 8 for various k2. Parameters used: Young’s
modulus 12GPa, width 25mm, thickness 5mm, length 300 mm

Fig. 4. The vibration test under various end conditions
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suspended by two threads at the nodal positions of the free–
free vibration corresponding to its resonance mode. The
vibration was excited and recorded by the above-described
method. The Young’s and shear moduli were calculated
with the following regression method, which is called the
“TGH method” in this article.

Goens11 approximated the solution of the Timoshenko
differential equation (Eq. 11) by a Taylor series. Hearmon12

regarded the approximated equation of the solution as a
linear equation. Using the Young’s moduli based on the
Euler-Bernoulli elementary theory of bending of several
resonance modes, the regression is made and the Young’s
and shear moduli can be obtained from the slope and inter-
cept.12 By the TGH method, Young’s modulus (ETGH) and
shear modulus can be calculated at the same time using only
the flexural vibration test.

Substituting ETGH and mn = 4.730 (the frequency equa-
tion of a beam with free ends is the same as Eq. 10) into Eq.
4, the resonance frequency without the shear and rotary
inertia effects (f0) was obtained. On the other hand, the
resonance frequency taking the shear and rotary inertia
effects into account (fS) was calculated by solving Eq. 13
with “Mathematica Ver. 3.0” software (Wolfram Research)
using ETGH and the shear modulus, and then substituting
ETGH and the obtained pn into Eq. 12.

Results and discussion

For all the wood species used for the experiments, the mea-
sured resonance frequency increased rapidly early in the
increasing compression load process and approached the
value of the fixed ends (Fig. 5). This trend was similar to the
m1–k2 relationship shown in Fig. 3. These results show that
the measured resonance frequency, and consequently the
specific Young’s modulus, ran the risk of being smaller than
the true value if the wood was not fixed completely to the
post of a guardrail. It is difficult to place and remove a load
cell or a torque meter on site. Therefore, the stable reso-

nance frequency should be recorded by increasing the load
for fixing it.

However, it should be noted that the measured reso-
nance frequency that was stable at larger compression stress
was smaller than f0: for example, the resonance frequency at
the maximum compression stress (fM) was about 95%
(thickness: 5mm) and 85% (thickness: 10mm) of f0 (Table
1). These discrepancies cannot be ignored, especially in the
case of thickness = 10mm: the specific Young’s modulus is
0.852 = 0.72 of the true value.

The resonance frequency of the part of a beam without
compression stress is decreased by the shear and rotary
inertia effects in flexural vibrations when a beam is thick
and resonance mode number is large.9 Thus, such effects
were examined. The fact that fS decreased by only 0.3%–1%
and less than fM (Table 1) means that the shear and rotary
inertia effects in the part without the compression stress
were not serious.

Fig. 5. Changes in resonance
frequency with compression for
5-mm-thick spruce (left) and
10-mm-thick spruce (right)

Table 1. Ratio of measured resonance frequency to estimated
frequency

Wood type fM/f0 fS/f0

Thickness: 5 mm
Paulownia 0.957 0.997
Cedar 0.959 0.998
Spruce 0.952 0.997
Ash 0.940 0.996
Oak 0.941 0.997
Thickness: 10 mm
Paulownia 0.856 0.990
Cedar 0.885 0.992
Spruce 0.841 0.987
Ash 0.803 0.984
Oak 0.867 0.991

fM, The measured resonance frequency at the maximum compression
stress; fS, the resonance frequency taking the effect of shear deforma-
tion and rotary inertia into account estimated by substituting ETGH and
pn into Eq. 12; f0, the resonance frequency without the effect of shear
deformation and rotary inertia estimated by substituting ETGH and mn =
4.73 into Eq. 4
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Next, the shear deformation and rotation at the com-
pressed part was examined to investigate the poor fixation.
Although the part of a specimen around a post apparently
did not vibrate in the thickness direction because of com-
pression, it would be difficult to restrict the shear deforma-
tion and rotation perfectly: dividing a test specimen into
many elements like a finite element method (FEM) simula-
tion, the shear deformation and rotation of elements
around x = 0 in Fig. 6 will not be restricted sufficiently. The
length–thickness plane of such an element will be shear-
deformed and rotated easily during vibration in the thick-
ness direction. In this case, the slope around the compressed
part is not 0 and k2 will not be •.

According to the theory described above, under the con-

dition of k1 = • and k2 π •, 
      

m mn n

2 2
0+ πtanh  in Eq. 10.

Hence, m1 is smaller than the value for a beam with fixed
ends (Fig. 3), thus, the resonance frequency decreases.

Assuming that the size of the element is the same, there
are more elements in the thickness direction in a thick
specimen than in a thin one. Therefore, the resonance fre-
quency decreased more in the case of thickness = 10mm
than 5mm. When k2 π •, mn is also influenced by E, I, and
l from Eq. 8 (see Fig. 7).

Although it is difficult to obtain the resonance frequency
accurately from the fixed–fixed flexural vibration test men-
tioned above, this testing method is nevertheless effective
to maintain and control qualities of timber guardrails. This
testing method is useful for the 100% inspection of wooden
beams for timber guardrails and the results dominate me-
chanical properties.

Fig. 6. Deformation of an element at compressed parts

Fig. 7. Method for solving Eq. 8

Members of metal guardrails are manufactured in facto-
ries so that their qualities meet the requirements of Ministry
of Land, Infrastructure, and Transport of the Government
of Japan, which means that all members are tested. Simi-
larly, the 100% inspection will have to be conducted in the
case of timber guardrails. Testing all wooden beams directly
after constructing timber guardrails enables the initial prop-
erties and location of each beam to be obtained simulta-
neously. Consequently, periodic inspections of timber
guardrails will be simplified. For example, inspections can
be concentrated on beams with lower initial resonance
frequency.

A visual inspection is also important and can be per-
formed simply, but the vibration test has particular
advantages over it. The resonance frequency reflects the
mechanical properties of the inner layers, unlike the the
visual inspection which can only provide information on
the surface. Results of the visual inspection may also be
different from worker to worker. Even if a wooden beam
looks deteriorated, it may not be necessary to replace a
beam if the mechanical qualities fulfill the requirements.

Conclusions

The resonance frequency in timber guardrail beams be-
tween the simply supported condition and fixed condition
was obtained from flexural vibration tests. The results were
as follows:

1. The measured resonance frequency started to increase
from the resonance frequency of a beam with simply
supported ends and approached that of fixed ends as the
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compressing stress increased. This trend was similar to
the m1–k2 relationship in Eq. 8.

2. The stable resonance frequency was lower than the theo-
retical value because perfect fixation of a beam to a post
was difficult: it would be difficult to perfectly restrict the
shear deformation and rotation of the part of a specimen
around a post.

3. Temporal change in the stable resonance frequency will
be effective to estimate the deterioration of wooden
beams used for timber guardrails.
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