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Abstract This study develops an analytical method that
enables the simulation of the deformation of timber-framed
plywood panel dome structures, of which strength is largely
governed by the rigidity of joints. A hybrid truss structure
model was employed to analyze this structure. In this
model, we aimed to incorporate the mechanical properties
of bolted and nailed joints, which were employed to build
the structures, although the present investigation focused
on the deformation characteristics of a dome in which the
panel elements were connected mutually by elastic springs.
The results of the theoretical analysis are compared with
those obtained by experiments. The simulated results were
found to be in good agreement with the results of the ex-
periments under similar loading conditions.

Key words Timber-framed panel dome structure · Numeri-
cal simulation · Hybrid truss structure

Introduction

Timber-framed panel dome structure

Wooden geodesic domes consist of intersecting timber ribs
forming a triangulated truss structure.1 The majority of
modern domes are built as truss structures; in this case,
panels covering the dome do not serve as the primary struc-
tural members. Another kind of dome structure consists
of paneled triangular frames that are connected by bolts.
Timber-framed panel dome (TPD), the structure studied
here, is one of such wooden geodesic domes. In the case of
TPD, frames made from 2 × 4s (50 × 100-mm cross-section

dimensions) are bolted together and fitted with plywood
with nails (Fig. 1). Therefore, the strength of the structure
depends mainly on the joint part of every neighboring trian-
gular framed panel. However, TPD can often be analyzed
by being approximated as a three-dimensional (3D) truss
structure. Although the neighboring frame panels are likely
to separate from each other, it is impossible to simulate the
deformation process of the joint parts by simple 3D truss
analysis.

The main focus of this study was to develop a method to
simulate joint deformation in TPD structures. The simula-
tion result was compared with that of the simple truss ap-
proximation. Joint parts consisted of bolts and nails and
were analyzed as components of an elastoplastic structure.
As a preliminary study, the joint parts were treated here as
elastic springs. We also made a corresponding dome model
with joint parts connected by elastic cords.

Proper method for simulating the TPD

Stress analysis of wooden dome structures has been carried
out mainly using the classical finite element method
(FEM).2 As a preliminary study, the TPD structural analysis
was carried out by FEM as a simple 3D truss structure
consisting of 105 truss elements and 46 nodes. It was later
determined that the 3D truss structure program could not
be applied to the TPD structure after comparing the output
with the experimental result.

Next, the applied element method (AEM)4 was used.
The AEM is an effective method for simulating highly non-
linear behavior, i.e., crack initiation, crack propagation,
separation of structural elements, rigid body motion of
failed elements, and collapse process of the structure. In our
case, every two neighboring triangle elements needed to be
connected by distributed springs in normal and tangential
directions. The coordinate treatment was found to become
too complicated in the three-dimensional case.

Another approach based on FEM was proposed to
numerically analyze the TPD structure. Here, we call it a
“hybrid truss structure.” In the hybrid truss structure
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model, the TPD structure was assumed to be a complicated
3D truss structure.

Theories

Transformation from simple truss to hybrid truss

A TPD (Fig. 2) was selected to study joint deformation
behavior. In our hybrid truss structure, each triangular ele-
ment is represented by high modulus bar elements and
these triangular trusses are separated from each other. The
semirigid triangular elements are then connected by many
weak modulus bar elements (Fig. 3). In the first step, a
pretreatment program was made to convert the original
simple truss dome to a separated triangular structure by
magnifying the hemisphere dome by the ratio of 1 + a along
the radial direction, which passes though the center of grav-
ity within each dome triangle (Fig. 4). We intended to give
the characteristics of connecting properties to the clearance
between triangular elements. The origin of the coordinate
system was defined as the center of hemisphere dome.

The coordinate of the new model is calculated as follows:
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Fig. 1. Paneled triangle frame

Fig. 2. Timber-framed panel dome (TPD) used in this study3
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where xij, yij, and zij represent the original coordinates of
point j of triangle i, respectively, and x′ij, y′ij, and z′ij represent
the triangular unit’s new coordinates. Dxi, Dyi, and Dzi are
the increment of x-, y-, and z-coordinates, which are equal
to a-times of the coordinate of the center of gravity for
triangle i, xic, yic, and zic. The value of 0.06 was employed for
a, considering the thickness of the neighboring beams.

Morphology of hybrid truss structure

Based on the method described above, a new dome struc-
ture (Fig. 5) was obtained. Triangular elements were jointed
by three kinds of springs: normal springs, diagonal springs,
and cross springs (Fig. 3). The newly obtained hybrid truss
structure may be modeled as a 3D truss structure, but the
modeled results showed disagreement with the experimen-
tal structure (Fig. 6). Rotational springs were later added to
the truss structure and it was retested. Comparison of a
number of simple truss structures and the newly obtained
hybrid truss structures are shown in Table 1.

Derivation of stiffness matrix

The stiffness matrix was derived by the following pro-
cesses:5 the stiffness equation can be represented as:

F K{ } = [ ]{ }d , (3)

where {F} represents the vector of forces acting on the
nodes, [K] is the stiffness matrix, and {d } is the displacement
vector.

As mentioned above, the dome structure was trans-
formed to main truss elements and connecting elements.
The main elements were defined as truss elements, with
high Young’s modulus, and the spring elements with small
elastic coefficients. A truss element can only transmit forces
in an axis direction, and then the stiffness matrix of it in a
local coordinate system can be represented as:
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where A is the cross-sectional area of the element, E is the
Young’s modulus, and L is the length of the element.

The coordinate transfer matrix was then employed to
convert the local coordinate stiffness matrix into the global
one:

820820

Unit: mm

Fig. 5. TPD structure hybrid truss (top view)
Fig. 6. Calculated deformation of TPD structure without rotational
springs. Displacement of the top apex is 26.6 mm downward

Table 1. Comparison of elements’ members between simple truss system and hybrid truss system

Type Node Triangle Main truss Connecting truss Rotation
number number

Normal Diagonal Cross
spring

Simple truss 46 75 105 – – – –
Hybrid truss 225 75 225 210 210 270 1830

For definitions of connecting truss, see Fig. 3
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where l1, m1, and, n1 are the direction cosines of axis direc-
tion, which will be explained later.

The rotation spring elements require two stiffness resis-
tances around the rotational axis. One is from the center of
sphere perpendicular to the axis direction of the element,
which we call t axis. The other is the normal to the plane
composed by the element axis and t axis, and we refer to it
as the s axis (see Fig. 7).

The stiffness matrix of rotation spring around the t axis
is:
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where ks1 is the elastic coefficient of the rotation spring
around the t axis and the corresponding coordinate trans-
form matrix T2 is:

T

l m n

l m n

2

2 2 2

2 2 2

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

=



























, (9)

Analogously, the stiffness matrix around the s axis is:
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where ks2 is the elastic coefficient of rotation spring around
the s axis and the corresponding coordinate transform ma-
trix T3 is:
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Consequently, the stiffness matrix is:

K K K K[ ] = [ ] + [ ] + [ ]1 2 3 . (13)

Derivation of direction cosine

The direction cosines li, mi, and ni can be calculated as
follows. Assuming the start point of the element is i (xi, yi,
zi) and the end point is j (xj, yj, zj), then direction cosines of
the axial direction are:
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where L x x y y z zj i j i j i= −( ) + −( ) + −( )2 2 2
 is the length of

the element.
The vector from point i to the center of sphere k (0,0,0)

can be written as:
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Fig. 7. Three directions of a truss element: element axis, t axis, and s
axis (i and j are point number of an element)
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and B x y zi i i= + +2 2 2 .

Direction cosines of the s axis are:
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Deformation compatibility of triangle panels

Although the dome has been transformed to the separated
triangle system, considering that the triangular panels can-
not be overlapped in the real buildings even under compres-
sion stress, the distance between every two neighboring
triangles should be kept almost constant. The modulus of
the connecting elements in our research varied with the
direction of the acting forces. Once a connection spring
received a compression force, its Young’s modulus in-
creased to that of main elements, while it was unchanged in
the tension cases.

An iteration method was employed to solve Eq. 3
and the solution was obtained as a converged result by
satisfying:

Max
dl dl

dl
i i

i

′−





≤ 0 001. (18)

where dl′i is the deformation of element i at a previous loop,
and dli is the deformation of element i in the current loop.

Simulations

Simulated model structures

The TPD in this study is a 3 frequency (3v) icosahedron
dome,6 which was invented by Buckminster Fuller. The 3v
domes are made up of two basic shapes of isosceles triangles
arranged in groups. There are seven and a half groups of six
panels each, called hexagonal groups, and six groups of five
panels each, called pentagonal groups. The stiffness values
are summarized in Table 2, where A is the area of the
elements, and E is the Young’s modulus of the wood beam
in the main truss. Young’s modulus E of the connecting
truss was calibrated by the real model experiment, and the
elastic coefficient values of rotation springs were also cali-
brated. The effect of element mass was neglected.

Materials and methods

Spruce was used for the triangular frame, and the triangle
panels were made of plywood. The sizes of the panels are
shown in Fig. 8. The thickness of the plywood was 2.5mm.
Wood panels were adhered to the triangular timber frame.
The sides of the triangular frame were drilled and were
fastened to each other by elastic bands with a diameter of
1.5mm.

The experiment was designed to measure the deforma-
tion of the whole dome structure (Fig. 9). The dome model
was laid on a plain board that was fixed on a rotary turn-
table. The base of the dome was secured by a fixture. Load
was added to specific nodes in vertical and horizontal direc-
tions separately. Deformation of the whole dome was
scanned and digitized by a 3D digital scanner (VIVID 910,
Konica Minolta). The dome model was scanned from
several different perspectives, and then merged into a

Table 2. Constants used for the calculation

Coefficient Main truss Connecting truss Rotation

Normal Diagonal Cross
spring

A · E (N) 342 900 0.05 0.05 0.05 –
Ks1 (N · mm) – – – 0.5
Ks2 (N · mm) – – – – 0.5

A, Area of elements’ cross section (unit: mm2); E, Young’s modulus of elements (unit: N/mm2);
Ks1, elastic coefficient of rotation spring around t axis; Ks2, elastic coefficient of rotation spring
around s axis
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hybrid truss and the simulated result in Fig. 10d. Details of
the deformation of the top pentagon are shown in Fig. 13.
The simulated and observed results showed good agree-
ment and therefore validated the use of the hybrid truss
method as an effective means of analyzing TPD.
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Fig. 8. Isosceles triangles for pentagonal groups and hexagonal groups

3D digital scanner

Fixture 330 mm

780 mm

Rotary turn tablePulley
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Fig. 9. Dome experimental equipment

(a) (c)

(b) (d)

Fig. 10a–d. Comparison of
deformation morphology
between the simple truss
structure (a, b) and the hybrid
truss structure (c, d) under
vertical applied force. Deforma-
tion of the top apex in b and d
are both 24.3 mm downward

single mesh. The obtained pictures were integrated and
analyzed by the software package Rapidform 2004 (Inus
Technology).

Results and discussion

Loads were added to the top nodes of the simple truss
structure and a hybrid truss structure until the top nodes
bowed to the same height of the other nodes of the top
pentagon. The deformation aspect of the simple truss calcu-
lation is shown in Fig. 10a, b. With the simple truss method,
deformation of the whole structure comes from length
changes in the trusses (Fig. 11). The results in Fig. 11 indi-
cate that it is not in agreement with reality. Figure 12 shows
the experimental result of the TPD. The shape of the tri-
angle did not change at all, while the joint part deformed
seriously. Figure 10c shows the original TPD modeled by

138.9

Original

Deformed

139.4
163.2

161.4
(Unit: mm)

Fig. 11. Deformation aspect of one of the top triangle elements in the
simple truss analysis. Significant deformation occurred in the truss unit
during the stress testing. This figure shows the specimen in Fig. 10a
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Fig. 12. Deformation of the top pentagon in the experiment, which
corresponds to the state shown in Fig. 10d

50 mm

Fig. 13. The deformation of the top pentagonal group obtained from
the hybrid truss calculation. The result corresponds to Fig. 12

(a) (c)

(b) (d)

Fig. 14a–d. Comparison of
deformation morphology
between the simple truss (a, b)
and the hybrid truss (c, d)
under a transverse load. The
deformations from A to A′
were 23.4 mm in b (total load
4.5 kN), and 53.6 mm in d (total
load 174 N)

To make clear the difference of deformation of shape
between the simple truss element and the hybrid truss ele-
ment, calculations were undertaken in which horizontal
forces were applied on these two types of domes, respec-
tively. Figure 14 shows the comparison of deformation be-
tween these two models. Deformation of the simple truss
structure is not obvious from Fig. 14a, b; while the hybrid
truss deformation from Fig. 14c to Fig. 14d is clearly visible.

In reality the loading condition described above is diffi-
cult to apply. Therefore, the force was added to only a single

node at a time. As Fig. 15 shows, four typical nodes were
selected to be loaded horizontally and vertically. The results
of hybrid truss calculation shown in Table 3 indicate good
agreement between calculated and experimental outputs.

Conclusions

This article describes the deformation characteristics of a
TPD. Experimental observation of a TPD connected by
linear elastic springs showed that the elements near the
loading point deformed severely under the applied load,
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Node 1

Node 2

Node 3
Node 4

Fig. 15. Loaded nodes in experiment

Table 3. Comparison of deformation between observed and hybrid
truss calculation results

Casea Observed (mm/N) Simulated (mm/N)

Node 1(V) 0.885 0.825
Node 2(V) 0.807 0.670
Node 3(V) 0.432 0.345
Node 4(V) 0.414 0.395
Node 4(H) 0.450 0.465

V, Vertical loading; H, horizontal loading
a For nodes 1–4, see Fig. 15

and the weakness of the joint connections triggered the
buckling of the pentagon group or hexagon group without
resulting in any damage to other joint parts of the dome.
The deformation aspect of TPD was investigated by a newly
developed numerical program. Simulated results corre-
sponded well with the experimental results under similar
loading conditions. Therefore, the hybrid truss method was
proved to be an effective method to simulate the TPD
structure.
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