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Abstract Rot is known to affect the strength properties of
wood. At the same time, the damping properties of the
attacked material have also been shown to change. This
article presents the results of an experimental study in
which rot in wood was modeled by the replacement of wood
with sand. The procedure entailed the drilling of holes in
the body of a wooden beam, filling the holes with sand, and
monitoring the changes induced by the sand-filled holes on
the values of the modulus of elasticity (MOE) and of the
loss factor. The MOE was calculated from the resonance
frequency of the first longitudinal mode of vibration, and
the loss factor was obtained indirectly from the impulse
response by means of a room acoustical technique. The
results show that the MOE value, and hence the strength
characteristic of the wood specimen, decreases at the same
time as the loss factor increases.
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Introduction

Wood is an important material because it is used in several
applications such as building and furniture and paper
manufacture, and the qualities of the finished product rely
primarily on those of the raw material. However, rot often
constitutes a serious problem when affecting wood, inas-

D. Ouis ()

School of Technology and Society, Malmo University, Malmoé SE
205 06, Sweden

Tel. +46-40-665-7185

e-mail: djamel.ouis@ts.mah.se

A. Zerizer
Laboratory of Material Sciences, Faculty of Engineering Sciences,
University of Boumerdes, Boumerdes DZ 35 000, Algeria

much as even when invisible to the naked eye, it may have
devastating consequences on the strength properties of the
material. The first direct effect of the interaction between
rot fungi and wood is a substantial and fast weakening of the
material followed afterward by a somehow slower process
of material weakening.' It has also been proven that not
only the modulus of elasticity (MOE) is affected, but also
the loss factor, which in general terms is a measure of the
ability of a material to absorb vibration energy, has been
found to increase.>® However, these observations cannot be
considered as independent of each other for the reason that
all materials would exhibit this simultaneous influence to a
more or lesser degree of importance. This behavior stems
primarily from the dispersion of materials, which, more
specifically means that the MOE and the loss factor (7)
are frequency dependent. Moreover, these frequency varia-
tions exhibit some interrelationship, the importance of
which depends on the vicoelastic properties of the material.
For soft materials like natural rubber or artificial polymers,
the MOE-n interrelationships as functions of the frequency
are quite strong, and can usually be easily demonstrated in
the audio frequency range. On the other hand, for solid
materials like metals, the frequency variations are much
weaker and have a noticeable manifestation at rather high
frequencies, often in the ultrasonic range. Wood is a mate-
rial with dynamical properties that may range between
these two categories of materials, and this material there-
fore exhibits moderate strength and damping frequency
dependences.

The objective of the present study was to make a prelimi-
nary investigation toward the modeling of rot in wood. To
this end a sound bar of wood was taken as a study specimen,
and a progressively increasing number of holes was drilled
and filled with sand. The variations in the values of the
MOE and the loss factor were then recorded as a function
of the number of holes. The MOE was evaluated for the
longitudinal mode of vibration in the bar, and the loss factor
was determined at the major resonance frequencies by
means of a room acoustical technique. Both parameters
were assessed from a single measurement on the test speci-
men, namely from its impulse response.
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Fig. 1. Representation of the wood bar and the experimental setup for
assessing its vibration impulse response under axial vibrations

Materials and methods
Test specimen

The test specimen considered in this study was a beam
of Norway spruce with the dimensions 70 (length) x 7.5
(width) x 5.0 (height) cm and a weight of 1.3kg. The beam
was positioned on an elastic support with one extremity
connected to an electrodynamic shaker, and the other
extremity had a piezoelectric accelerometer attached to
it (Fig. 1).

An increasing number of holes were then drilled in the
beam, five holes at a time. The holes (10mm in diameter)
were drilled vertically in the beam and were distributed
evenly over the surface of the beam. The holes were then
filled with sand. Sand was chosen as the filling material for
the holes primarily for its density, which approximates that
of wet rot, and also for its ability to dampen vibrations. The
value of the loss factor of sand lies in the range of 0.06-0.12.*
It should be noted here that the position of the defects in
the wooden bar has an influence on the modes of vibration,
and that defects positioned at the antinode of stress vibra-
tion would have a stronger influence than those at the
nodes. In the case of the fundamental mode of longitudinal
vibration of a bar, the stress antinode is at the middle of bar,
and it is expected that defects situated around this position
would cause some deformation of the mode shape.

Impulse response of a bar under longitudinal vibration

In several branches of experimental physics the study of any
system often necessitates the knowledge of its impulse re-
sponse. This function is specific for each system and it may
be used to draw much information on the system. Ideally,
the impulse response is obtained through exciting the sys-
tem by a so-called Dirac pulse, a very short but intense
excitation signal. However, it is practically impossible to
realize such a pulse for experimental purposes, and instead
one relies nowadays on another method that has proved to
be quite efficient in the study of vibrating and acoustical
systems. The technique relies on using a random signal for
exciting the system, thus making the input signal to the
system, and to which a cross-correlation operation is per-
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Fig. 2. Block diagram of a technique for acquiring the impulse
response of a system

formed with the response signal of the system. The tech-
nique is described in detail in textbooks,’ and a summary of
its block diagram is shown in Fig. 2.

Evaluation of the MOE from the modes of
longitudinal vibrations

When a bar with length / is submitted to an excitation along
its axis, the wave reflections at the extremities of the bar
build up at specific frequencies at which the response of the
bar is most pronounced. At these frequencies, the double
length of the bar corresponds to an integer number z of the
wavelength A, that is 2/ = nA, where 4 = c/f,, ¢ being the
speed of longitudinal wave propagation and f, the reso-
nance frequency of order n. Furthermore, the speed ¢ of
longitudinal wave propagation for a material with a MOE E
and a material density pis to a first degree of approximation

given by: ¢ =4/ E/p . Hence, the expression of the resonance
frequencies may be formulated according to:

n |E
=g M
The expression of the speed of wave propagation is accu-
rate for longitudinal vibrations in a bar in which the trans-
verse dimensions are small in comparison with its length.
The lowest resonance frequencies are exhibited as distinct
peaks in the transfer function of the system, this latter being
defined as the Fourier transform of the impulse response.
At the first resonance frequency f;, which is obtained for
n =1, the MOE value is expressed as:

E =4pfl 2)

Evaluation of the loss factor

The loss factor of a material is a measure of how efficient
the material is at damping vibrations. During vibration, the
dissipation of energy into heat within the material may have
several causes, and independently of the mechanisms of this
energy dissipation the loss factor 7 is defined by:
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where W, and Wy are the dissipated and the available
mechanical energies, respectively, during one cycle of
vibration.* The loss factor may alternatively be defined by
means of the useful concept of complex MOE according to
E =ole=E; + jE = E4 (1 + jn) with E; and E, being the
dynamic and the loss components, respectively, of the
MOE, and n = E/E, is again the expression of 77 now in
terms of the real and imaginary components of the MOE.

There are several ways that provide access to the value of
the loss factor, such as the method of the half-power band-
width at resonance, or through the logarithmic decrement
of harmonic damped vibrations. In this work, 1 was deter-
mined indirectly from the impulse response of the test
sample through a room acoustical technique. The technique
and its specific applications to wood are described thor-
oughly elsewhere.’ In summary, the technique involves the
evaluation of the reverberation time T, which is defined as
the time taken for the vibration energy level to drop by
60dB, or equivalently from the slope of the energy decay
curve as a function of time. This parameter is in turn
processed through an integration of the squared impulse
response, and a descriptive summary of the method is
presented in the block diagram of Fig. 3.

The advantage of using impulse response measurements
on the test specimen is then made obvious when knowing
that only one single measurement is necessary for the evalu-
ation of several parameters, including the resonance fre-
quencies, which are accessed through a Fourier transform
operation. Calculations at different frequencies then re-
quire only frequency filtering of the impulse response prior
to processing any parameter of interest. This operation is
often executed by means of a convolution with the time-
domain form of the filter prior to Fourier transformation.
This filtering procedure is available on most measurement
systems that are designed to perform impulse response
measurements.

Results and discussion

The test signal used in the experiment was a broad-band
random noise. A low filtering operation was executed on the
signal with a choice of the highest frequency such that all the
impulse response was included in a measurement time win-
dow. This allowed consideration of all of the lower and most
pronounced vibration modes of interest. A typical impulse
response and its counterpart in the frequency domain, the
corresponding transfer function, are shown in Fig. 4.

Changes of the MOE with the number of holes in the bar

Measurements were made on the test bar with an increasing
number of holes drilled in it. The value of the MOE was
then evaluated for each case at the first resonance fre-
quency by means of Eq. 2, and the curve of variation of the
value of the MOE as a function of the number of holes is
plotted in Fig. 5.
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Fig. 3. Flow chart for a method for evaluating the loss factor from the
impulse response

Along with the experimental curve, three other curves
are also drawn on the plot of Fig. 5. One of these curves is
hypothetical and is evaluated as if the bar were porous, that
is, as if the drilled holes were unfilled. For the same volume
for the bar, its mass, being initially M, decreases with in-
creasing porosity following the introduction of holes in it.
Hence taking V), for the volume of a single hole, with n,
being the total number of holes, in the bar with the volume
Viar = L-B-H, the density p,,,, of the porous bar when
expressed in terms of the wood density p,..q and the total
number of holes may be expressed as:

Mporous M — Ny Vhp d Vh
orous — = 0% = WOO! 1-n,—- 4
Proes =7V, P S

With this correction to the expression of the material
density one obtains lower values of the MOE than those
obtained for a bar with unaffected material density, shown
by the lowermost curve in Fig. 5.

For sand-filled holes in the wood bar other improve-
ments to the MOE curve may be achieved through consid-
ering the mass density and MOE of sand. A first correction
brought by the mass of sand is accomplished through adding
the mass of sand filling the holes. If we call p,,, the density
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Fig. 4. a Impulse response for the wood bar in axial vibration. b The corresponding transfer function
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Fig. 5. Variation of the value of the modulus of elasticity (MOE) with
the number of holes in the wood bar

of sand, measured in our case as p, = 1.8 x 10°kg/m’, the
new density of the bar p,,., takes the expression:

p _ pwood(‘/bar B nh‘/h ) + nhpsand‘/h
corr,l —

v, )

= Pyood T nh(psand - pwood)_
‘/bar

The obtained higher value of the mass density of the bar
leads then to a higher value of the MOE, E,,,, ,, as calculated
by means of Eq. 2. In fact, this last value of the MOE is the
highest of all the corrected values in this study, shown by
the uppermost curve in Fig. 5. This corrected value of the
MOE may be even further improved by incorporating the
MOE of sand in the expression of E,.;. The so-obtained
value, E,,,, is calculated by replacing in the value of E_,

the value of the MOE of sand E,,,,, with a proportion corre-
sponding to the relative volume of the sand-filled holes in
the bar:

Ecorr 2= Ecorrl 1 —ny i + Esandnh i
, ' ‘/bar ‘/bar
v, (6)
= Ecorr,l -n, (Ecorr,l - Esand)_
‘/bar

With a value for E,,,, = 3.0 x 10’Pa, a common value for
sand,’ the new obtained value of E,,, is slightly lower than
that of E,,, ;. Comparing the values of the MOE value as
determined using Eq. 2 without considering the change of
mass in the bar and the value given by Eq. 6, one finds that
the relative error committed increases with increasing
porosity in the bar.

The maximum error committed in this study amounts to
around 30% (which depends on the density and MOE of
sand), and is about three times the maximum relative error
in the mass density of the bar when making calculations with
an intact bar instead of a porous one. Thus, the relative
value of the MOE value decreases almost linearly for an
increasing porosity of the bar, although at a slower rate, and
this variation shows a slowing variation trend toward higher
porosity of the bar.

Changes of the loss factor with the number of holes
in the bar

The curve of variation of the loss factor as a function of
number of holes is plotted in Fig. 6. The loss factor was
determined at the first resonance frequency, and at which
the bar length corresponds to half a wavelength.
Considering the loss factor, its overall increase is clearly
seen as a function of the number of holes in the wood bar.
The damping of vibrations in this case can be attributed not
only to the material damping brought about by the introduc-
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Fig. 6. Variation of the value of the loss factor with the number of
holes in the wood bar

tion of sand, but also to the loss of vibratory energy every
time the elastic wave within the material bounces at the
boundaries of a hole. In any case, the present experimental
results herewith support earlier qualitative findings that rot
increases the damping properties of wood and lowers its
strength.”> It may be pointed out that the reverberation
time from which the loss factor has been determined in this
study was not T, corresponding to the 60-dB decay in signal
level as described earlier. Instead, another variant, the early
decay time, EDT, was used for the calculations of 7 for the
reason that in the case of weak excitation signals or when
dealing with highly damped systems, it may happen that the
dynamics of the decay curve does not have the required
60dB to evaluate the original T,

Conclusions

This article presents the results of an experimental study on
the effects of structural defects on the MOE and loss factor
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of a solid material. The example of a wooden beam has
been taken for experimental practicality. The defects
consisted of holes drilled in the beam, which was set into
longitudinal vibration through excitation along the grain.
The longitudinal excitation was considered instead of, for
instance, the bending mode of vibration for the reason that
the experimental results may be affected by some coupling
between the different modes of vibration due to the high
anisotropy of wood.

The MOE and loss factor were evaluated at the funda-
mental resonance frequencys, i.e., the frequency at which the
length of the bar corresponds to half a wavelength. The loss
factor was evaluated by means of an acoustical technique
conceived originally for making measurements of sound
absorption for room acoustical applications. The technique
used in this study, which consists of measuring the impulse
response of the test specimen, is attractive in that the
measurements are perfectly repeatable and that there are
available affordable measurement packages for conducting
measurements in the audio frequency range. This, however,
does not prevent the technique being applied in the ultra-
sonic frequency range. The results from the present study
reveal and confirm other earlier studies conducted on wood
affected by rot that the MOE decreases steadily with an
increasing number of defects in the wood element and that
at the same time the loss factor increases, although at a
somehow slower rate.
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