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A mathematical verifi cation of the reinforced-matrix hypothesis using the 
Mori–Tanaka theory

Abstract This article presents a theoretical verifi cation of 
the reinforced-matrix hypothesis derived from tensor equa-
tions, s W = s f + s m and e W = e f = e m (Wood Sci Technol 
32:171–182, 1998; Wood Sci Technol 33:311–325, 1999; J 
Biomech Eng 124:432–440, 2002), using classical Mori–
Tanaka theory on the micromechanics of fi ber-reinforced 
materials (Acta Metall 21:571–574, 1973; Micromechanics – 
dislcation and inclusions (in Japanese), pp 141–147, 1976). 
The Mori–Tanaka theory was applied to a small fragment of 
the cell wall undergoing changes in its physical state, such as 
those arising from sorption of moisture, maturation of wall 
components, or action of an external force, to obtain �s A�D = 
f·�s F�I + (1 − f)·�s M�D−I. When the constitutive equation of 
each constituent material was applied to the equation �s A�D 
= f·�s F�I + (1 − f)·�s M�D−I, the equations s W = s f + s m and e W 
= e f = e m were derived to lend support to the concept that two 
main phases, the reinforcing cellulose microfi bril and the 
lignin–hemicellulose matrix, coexist in the same domain. 
The constitutive equations for the cell wall fragment were 
obtained without recourse to additional parameters such as 
Eshelby’s tensor S and Hill’s averaged concentration tensors 
AF and AM. In our previous articles, the coexistence of two 
main phases and s W = s f + s m and e W = e f = e m had been taken 
as our starting point to formulate the behavior of wood fi ber 
with multilayered cell walls. The present article provides a 
rational explanation for both concepts.
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Introduction

Softwood fi ber has two main parts: a thick secondary wall 
and thin compound middle lamella (CML). A middle layer 
(S2) forms the thickest layer of the secondary wall and is 
reinforced with fi brous polysaccharide crystals oriented 
more or less parallel to the fi ber axis (see Fig. 1). The orienta-
tion angle (microfi bril angle; MFA) determines the mechani-
cal properties of the softwood fi bers, including the longitudinal 
Young’s modulus,1–3 anisotropic drying shrinkage,4,5 surface 
growth stress,6–8 and longitudinal tensile creep deformation.9 
Consequently, the S2 layer exercises an important role in 
determining the macroscopic properties of clear wood speci-
mens, with the mechanical interaction between the reinforc-
ing polysaccharides and the encrusting matrix substance 
ultimately controlling the material properties of the wood.

Any formulation of the material properties of a wood 
based on its structural hierarchy starts by considering the 
mechanical properties of the two-phase structure of the cell 
wall layer; that is, the reinforcing fi brous polysaccharide and 
the amorphous matrix. The reinforced-matrix hypothesis 
was originally proposed by Barber and Meylan10 and pro-
vides a theoretical description of the mechanical interaction 
between these two phases. This model can be expressed 
using tensor equations:6,11,12

σ σ σ ε ε εW f m W f m, and .= + = =  (1)

A physical interpretation of the tensorial quantities s W, s f, 
s m, e W, e f, and e m in Eq. 1 can be formulated as follows. The 
fi brous components of the polysaccharides are dispersed 
uniformly in each cell wall layer to form the framework 
fi ber bundle. Similarly, the lignin–hemicellulose compound 
is diffused in each layer to provide the isotropic matrix 
skeleton. It is postulated that the framework bundle and the 
matrix skeleton occupy the same domain at the mesoscopic 
limit (= layer level). As a consequence, s W can be regarded 
as the stress tensor in the cell wall fragment as the whole, 
and s f and s m as the stress tensors in the polysaccharide 
framework bundle and matrix skeleton, respectively, with 
e W, e f, and e m being the respective strains.
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Previously we have used both Eq. 1 and these interpreta-
tions as to the physical meanings of the tensorial quantities; 
that is, “the reinforced-matrix hypothesis,” to develop 
theories to explain the MFA-dependent properties of clear 
wood specimens.6,11,12 However, neither Eq. 1 nor the 
physical interpretations of s W, s f, s m, e W, e f, and e m have 
been defi ned in any rational manner. This article resolves 
this issue using the classical theory of micromechanics 
developed by Eshelby13,14 and Mori and Tanaka.15 We then 
compare our formulation with that of Cave16 who proposed 
a constitutive relationship for the lignocellulose material of 
the wood cell wall, with the ultimate goal of validating the 
reinforced-matrix hypothesis as one of the basic theories of 
cell wall mechanics and physics.

Mathematical derivation of the reinforced-matrix 
hypothesis

Application of Mori and Tanaka’s theory to two-phase 
structure of the cell wall

When material containing an ellipsoidal inhomogeneity is 
subjected to external stimulation such as heating, cooling, 
or external loading, a dimensional misfi t can arise between 
the inhomogeneity and the matrix. This can induce an inho-
mogeneous stress disturbance inside the current inhomoge-
neity and in the matrix around it. Eshelby proposed an 
“Equivalent Inclusion Method” as a convenient way of cal-
culating this stress disturbance, s ∞.13,14,17 His method was 
intended to apply primarily to the case in which an inhomo-
geneity exists at suffi cient distance from the free surface of 
the material. However, in actual practice, any material 
has a free surface, and, furthermore, contains numerous 
inhomogeneities. This free surface and the neighboring 
inhomogeneities affect the stress fi eld in both the current 
inhomogeneity and the surrounding matrix. This effect is 
called background stress.15,17 Mori and Tanaka refi ned 
Eshelby’s method to include the case in which the stress in 
the material is the background stress.15,17

Consider a small fragment of the secondary wall that 
occupies a closed domain D. First, assume that domain D 
is surrounded by a free surface and incurs a dimensional 

change on moisture sorption or substance deposition (Frag-
ment 1). Such changes in the physical state often generate 
some dimensional misfi t between each inhomogeneity and 
the matrix around it. Second, consider the case in which 
domain D is subjected to an external loading (Fragment 2), 
and in Fragment 2, assume that no physical change of state 
occurs except that induced by the external loading. Finally, 
consider a small domain D in an actual cell wall that incurs 
a defi nite external stimulation in addition to the boundary 
force (Fragment 3). We can now calculate the stress distri-
bution in Fragment 3 by superposing the stress fi elds in 
Fragments 1 and 2. In either case, an infi nitely long, rod-like 
polysaccharide microfi bril embedded in the matrix sub-
stance can provide an ellipsoidal inhomogeneity with an 
infi nitely large aspect ratio.

In Fragment 1, the stress inside an arbitrary inhomoge-
neity can be given as the sum of the background stress, s b

1, 
and Eshelby’s solution, s ∞

1 .15,17 In contrast, the stress in the 
matrix is equal to the background stress, s b

1.
15,17

In Fragment 2, we can assume that the external loading 
induces a stress distribution, s A, inside the domain, where 
hypothetically no inhomogeneity is included. When a homo-
geneous stress fi eld is disturbed by an inhomogeneity, it can 
be modeled by Eshelby’s solution, s ∞

2 . According to Mori 
and Tanaka’s theory,15,17 the stress in each inhomogeneity is 
given as the superposition of the background stress, s b

2, 
Eshelby’s solution, s ∞

2 , and the externally induced stress, 
s A. In contrast, the stress in the matrix is provided by super-
position of s b

2 and s A.
In Fragment 3, the stress distribution in D can be calcu-

lated by superposing the stress fi elds in Fragments 1 and 2; 
that is, s  = s b

1 + s b
2 + s ∞

1  + s ∞
2  + s A inside each inhomogene-

ity, and s  = s b
1 + s b

2 + s A in the matrix. If we denote s b
1 + 

s b
2 ≡ s b and s ∞

1  + s ∞
2  ≡ s ∞, the stress distribution inside the 

small domain D becomes

σ σ σ σ σ
σ σ σ= + + =

+ = −{ ∞b A F

b A M
inI)

(inD I).
( ) (

( )  
(2)

where I is the domain of the inhomogeneities in D, and D−I 
is that of the matrix. The problem now resolves itself into 
establishing the constitutive relationship of the small frag-
ment of the cell wall by analyzing the behavior of s b, s ∞, 
and s A in D.

Fig. 1a–d. Structural hierarchy 
of wood (softwood). a Timber, 
b wood, c fi ber, and d cell wall 
fragment (representative volume 
element)
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The volume average of the internal stress distribution 
over domain D is given as s A (see Appendix); that is,
1 1
D

dV
D

dV
D D

σ σ σ∫ ∫= ≡A A
D
,
 

(3)

where D is the volume of domain D. The above equation 
can be rewritten as

σ σ σ σ σ σ

σ σ

A
D

I D I

b A

I

b A

D I

= +





= + +

+ +

∫ ∫ ∫

∫
−

∞

−

1 1

1
D

dV dV
D

dV

D
dV

( )

( ) ,,
 

(3′)

leading to the equation

σ φ σ σ σ φ σ
σ

A
D I

b
I

A
I

b
D I

A
D I

,
= ⋅ + + + − ⋅

+

∞
−

−

( ) ( ) (
)

1

 

(4)

where f (= I/D) is the volume fraction of the inhomogene-
ities in the small volume D, and �#�D, �#�I, �#�D−I are the 
integral averages of the tensorial quantities # in the respec-
tive domains. We can identify the stress �s ∞�I + �s b�I + �s A�I 
with the average stress in the inhomogeneity denoted by 
�s F�I, with �s b�D−I + �s A�D−I regarded as that in the matrix 
region denoted by �s M�D−I. Thus, Eq. 4 can be rewritten as

σ φ σ φ σA
D

F
I

M
D I

= ⋅ + − ⋅
−

(1 )
 

(4′)

According to Eshelby’s equivalent inclusion method, s ∞ 
becomes uniform inside each equivalent inclusion.13,14 It is 
impossible to know the distribution of s b accurately.

From Eq. 4 and following the assumption of Mori and 
Tanaka15,17 that “mean fi eld approximation” implies �s b�I = 
�s b�D−I = �s b�D (≡ �s b�), we can obtain the formula

σ φ σ φ σb
I

= − ⋅ = − ⋅∞ ∞( )

called the Mori–Tanaka theorem.15 We can now estimate 
the value of �s b� from this theorem based on the value 
of s ∞.

Deriving the equations and their physical interpretations

The constitutive equation of volume D can be derived on 
the basis of Eq. 4. In the past, we have used Eshelby’s tensor 
of inhomogeneity for this purpose. In this study, however, 
we avoid the use of Eshelby’s tensor and start with Eq. 4′.

We fi rst introduce stress fi elds σ̂ M and σ̂ F, and strain 
fi elds ε̂  and α̂, defi ned in D as

ˆ
(

ˆ ,σ σ σ σ
M

M
F

F
 (inD I)

0 inI) , 0 (inD I)
 (inI)≡ −{ ≡ −{

ˆ ˆ ,ε ε
ε α α

α≡ −{ ≡ −{M

F

M

F
(inD I)
(inI)

, (inD I)
(inI)  

(5)

where e M and e F are the strain in the matrix and that in the 
polysaccharide microfi brils (= inhomogeneities), respec-
tively. aM and aF are the eigen-strains generated in the 
respective components. These are induced by a specifi c 

change in the physical state of the cell wall, such as that 
resulting from water sorption, the deposition and matura-
tion of the cell wall substance, or external loading. As a 
result, the dimensions of the small volume D tend to change. 
The tensorial quantities s M, e M, and aM are defi ned in D − I, 
and s F, e F, and aF in I.

In addition, we introduce tensor fi elds ĈM and ĈF defi ned 
in D to satisfy

ˆ ˆ .C C (inD I)
0 (inI) , C 0 (inD I)

C (inI)
M

M
F

F≡ −{ ≡ −{
 

(6)

The tensorial quantities CM and CF defi ne the stiffness of 
the matrix substance and the crystalline polysaccharide 
microfi brils, respectively. These quantities do not depend 
on their positions within their respective domains.

Using these tensors, we can formulate the generalized 
constitutive relationships of the matrix substance and poly-
saccharide microfi brils as equations of the tensor fi elds 
defi ned in domain D as

ˆ ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ .σ ε α σ ε αM M F FC ), C ( )= − = −  (7)

Taking an integral average for each equation over domain 
D, we obtain

ˆ ˆ ˆ ˆ ,σ ε α σ ε αm m M
D I

M
D I

f f F
I

F
I

C , C= −( ) = −( )− −   (8)
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(10)

As is clear from their defi nitions, σ̂ m, σ̂ f, Ĉm, and Ĉf consti-
tute fi elds of uniform tensors that are defi ned at every point 
in D. From Eq. 9 and Eq. 4′, we can extract

ˆ ˆσ σ σm f A
D
,+ =
 (11)

provided that �s A�D is regarded as the fi eld of mean 
stress in cell wall fragment D and is identical to s W in 
Eq. 1.

From Eq. 9, σ̂ m can be taken as the stress tensor of 
the matrix skeleton, and σ̂ f as that of the polysaccharide 
framework bundle. Similarly, Ĉm and Ĉf are the elastic 
constants of the matrix skeleton and the polysaccharide 
framework bundle, respectively. This implies that both the 
matrix skeleton and framework bundle occupy an identical 
volume at the mesoscopic limit. This corresponds to “the 
idea of the coexistence of two main phases in the cell 
wall.”

Furthermore, the two formulas of Eq. 8 can be used 
to model the relationships between elastic stress and 
stiffness in the matrix skeleton and the polysaccharide 
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framework bundle, respectively, and these two formulas 
should be regarded as defi ning the constitutive relationships 
between the matrix skeleton and that of the polysaccharide 
framework bundle. From this perspective, we can deduce 
that

ε α ε α ε α ε αM
D I

M
D I

m m F
I

F
I

f f, ,
− −

− = − − = −ˆ ˆ ˆ ˆ
 

(12)

where ε̂ m is a tensor fi eld uniformly defi ned at every point 
in D, and is considered as the strain of the matrix skeleton, 
and ε̂ f is that of the polysaccharide framework bundle; α̂m 
and α̂ f are their respective eigen-strains. Because these also 
provide the fi elds of the tensors uniformly defi ned in D, Eq. 
8 becomes

ˆ ˆ ( ˆ ˆ ) ˆ ˆ ( ˆ ˆσ ε α σ ε αm m m m f f f fC , C ).= − = −  (8′)

With the behavior of the matrix skeleton on deformation 
being entirely consistent with that of the framework bundle, 
given that the matrix skeleton and framework bundle 
coexist in identical domain D, we obtain

ˆ ˆ .ε ε εm f W= =  (13)

Hence, the Mori–Tanaka theory provides both a theoretical 
description and a physical interpretation of Eq. 1.15 It can 
be noted that σ̂ m, σ̂ f, Ĉm, Ĉf, ε̂ m, ε̂ f, α̂m, and α̂ f are the tensor 
fi elds uniformly distributed in small domain D; they were 
denoted in our previous articles by s m, s f, Cm, Cf, e m, e f, am, 
and af, respectively.6,7,11,12 Consequently, we can obtain s W 
= s f + s m from Eq. 11 and e W = e f = e m from Eq. 13, which 
are the formulas of Eq. 1.

From Eqs. 11, 8′, and 13, we can obtain the constitutive 
relationship of cell wall fragment D as

σ ε α αW m f W m m f fC C C C ).= + − +( ) (  (14)

This provides the starting point for analyzing the mechani-
cal behaviors of the multilayered wood fi bers.6,7,11,12

Simulating the behavior of the wood fi ber using Eq. 14

The strains α̂ f and α̂m generated in each layer of a wood cell 
wall tend to cause dimensional changes in each wood fi ber 
along its length (e L) and diameter (e T). The basic formula 
that describes such strains can be derived from Eq. 14.6,7,11,12 
The dimensional changes in an isolated wood fi ber can be 
simulated by using this basic formula, but with the time-
dependent patterns of α̂ f and α̂m optimized to obtain rea-
sonable values of e L and e T that are quantitatively compatible 
with observed phenomena. We can estimate the micro-
scopic behavior of the constituent materials on the basis of 
optimized values of α̂ f and α̂m, and hence provide one of the 
most important purposes of the simulation.12

Strictly speaking, α̂ f and α̂m are the eigen-strains of the 
polysaccharide framework bundle and that of the matrix 
skeleton, respectively, and therefore do not necessarily 
refl ect intrinsic properties of the constituent materials. In 
contrast, �aM�D−I and �aF�I give direct information on the 
microscopic properties of the constituent materials. The 
values of �aM�D−I and �aF�I can be estimated through simula-
tion by fi rst optimizing the relationship between the macro-

scopic strain, e W (= ε̂ m = ε̂ f), and the eigen-strains, α̂m and 
α̂ f. The behaviors of the microscopic strains, �e M�D−I and 
�e F�I, can be ascertained by instrumental analysis such as 
X-ray diffraction.18 From Eq. 12, we can determine the 
values of �aM�D−I and �aF�I, which are the microscopic eigen-
strains caused in the polysaccharide microfi bril and the 
matrix, respectively.

Comparison with Cave’s formulation

Outline of Cave’s formulation

Cave is one of the pioneer researchers in cell wall micro-
mechanics. He started his formulation with Eq. 4′5,16 as 
hypothesized by Hill:19

( )1− ⋅ + ⋅ =
−

φ σ φ σ σM
D I

F
I

W.
 (15)

Cave then introduced the constitutive relationships of two 
constituent materials in a shrinking cell wall fragment as16

σ ε α
σ ε α

M
D I

M M
D I

M
D I

F
I

F F
I

F
I

C ,
C

− − −
= −( )

= −( ).  
(16)

Equations 15 and 16 then yield

σ φ ε φ ε
φ α φ α

W M M
D I

F F
I

M M
D I

F F
I

C C
C C .

= − ⋅ + ⋅
− −( )⋅ − ⋅

−

−

( )1
1

 

(17)

To develop this formula into the constitutive relationship 
of the cell wall fragment as a whole, it is necessary to relate 
the microscopic strains, �e M�D−I and �e F�I, to the macroscopic, 
e W. Hill had introduced the following conditions on the 
basis of a representative volume element:19

ε ε ε εM
D I

M W F
I

F WA , A ,
−

= =
 (18)

where AM and AF are called the averaged concentration 
tensors and depend on the elastic constants, shapes, and 
contents of the components. By using this subsidiary condi-
tion, Cave developed Eq. 17 to provide the constitutive 
relationship,16

σ φ φ ε φ α
φ α

W M M F F M M
D I

F F
I

C A C A 1 C
C .

= −( )⋅ + ⋅[ ] ( )⋅
− ⋅

−
1 - -

 

(19)

In his original report, Cave postulated aF = 0 by assuming 
that highly crystallized cellulose does not react with water 
molecules.

Comparison between Cave’s formulation and the present 
one

To adopt Eq. 19 as the constitutive relationship for simula-
tion, we need to provide concrete values for AM and AF. It 
is nontrivial to determine either, because little information 
exists on the microscopic topology of the two-phase 
structure. Hence, we need to assume temporizing values 
for these factors. Cave considered that AM and AF to be 
of minor importance by assuming, along with W. Voigt 
(1889), that strain is uniformly distributed in a two-phase 
material.5,20 By adopting Voigt’s assumption that AM = AF 



509

= I (unit tensor),20 Cave obtained the constitutive 
relationship,

σ φ φ ε φ α
φ α

W M F W M M
D I

F F
I

C C C
C ],

= −( )⋅ + ⋅[ ] − −( )⋅
+ ⋅

−
1 1[

 

(20)

and used this equation for simulating drying shrinkage and 
elastic deformation of multilayered double cell walls.

In Eq. 20, the eigen-strains, �aM�D−I and �aF�I, are unknown 
factors with behaviors that need to be determined from the 
simulation. However, it does not necessarily follow that the 
values of �aM�D−I and �aF�I in Eq. 20 will refl ect the intrinsic 
behaviors of the constituent materials in a wood cell wall. 
Voigt’s assumption of AM = AF = I places an unrealistic 
restriction on the situation in which the elastic moduli differ 
between the inhomogeneity and the matrix. In contrast, the 
constitutive relationship (Eq. 14) describes that between 
macroscopic strain and stress without assuming any subsid-
iary conditions. By using Eq. 14 for the simulation, we can 
determine both values and behaviors of �aM�D−I and �aF�I.

In our previous articles, the coexistence of the two main 
phases and Eq. 1 have been taken as basic premises with 
which to model the behavior of wood fi ber.6,7,11,12 In the 
present article, we offer a rational explanation for both 
concepts.
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Appendix

Volume average of the internal stress distribution over a 
small domain D as given by an externally induced stress, 
�s A�D

By applying Gauss’ theorem for divergence and the 
method of integration by parts to stress fi eld, s , in closed 
domain, D, the volume average of s  in D can be calculated 
as

1 1 1

1
D

dV
D

dV
D

x

x
dV

D
x n dS

σ σ δ σ

σ σ

ij

D

ik jk

D

ik
j

kD

ik j k

D

ik,
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∫

= =
∂
∂

= −
∂

kk j

D

,x dV∫










 

(21)

where dij is Kronecker’s symbol, ∂D is the boundary surface 
of the domain D, and n = (nk) is the normal vector on ∂D. 
In the case when no body force acts on D, s  must satisfy 
the equilibrium condition in D: ∇ · s  [≡ s ik,k ≡ (∂s i1/∂x1) + 
(∂s i2/∂x2) + (∂s i3/∂x3)] = 0, where s iknk is the boundary force 
that balances the external force acting on ∂D. In Fragment 

1, s iknk must be nil on ∂D because no external force acts on 
∂D (i.e., Cauchy’s boundary condition). Fragment 2 is sub-
jected to an external force through ∂D and therefore s iknk 
is nontrivial on ∂D. Consequently the integral on the right 
side of Eq. 21 becomes 

1
2D

n x dSσ[ ]
∂
∫ ik k j

D

,
 

(22)

where (s 2)ik [= (s ∞
2 )ik + (s b

2)ik + (s A)ik] is the internal stress 
in Fragment 2. In addition, both Eshelby’s solution s ∞

2  and 
the background stress s b

2 generated in fi nite domain D must 
satisfy Cauchy’s boundary condition for ∂D: [(s ∞

2 )ij + (s b
2)ij]nj 

= 0.13,15 Therefore, (s 2)iknk in Eq. 22 should be replaced by 
(s A)iknk to become

1
D

n x dSσ A
ik k j

D

.[ ]
∂
∫

 
(23)

By applying Gauss’ theorem for divergence and the method 
of integration by parts to stress fi eld s A, the above integral 
resolves itself as �s A�. Hence, �s� = �s A�.


