Han-Min Park • Masami Fushitani • Hee-Seop Byeon

# Derivation and application of an equation for calculating shear modulus of three-ply laminated material beam from shear moduli of individual laminae 

Received: August 4, 2008 / Accepted: December 19, 2008 / Published online: March 12, 2009


#### Abstract

In a detailed study of the relation between the deflection caused by shear force and the constitution of a laminated material beam, we derived an equation for calculating the shear modulus of a laminated material beam from the shear moduli of individual laminae. The validity of the derived equation was investigated using crosslaminated wood beams made with five species. The calculated shear moduli parallel to the grain of face laminae ranged from 48.3 MPa to 351 MPa , while those perpendicular to the grain of face laminae ranged from 58.0 MPa to 350 MPa . The calculated shear moduli increased markedly with increasing shear modulus in a cross section of perpendicular-direction lamina of a cross-laminated wood beam. The calculated apparent modulus of elasticity (MOE) of cross-laminated wood beams agreed fairly well with the measured apparent MOE values. This fact indicated that the apparent MOE of cross-laminated wood beam was able to be calculated from the true MOE values and shear moduli of individual laminae. The percentage of deflection caused by shear force obtained from the calculated apparent MOE $\left(Y_{\mathrm{sc}}\right)$ was close to that obtained from the measured apparent $\operatorname{MOE}\left(Y_{\mathrm{s}}\right)$ and there was a high correlation between both values. From the above results, it was concluded that the derived equation had high validity in calculation of shear modulus of a cross-laminated wood beam.


Key words Three-ply laminated material beam • Shear modulus • Modulus of elasticity • Shear force • Deflection

[^0]
## Introduction

When loads are applied vertically to a beam, bending moment and shear force are exerted on it. In the case of four-point loading, shear force and bending moment are exerted between the loading point and the supporting point. The deflection caused by shear force is contained when the deflection at midspan between the supporting points is measured as specified in Japanese Agricultural Standards for glued laminated wood ${ }^{1}$ and laminated veneer lumber. ${ }^{2}$ It was found by the authors ${ }^{3,4}$ that the modulus of elasticity (MOE) parallel to the grain of face lamina of threeply cross-laminated wood made with sugi wood was markedly influenced by the deflection caused by shear force. Furthermore, to improve the strength performances of cross-laminated wood beams, parallel-laminated and crosslaminated wood beams were manufactured from five species with different densities and shear moduli in cross section, and we investigated the effect of deflection caused by shear force on the static bending strength performance. As a result, it was found that the modulus of rupture as well as the MOE parallel to the grain of face laminae decreased owing to an increase in deflection caused by shear force with decreasing shear modulus in the cross section of the core lamina. ${ }^{5}$

Apparent deflection is composed of the deflections caused by bending moment and shear force, and the percentage of deflection caused by shear force is in proportion to MOE/shear modulus $(E / G)$. Because $E$ parallel to the grain of face laminae is great and $G$ is very small for threeply cross-laminated wood beams made with sugi, ${ }^{3-5} E / G$ is markedly increased. For sugi wood-aluminum hybrid composite beams, ${ }^{6} E / G$ is also increased because $E$ is considerably large and $G$ is not.

The deflection caused by shear force of laminated material beams was obtained by subtracting the deflection caused by bending moment from the apparent deflection, and the percentage of deflection caused by shear force was investigated. Furthermore, to adopt a detailed approach to the relation between the deflection caused by shear force
and the constitution of the laminated material beam, it is necessary to derive an equation for calculating the shear modulus of the laminated material beam from the shear moduli of individual laminae, like the MOE.

In this study, we derived an equation for calculating the shear modulus of a three-ply laminated material beam from shear moduli of individual laminae. The validity of the derived equation was investigated using cross-laminated wood beams made with five species, which we reported in a previous article. ${ }^{5}$

## Derivation of equation to calculate shear modulus of three-ply laminated material beam

## Shear stress

Figure 1 shows the configuration of cross section for obtaining the shear stress and shear strain of a three-ply laminated material beam. Shear stress $\tau$ that occurs in a three-ply laminated material beam is expressed by the following equation: ${ }^{7}$
$\tau=\frac{F \sum_{i=1}^{r}\left(E_{i} S_{i}\right)}{b \sum_{i=1}^{3}\left(E_{i} I_{i}\right)}$
where $F$ is the shear force; $E_{i}$ is the MOE of the $i$ th lamina; $S_{i}$ is the geometrical moment of area of cross section of the $i$ th lamina about the neutral axis $\mathrm{NN} ; b$ is the width of lamina; $I_{i}$ is the geometrical moment of inertia of cross section of the $i$ th lamina; $\tau=\sum_{i=1}^{r}\left(E_{i} S_{i}\right)$ means the sum only


Fig. 1. Configuration of cross section for obtaining shear stress and shear strain of a three-ply laminated material beam. $N N$, neutral axis; $\eta$, distance from $Z Z$ axis to neutral axis; $y_{1}$, distance from neutral axis to $a a^{\prime}$ horizontal line; $y_{z}$, distance from ZZ axis to $a a^{\prime}$ horizontal line; $h$, height of three-ply laminated material beam; $h_{1}, h_{2}$, and $h_{3}$, heights of individual laminae of three-ply laminated material beam; $b$, width of three-ply laminated material beam; $A$, area
for the layer lower than horizontal line $a a^{\prime}$ of cross section in which we want to obtain shear stress $\tau$.

The distance from the base axis ZZ to neutral axis NN $(\eta)$ is given by the following equation: ${ }^{7}$
$\eta=\frac{\sum_{i=1}^{3} E_{i}\left(S_{i}\right)_{z}}{\sum_{i=1}^{3} E_{i} A_{i}}$
where $\left(S_{i}\right)_{z}$ is the geometrical moment of area of cross section of the $i$ th lamina about the base axis $\mathrm{ZZ} ; A_{i}$ is the cross-sectional area of the $i$ th lamina. Hence, from Eq. 2, the distance from the base axis ZZ to neutral axis $\mathrm{NN}(\eta)$ can be derived as
$\eta=\frac{1}{2} \frac{E_{1}\left(2 h h_{1}-h_{1}^{2}\right)+E_{2}\left(2 h h_{2}-2 h_{1} h_{2}-h_{2}^{2}\right)+}{E_{3}\left(h^{2}-2 h_{1} h-2 h_{2} h+h_{1}^{2}+2 h_{1} h_{2}+h_{2}^{2}\right)} \begin{aligned} & E_{1} h_{1}+E_{2} h_{2}+E_{3}\left(h-h_{1}-h_{2}\right)\end{aligned}$
where $E_{1}, E_{2}$, and $E_{3}$ are the MOE values of individual laminae of a laminated material beam; $h_{1}, h_{2}$, and $h_{3}$ are the heights of individual laminae; $h$ is the height of the laminated material beam.

When $y_{1}$ (distance from neutral axis NN ) is in the range of $h-\eta-h_{1}$ to $h-\eta$ (tension side), shear stress $\tau$ is derived from Eq. 1 as follows. The numerator of Eq. 1 is represented as Eq. 4 and the denominator of Eq. 1 is represented as Eq. 5.

$$
\begin{align*}
& F \sum_{i=1}^{r} E_{i} S_{i}=F E_{1} S_{1 r}=F E_{1} \int_{y_{1}}^{h-\eta} b y d y  \tag{4}\\
& b \sum_{i=1}^{3} E_{i} I_{i}=b E \cdot \frac{b h^{3}}{12} \tag{5}
\end{align*}
$$

where $E$ is the MOE of the laminated material beam and $E_{1}$ is the MOE of the bottom lamina. Therefore, the shear stress $\tau$ in this range can be expressed as Eq. 6 from Eqs. 4 and 5 .

$$
\begin{equation*}
\tau=\frac{6 F E_{1}}{b h^{3} E}\left[(h-\eta)^{2}-y_{1}^{2}\right] \tag{6}
\end{equation*}
$$

When $y_{1}$ is in the range of 0 to $h-\eta-h_{1}$ (tension side), shear stress $\tau$ is derived from Eq. 1 as follows. The numerator of Eq. 1 is represented as Eq. 7, and $S_{1}$ and $S_{2 r}$ of Eq. 7 are represented as Eqs. 8 and 9, respectively.

$$
\begin{equation*}
F \sum_{i=1}^{r} E_{i} S_{i}=F\left(E_{1} S_{1}+E_{2} S_{2 r}\right) \tag{7}
\end{equation*}
$$

where $E_{2}$ is the MOE of the core lamina.
$S_{1}=\int_{h-\eta-h_{1}}^{h-\eta} b y d y$
$S_{2 r}=\int_{y_{1}}^{h-\eta-h_{1}} b y d y$
The shear stress $\tau$ in this range can be expressed as Eq. 10 from Eqs. 7, 8, 9, and 5.
$\tau=\frac{6 F}{b h^{3} E}\left\{E_{1}\left[(h-\eta)^{2}-\left(h-\eta-h_{1}\right)^{2}\right]+E_{2}\left[\left(h-\eta-h_{1}\right)^{2}-y_{1}^{2}\right]\right\}$

When $y_{1}$ is in the range of $\eta-h_{3}$ to $\eta$ (compression side), shear stress $\tau$ is derived from Eq. 1 as follows. The numerator of Eq. 1 is represented as Eq. 11.

$$
\begin{equation*}
F \sum_{i=1}^{r} E_{i} S_{i}=F E_{3} S_{3 r}=F E_{3} \int_{y_{1}}^{\eta} b y d y \tag{11}
\end{equation*}
$$

where $E_{3}$ is the MOE of the top lamina. From Eqs. 11 and 5 , shear stress $\tau$ can be expressed as Eq. 12.
$\tau=\frac{6 F E_{3}}{b h^{3} E}\left(\eta^{2}-y_{1}^{2}\right)$
When $y_{1}$ is in the range of 0 to $\eta-h_{3}$ (compression side), shear stress $\tau$ is derived from Eq. 1 as follows. The numerator of Eq. 1 is represented as Eq. 13 and $S_{3}$ and $S_{2 r}$ of Eq. 13 are represented as Eqs. 14 and 15, respectively.
$F \sum_{i=1}^{r} E_{i} S_{i}=F\left(E_{3} S_{3}+E_{2} S_{2 r}\right)$
$S_{3}=\int_{\eta-h_{3}}^{\eta} b y d y$
$S_{2 r}=\int_{y_{1}}^{\eta-h_{3}} b y d y$
The shear stress $\tau$ in this range can be expressed as Eq. 16 from Eqs. $13,14,15$, and 5.

$$
\begin{equation*}
\tau=\frac{6 F}{b h^{3} E}\left\{E_{3}\left[\eta^{2}-\left(\eta-h_{3}\right)^{2}\right]+E_{2}\left[\left(\eta-h_{3}\right)^{2}-y_{1}^{2}\right]\right\} \tag{16}
\end{equation*}
$$

## Shear strain

Shear strain $\gamma$ is defined in the following equation as a function of shear stress when the shear strain $\gamma$ is in proportion to shear stress $\tau$.
$\gamma=\frac{1}{G} \tau$
where $G$ is shear modulus. Substituting shear stress $\tau$ of Eqs. 6, 10, 12, and 16 in Eq. 17, respectively, we can obtain shear strain in each range.

Figure 2 shows schematic diagrams of shear stress and shear strain distribution in longitudinal section of a threeply laminated material beam. In order to obtain the averaged value of shear strain occurring in the section of a three-ply laminated material beam, we determine the integral value of shear strain distribution in its section.

The integral value of shear strain $\gamma \mathrm{d} y_{1}$ for $\mathrm{d} y_{1}$ is obtained as the following equation from Eq. 17.
$\gamma d y_{1}=\frac{1}{G} \tau d y_{1}$
The integral value of shear strain distribution $\left(q_{1}\right)$ from $h-\eta-h_{1}$ to $h-\eta$ of a three-ply laminated material beam shown in Fig. 2 is represented as follows:
$q_{1}=\int_{h-\eta-h_{1}}^{h-\eta} \gamma d y_{1}=\frac{1}{G_{1}} \int_{h-\eta-h_{1}}^{h-\eta} \tau d y_{1}$
where $G_{1}$ is the shear modulus of the bottom lamina. Substituting shear stress $\tau$ of Eq. 6 in Eq. 19, we obtain
$q_{1}=\frac{6 F E_{1}}{b h^{3} E G_{1}}\left[(h-\eta) h_{1}^{2}-\frac{h_{1}^{3}}{3}\right]$
$q_{2}$ is the integral value of shear strain distribution from 0 to $h-\eta-h_{1}$ and is represented as follows:
$q_{2}=\int_{0}^{h-\eta-h_{1}} \gamma \mathrm{~d} y_{1}=\frac{1}{G_{2}} \int_{0}^{h-\eta-h_{1}} \tau d y_{1}$
where $G_{2}$ is the shear modulus of the core lamina. Substituting shear stress $\tau$ of Eq. 10 in Eq. 21, we obtain

$$
\begin{aligned}
q_{2}= & \frac{6 F}{b h^{3} E G_{2}}\left\{E_{1}\left[2(h-\eta)^{2} h_{1}-3(h-\eta) h_{1}^{2}+h_{1}^{3}\right]+\right. \\
& \left.\frac{2}{3} E_{2}\left(h-\eta-h_{1}\right)^{3}\right\}
\end{aligned}
$$



Fig. 2A, B. Schematic diagrams of shear stress and shear strain in longitudinal section of three-ply laminated material beam. $N N$, neutral axis; $\eta$, distance from $Z Z$ axis to neutral axis; $y_{1}$, distance from neutral axis; $F$, shear force; $\tau$, shear stress; $\gamma$, shear strain; $h$, height of three-ply laminated material beam; $h_{1}, h_{2}$, and $h_{3}$, heights of individual laminae;
$q_{1}, q_{2}, q_{3}$, and $q_{4}$, integral values of shear strain distribution from $h-\eta$ $-h_{1}$ to $h-\eta$, from 0 to $h-\eta-h_{1}$, from $\eta-h_{3}$ to $\eta$, and from 0 to $\eta-$ $h_{3}$, respectively. B Typical example of shear stress and shear strain distributions parallel to grain of face laminae of cross-laminated wood beam
$q_{3}$ is the integral value of shear strain distribution from $\eta-h_{3}$ to $\eta$ and is represented as follows:

$$
\begin{equation*}
q_{3}=\int_{\eta-h_{3}}^{\eta} \gamma d y_{1}=\frac{1}{G_{3}} \int_{\eta-h_{3}}^{\eta} \tau d y_{1} \tag{23}
\end{equation*}
$$

where $G_{3}$ is the shear modulus of the top lamina. Substituting shear stress $\tau$ of Eq. 12 in Eq. 23, we obtain
$q_{3}=\frac{6 F E_{3}}{b h^{3} E G_{3}}\left(\eta h_{3}^{2}-\frac{h_{3}^{3}}{3}\right)$
$q_{4}$ is the integral value of shear strain distribution from 0 to $\eta-h_{3}$ and is represented as follows:
$q_{4}=\int_{0}^{\eta-h_{3}} \gamma d y_{1}=\frac{1}{G_{2}} \int_{0}^{\eta-h_{3}} \tau d y_{1}$
Substituting shear stress $\tau$ of Eq. 16 in Eq. 25, we obtain
$q_{4}=\frac{6 F}{b h^{3} E G_{2}}\left[E_{3}\left(2 \eta^{2} h_{3}-3 \eta h_{3}^{2}+h_{3}^{3}\right)+\frac{2 E_{2}\left(\eta-h_{3}\right)^{3}}{3}\right]$
$q$ is the total integral value of shear strain distribution from $h-\eta$ to $\eta$ and can be expressed as the following equation:
$q=q_{1}+q_{2}+q_{3}+q_{4}$
Therefore,

$$
\begin{align*}
q= & \frac{6 F}{b h^{3} E}\left\{\frac{E_{1}}{G_{1}}\left[(h-\eta) h_{1}^{2}-\frac{h_{1}^{3}}{3}\right]+\right. \\
& \frac{E_{1}}{G_{2}}\left[2(h-\eta)^{2} h_{1}-3(h-\eta) h_{1}^{2}+h_{1}^{3}\right]+ \\
& \frac{2 E_{2}}{3 G_{2}}\left(h-\eta-h_{1}\right)^{3}+\frac{E_{3}}{G_{3}}\left(\eta h_{3}^{2}-\frac{h_{3}^{3}}{3}\right)+ \\
& \left.\frac{E_{3}}{G_{2}}\left(2 \eta^{2} h_{3}-3 \eta h_{3}^{2}+h_{3}^{3}\right)+\frac{2 E_{2}}{3 G_{2}}\left(\eta-h_{3}\right)^{3}\right\} \tag{28}
\end{align*}
$$

Because $q$ is the total integral value of shear strain distribution for a height of $h$, the average strain $\bar{\gamma}$ is expressed as Eq. 29.

$$
\begin{align*}
\bar{\gamma}= & \frac{q}{h}=\frac{1}{h}\left(\frac{6 F}{b h^{3} E}\right)\left\{\frac{E_{1}}{G_{1}}\left[(h-\eta) h_{1}^{2}-\frac{h_{1}^{3}}{3}\right]\right. \\
& +\frac{E_{1}}{G_{2}}\left[2(h-\eta)^{2} h_{1}-3(h-\eta) h_{1}^{2}+h_{1}^{3}\right]+\frac{2 E_{2}}{3 G_{2}}\left(h-\eta-h_{1}\right)^{3} \\
& \left.+\frac{E_{3}}{G_{3}}\left(\eta h_{3}^{2}-\frac{h_{3}^{3}}{3}\right)+\frac{E_{3}}{G_{2}}\left(2 \eta^{2} h_{3}-3 \eta h_{3}^{2}+h_{3}^{3}\right)+\frac{2 E_{2}}{3 G_{2}}\left(\eta-h_{3}\right)^{3}\right\} \tag{29}
\end{align*}
$$

Because the averaged shear stress is $\bar{\tau}=F / b h$, shear force can be modified as $F=b h \bar{\tau}$. Therefore, $\bar{\gamma}$ is derived as Eq. 30.

$$
\begin{align*}
\bar{\gamma}= & \frac{6 \bar{\tau}}{h^{3} E}\left\{\frac{E_{1}}{G_{1}}\left[(h-\eta) h_{1}^{2}-\frac{h_{1}^{3}}{3}\right]\right. \\
& +\frac{E_{1}}{G_{2}}\left[2(h-\eta)^{2} h_{1}-3(h-\eta) h_{1}^{2}+h_{1}^{3}\right]+\frac{2 E_{2}}{3 G_{2}}\left(h-\eta-h_{1}\right)^{3} \\
& \left.+\frac{E_{3}}{G_{3}}\left(\eta h_{3}^{2}-\frac{h_{3}^{3}}{3}\right)+\frac{E_{3}}{G_{2}}\left(2 \eta^{2} h_{3}-3 \eta h_{3}^{2}+h_{3}^{3}\right)+\frac{2 E_{2}}{3 G_{2}}\left(\eta-h_{3}\right)^{3}\right\} \tag{30}
\end{align*}
$$

Shear modulus
With the shear modulus of a three-ply laminated material beam being represented as $G=\bar{\tau} / \bar{\gamma}$, shear modulus $G$ from Eq. 30 is derived as Eq. 31.
$G=\frac{h^{3} E}{6 X}$
where $X=\frac{E_{1}}{G_{1}}\left[(h-\eta) h_{1}^{2}-\frac{h_{1}^{3}}{3}\right]+\frac{E_{1}}{G_{2}}\left[2(h-\eta)^{2} h_{1}-3(h-\eta) h_{1}^{2}\right.$ $\left.+h_{1}^{3}\right]+\frac{2}{3} \cdot \frac{E_{2}}{G_{2}}\left(h-\eta-h_{1}\right)^{3}+\frac{2}{3} \cdot \frac{E_{2}}{G_{2}}\left(\eta-h_{3}\right)^{3}+\frac{E_{3}}{G_{2}}\left(2 \eta^{2} h_{3}-3 \eta h_{3}^{2}\right.$ $\left.+h_{3}^{3}\right)+\frac{E_{3}}{G_{3}}\left(\eta h_{3}^{2}-\frac{h_{3}^{3}}{3}\right)$.

## Application of derived equation to calculation of shear modulus of three-ply cross-laminated wood beam

## Specimen preparation

Species used for three-ply laminated wood beams included two softwoods: sugi (Japanese cedar, Cryptomeria japonica D. Don) and hinoki (Japanese cypress, Chamaecyparis obtusa Endl.); and three hardwoods: kiri (royal paulownia, Paulownia tomentosa Steud.), katsura (katsura, Cercidiphyllum japonicum Sieb. et Zucc.), and buna (beech, Fagus crenata Blume) as described in the previous article. ${ }^{5}$ A res-orcinol-phenol resin-type adhesive formulated for a roomtemperature cure was used, and the amount of spread was $300 \mathrm{~g} / \mathrm{m}^{2}$. Figure 3 shows the three-ply parallel-laminated and cross-laminated wood beam specimens tested.
$P_{\|}$types are the laminated wood beam specimens with all layers composed of laminae parallel to the grain $\left[\mathrm{P}_{\|}(\mathrm{KI})\right.$, $\mathrm{P}_{\| \mid}(\mathrm{SU}), \mathrm{P}_{\|}(\mathrm{HI}), \mathrm{P}_{\| \mid}(\mathrm{KA}), \mathrm{P}_{\|}(\mathrm{BU})$; KI, kiri; SU , sugi; HI, hinoki; KA, katsura; BU, buna]. $\mathrm{P}_{\perp}$ types are the laminated wood beam specimens with all layers composed of laminae perpendicular to the grain $\left[\mathrm{P}_{\perp}(\mathrm{KI}), \mathrm{P}_{\perp}(\mathrm{SU}), \mathrm{P}_{\perp}(\mathrm{HI}), \mathrm{P}_{\perp}(\mathrm{KA})\right.$, $\left.P_{\perp}(B U)\right]$.
$\mathrm{C}_{\|}(\mathrm{S})$ type was composed of longitudinal-direction laminae of sugi in the faces and perpendicular-direction lamina of five species in the core $\left[\mathrm{C}_{\|}(\mathrm{SKI}), \mathrm{C}_{\|}(\mathrm{SSU}), \mathrm{C}_{\|}(\mathrm{SHI})\right.$, $\mathrm{C}_{\|}(\mathrm{SKA})$, and $\left.\mathrm{C}_{\|}(\mathrm{SBU})\right]$, where prefix " S " means that the longitudinal-direction laminae in the faces were made of sugi wood. $\mathrm{C}_{\mid 1}(\mathrm{~B})$ type was composed of longitudinaldirection laminae of buna in the faces and perpendiculardirection lamina of five species in the core $\left[\mathrm{C}_{\|}(\mathrm{BKI})\right.$, $\mathrm{C}_{\|}(\mathrm{BSU}), \mathrm{C}_{\|}(\mathrm{BHI}), \mathrm{C}_{\|}(\mathrm{BKA})$, and $\left.\mathrm{C}_{\|}(\mathrm{BBU})\right]$, where prefix "B" means that longitudinal-direction laminae in the faces were made of buna wood. $\mathrm{C}_{\perp}(\mathrm{S})$ type was composed of perpendicular-direction laminae of five species in the faces and longitudinal-direction lamina of sugi in the core $\left[\mathrm{C}_{\perp}(\mathrm{SKI}), \mathrm{C}_{\perp}(\mathrm{SSU}), \mathrm{C}_{\perp}(\mathrm{SHI}), \mathrm{C}_{\perp}(\mathrm{SKA})\right.$, and $\left.\mathrm{C}_{\perp}(\mathrm{SBU})\right]$, where the prefix " S " means that the longitudinal-direction lamina in the core was made of sugi wood. $\mathrm{C}_{\perp}(\mathrm{B})$ type was composed of perpendicular-direction laminae of five species in the faces and longitudinal-direction lamina of buna in the core $\left[\mathrm{C}_{\perp}(\mathrm{BKI}), \mathrm{C}_{\perp}(\mathrm{BSU}), \mathrm{C}_{\perp}(\mathrm{BHI}), \mathrm{C}_{\perp}(\mathrm{BKA})\right.$,

Fig. 3. Parallel-laminated and cross-laminated wood specimens. $S$, sugi; $B$, buna used as longitudinal-direction laminae in cross-laminated woods

$\mathrm{C}_{\|}$(B) type

$\mathrm{C}_{\perp}$ (B) type
Laminated wood specimens $(20 \times 20 \times 340 \mathrm{~mm})$
and $\mathrm{C}_{\perp}(\mathrm{BBU})$ ], where the prefix " B " means that the longitudinal-direction lamina in the core was made of buna wood.
$P_{\|}$types and $P_{\perp}$ types were the specimens used to measure the bending strength properties parallel and perpendicular to the grain of parallel-laminated woods, respectively. $\mathrm{C}_{\|}$ types and $\mathrm{C}_{\perp}$ types were the specimens used to measure the bending strengths parallel and perpendicular to the grain of the face laminae of cross-laminated woods, respectively. The number of specimens per type was 3 and total number of specimens was 90 .

Bending strength properties test
The static bending test for all laminated wood specimens was conducted by four-point loading. The span was 300 mm , the distance between loading points and supporting points was 100 mm , and the cross head speed was set at $5.0 \mathrm{~mm} /$ min . The deflection at midspan was measured with a dial gauge, and load-deflection curves were recorded with an $\mathrm{X}-\mathrm{Y}$ recorder.

Shear modulus measurement
Static three-point bending test was conducted to obtain shear modulus $(G)$ for parallel-laminated wood beam specimens. The relation between the square of the height/span ratio $\left[(h /)^{2}\right]$ and the compliance $\left(1 / E_{\alpha}\right)$ is expressed by the following equation: ${ }^{8}$
$\frac{1}{E_{\alpha}}=\frac{1}{E}+\frac{k}{G}\left(\frac{h}{l}\right)^{2}$
where $E_{\alpha}$ is the measured MOE, $E$ is the true MOE, $G$ is the shear modulus, $k$ is $6 / 5$ in the case of a rectangular cross section, ${ }^{9}$ and $h$ and $l$ are the height and span of the specimen.

The span was decreased from 300 mm to 120 mm in decrements of 20 mm , and the MOE corresponding to each span was calculated. The regression line was described from the relation between the square of the height/span ratio and the compliance $\left(1 / E_{\alpha}\right)$, and the regression equations were obtained. By applying the regression equation to Eq. 32, shear moduli $(G)$ and true $\operatorname{MOE}(E)$ for $\mathrm{P}_{\|}$and $\mathrm{P}_{\perp}$ types were calculated and the $E / G$ values were obtained.

## Results and discussion

Calculated value of shear modulus
The calculated values of shear moduli of cross-laminated wood beams were obtained using the derived equation for calculating shear modulus of a three-ply laminated material beam. Table 1 shows the shear moduli ( $G_{1}, G_{2}$, and $G_{3}$ ) and true MOEs $\left(E_{1}, E_{2}\right.$, and $E_{3}$ ) of individual laminae and the true MOEs of cross-laminated wood beams that were used for calculating the shear modulus of a cross-laminated wood beam.

The calculated values of shear moduli of cross-laminated wood beams are shown in Table 2. For the $\mathrm{C}_{\perp}(\mathrm{S})$ type, the calculated value of shear modulus for buna $\left[\mathrm{C}_{\perp}(\mathrm{SBU})\right]$ had the highest value ( 322 MPa ), whereas that for sugi [ $\mathrm{C}_{\perp}(\mathrm{SSU})$ ] had the lowest value $(58.0 \mathrm{MPa})$. The values were in the order $\mathrm{C}_{\perp}(\mathrm{SBU})>\mathrm{C}_{\perp}(\mathrm{SKA})>\mathrm{C}_{\perp}(\mathrm{SHI})>\mathrm{C}_{\perp}(\mathrm{SKI})>\mathrm{C}_{\perp}(\mathrm{SSU})$, and were in the same order as shear moduli of $\mathrm{P}_{\perp}$ type made with five species. By replacing the perpendicular-direction lamina of five species in the core of $\mathrm{P}_{\perp}$ type with the lon-gitudinal-direction lamina of sugi, these values increased to $1.5-2.8$ times that for the $P_{\perp}$ type and the extent of the increase increased with decreasing density of species. It was found that the calculated values of shear moduli for the $C_{\perp}(B)$ type were slightly higher than those for the $\mathrm{C}_{\perp}(\mathrm{S})$ type.

In contrast, for the $\mathrm{C}_{\|}(\mathrm{S})$ type, the calculated values of shear modulus for buna $\left[\mathrm{C}_{\|}(\mathrm{SBU})\right]$ had the highest value $(317 \mathrm{MPa})$, whereas that for sugi $\left[\mathrm{C}_{\|}(\mathrm{SSU})\right]$ had the lowest value $(48.3 \mathrm{MPa})$. The values were in the order $\mathrm{C}_{\|}(\mathrm{SBU})>$
$\mathrm{C}_{\|}(\mathrm{SKA})>\mathrm{C}_{\|}(\mathrm{SHI})>\mathrm{C}_{\|}(\mathrm{SKI})>\mathrm{C}_{\|}(\mathrm{SSU})$. By replacing the longitudinal-direction lamina of sugi in the core of the $\mathrm{P}_{\|}(\mathrm{SU})$ type with the perpendicular-direction lamina of five species, these values decreased to $0.09-0.59$ times that for the $\mathrm{P}_{\|}(\mathrm{SU})$ type and it was found that the extent of the decrease increased with decreasing shear modulus in the cross section of the perpendicular-direction lamina in the core. Also, these values decreased to $0.07-0.48$ times that for the $\mathrm{P}_{\|}(\mathrm{BU})$ type by replacing the longitudinal-direction lamina of buna in the core of the $\mathrm{P}_{\|}(\mathrm{BU})$ type with the perpendicular-direction lamina of five species.

Apparent deflection $y_{\alpha}$ of a beam for four-point bending is expressed in the following equation: ${ }^{3}$

$$
\begin{align*}
y_{\alpha} & =y_{\mathrm{m}}+y_{\mathrm{s}}=\frac{P l_{1}\left(3 l^{2}-4 l_{1}^{2}\right)}{4 b h^{3} E}+\frac{k P l_{1}}{2 A G}  \tag{33}\\
& =\frac{\left.P l_{1}\left(3 l^{2}-4 l_{1}^{2}\right)\right)}{4 b h^{3} E}\left[1+\frac{2.4 h^{2}}{3 l^{2}-4 l_{1}^{2}} \cdot \frac{E}{G}\right]
\end{align*}
$$

where $y_{\mathrm{m}}$ is the deflection caused by bending moment; $y_{\mathrm{s}}$ is the deflection caused by shear force; $E$ is the true MOE; $G$ is the shear modulus; $P$ is the applied load; $b$ and $h$ are the width and height of the beam ( 20 mm , respectively); $l$ is the span ( 300 mm ); $l_{1}$ is the distance between a loading point and a supporting point $(l / 3)$; and $k$ is $6 / 5$ in the case of a rectangular cross section. ${ }^{9}$

From Eq. 33, the percentage of deflection caused by shear force is in proportion to $E / G$. Thus, $E_{\gamma} / G_{\mathrm{c}}$ values were obtained from the calculated values of shear modulus $\left(G_{c}\right)$ mentioned above and true $\operatorname{MOE}\left(E_{\gamma}\right)$ reported in the previous report, ${ }^{5}$ and are shown in Table 2.

Table 1. Shear moduli and moduli of elasticity of individual laminae, and modulus of elasticity of cross-laminated wood beam, used for calculation of shear modulus of cross-laminated wood beam

| Type ${ }^{\text {a }}$ | $G_{1}(\mathrm{MPa})$ | $G_{2}(\mathrm{MPa})$ | $G_{3}(\mathrm{MPa})$ | $E_{1}(\mathrm{GPa})$ | $E_{2}(\mathrm{GPa})$ | $E_{3}(\mathrm{GPa})$ | $E_{\gamma}(\mathrm{GPa})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}_{11}$ (SKI) | 533 | 40.2 | 533 | 9.66 | 0.537 | 9.66 | 9.29 |
| $\mathrm{C}_{\text {II }}(\mathrm{SSU})$ | 533 | 23.6 | 533 | 9.66 | 0.833 | 9.66 | 9.29 |
| $\mathrm{C}_{11}(\mathrm{SHI})$ | 533 | 56.4 | 533 | 9.66 | 0.928 | 9.66 | 9.35 |
| $\mathrm{C}_{1}($ SKA) | 533 | 170 | 533 | 9.66 | 1.36 | 9.66 | 9.40 |
| $\mathrm{C}_{1}(\mathrm{SBU})$ | 533 | 215 | 533 | 9.66 | 1.65 | 9.66 | 9.39 |
| $\mathrm{C}_{11}$ (BKI) | 726 | 40.2 | 726 | 9.18 | 0.537 | 9.18 | 8.85 |
| $\mathrm{C}_{1}(\mathrm{BSU})$ | 726 | 23.6 | 726 | 9.18 | 0.833 | 9.18 | 8.92 |
| $\mathrm{C}_{1( }(\mathrm{BHI})$ | 726 | 56.4 | 726 | 9.18 | 0.928 | 9.18 | 9.01 |
| $\mathrm{C}_{1}($ BKA $)$ | 726 | 170 | 726 | 9.18 | 1.36 | 9.18 | 9.07 |
| $\mathrm{C}_{11}(\mathrm{BBU})$ | 726 | 215 | 726 | 9.18 | 1.65 | 9.18 | 9.05 |
| $\mathrm{C}_{\perp}(\mathrm{SKI})$ | 40.2 | 533 | 40.2 | 0.537 | 9.66 | 0.537 | 0.906 |
| $\mathrm{C}_{\text {( }}(\mathrm{SSU})$ | 23.6 | 533 | 23.6 | 0.833 | 9.66 | 0.833 | 1.14 |
| $\mathrm{C}_{\perp}(\mathrm{SHI})$ | 56.4 | 533 | 56.4 | 0.928 | 9.66 | 0.928 | 1.20 |
| $\mathrm{C}_{\perp}$ (SKA) | 170 | 533 | 170 | 1.36 | 9.66 | 1.36 | 1.66 |
| $\mathrm{C}_{\perp}(\mathrm{SBU})$ | 215 | 533 | 215 | 1.65 | 9.66 | 1.65 | 1.94 |
| $\mathrm{C}_{\perp}(\mathrm{BKI})$ | 40.2 | 726 | 40.2 | 0.537 | 9.18 | 0.537 | 0.898 |
| $\mathrm{C}_{\perp}(\mathrm{BSU})$ | 23.6 | 726 | 23.6 | 0.833 | 9.18 | 0.833 | 1.13 |
| $\mathrm{C}_{\perp}(\mathrm{BHI})$ | 56.4 | 726 | 56.4 | 0.928 | 9.18 | 0.928 | 1.20 |
| $\mathrm{C}_{\perp}$ (BKA) | 170 | 726 | 170 | 1.36 | 9.18 | 1.36 | 1.65 |
| $\mathrm{C}_{\perp}(\mathrm{BBU})$ | 215 | 726 | 215 | 1.65 | 9.18 | 1.65 | 1.91 |

Each value is the average of three measurements and is also shown in Table 2. $h_{1}=h_{2}=h_{3}=6.7 \mathrm{~mm}$
$G_{1}, G_{2}$, and $G_{3}$, shear moduli of bottom, core, and top laminae; $E_{1}, E_{2}$, and $E_{3}$, true modulus of elasticity (MOE) values of bottom, core, and top laminae; $E_{r}$ true MOE of cross-laminated wood
${ }^{\text {a }}$ Prefix S, sugi; prefix B, buna used as longitudinal-direction laminae of cross-laminated woods
KI, kiri; SU, sugi; HI, hinoki; KA, katsura; BU, buna

Table 2. Shear modulus calculated by using derived equation $\left(G_{\mathrm{c}}\right)$, apparent modulus of elasticity calculated from $G_{\mathrm{c}}\left(E_{\alpha c}\right), E_{\gamma} / G_{\mathrm{c}}$, and percentage of calculated deflection caused by shear force $\left(Y_{\mathrm{sc}}\right)$ of cross-laminated wood beams

| Type | $G_{\mathrm{c}}(\mathrm{MPa})$ | $G(\mathrm{MPa})$ | $E_{\alpha c}(\mathrm{GPa})$ | $E_{\alpha}(\mathrm{GPa})$ | $E_{\beta}(\mathrm{GPa})$ | $E_{\gamma}(\mathrm{GPa})$ | $E_{\gamma} / G_{\text {c }}$ | $E_{\gamma} / G$ | $Y_{\text {sc }}(\%)$ | $Y_{\text {s }}(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{\\| \mid}(\mathrm{KI})$ | - | 284 | - | 5.69 | 5.73 | 6.21 | - | 21.9 | - | 8.5 |
| $\mathrm{P}_{\text {\|\| }}(\mathrm{SU})$ | - | 533 | - | 8.98 | 9.19 | 9.66 | - | 18.1 | - | 7.1 |
| $\mathrm{P}_{\mathrm{I}}(\mathrm{HI})$ | - | 750 | - | 12.5 | 12.9 | 13.5 | - | 18.0 | - | 7.1 |
| $\mathrm{P}_{\\|}(\mathrm{KA})$ | - | 864 | - | 8.80 | 8.81 | 9.21 | - | 10.7 | - | 4.5 |
| $\mathrm{P}_{\\|}(\mathrm{BU})$ | - | 726 | - | 8.67 | 8.96 | 9.18 | - | 12.6 | - | 5.6 |
| $\mathrm{P}_{\perp}(\mathrm{KI})$ | - | 40.2 | - | 0.510 | 0.470 | 0.537 | - | 13.4 | - | 5.0 |
| $\mathrm{P}_{\perp}$ (SU) | - | 23.6 | - | 0.735 | 0.697 | 0.833 | - | 35.3 | - | 11.8 |
| $\mathrm{P}_{\perp}$ (HI) | - | 56.4 | - | 0.872 | 0.774 | 0.928 | - | 16.5 | - | 6.0 |
| $\mathrm{P}_{\perp}(\mathrm{KA})$ | - | 170 | - | 1.31 | 1.23 | 1.36 | - | 8.00 | - | 3.1 |
| $\mathrm{P}_{\perp}(\mathrm{BU})$ | - | 215 | - | 1.60 | 1.48 | 1.65 | - | 7.67 | - | 3.0 |
| $\mathrm{C}_{\\|}(\mathrm{SKI})$ | 79.6 | - | 6.24 | 5.83 | 8.75 | 9.29 | 117 | - | 32.8 | 37.3 |
| $\mathrm{C}_{\\|}(\mathrm{SSU})$ | 48.3 | - | 5.16 | 5.68 | 8.75 | 9.29 | 192 | - | 44.5 | 38.9 |
| $\mathrm{C}_{\\|}$(SHI) | 109 | - | 6.89 | 6.25 | 8.80 | 9.35 | 85.8 | - | 26.3 | 33.1 |
| $\mathrm{C}_{\\|}$(SKA) | 269 | - | 8.21 | 7.52 | 8.85 | 9.40 | 34.9 | - | 12.7 | 20.0 |
| $\mathrm{C}_{\mid 1}(\mathrm{SBU})$ | 317 | - | 8.36 | 7.68 | 8.84 | 9.39 | 29.6 | - | 11.0 | 18.2 |
| $\mathrm{C}_{11}$ (BKI) | 81.5 | - | 6.08 | 5.78 | 8.33 | 8.85 | 109 | - | 31.3 | 34.7 |
| $\mathrm{C}_{\\|}(\mathrm{BSU})$ | 49.4 | - | 5.08 | 5.31 | 8.39 | 8.92 | 181 | - | 43.0 | 40.5 |
| $\mathrm{C}_{\\|}(\mathrm{BHI})$ | 113 | - | 6.76 | 6.06 | 8.48 | 9.01 | 79.7 | - | 25.0 | 32.8 |
| $\mathrm{C}_{\\|}$(BKA) | 294 | - | 8.03 | 7.08 | 8.54 | 9.07 | 30.9 | - | 11.5 | 21.9 |
| $\mathrm{C}_{\\|}(\mathrm{BBU})$ | 351 | - | 8.17 | 7.60 | 8.52 | 9.05 | 25.8 | - | 9.7 | 16.1 |
| $\mathrm{C}_{\perp}(\mathrm{SKI})$ | 113 | - | 0.877 | 0.787 | 0.794 | 0.906 | 8.02 | - | 3.2 | 13.1 |
| $\mathrm{C}_{\perp}$ (SSU) | 58.0 | - | 1.05 | 1.06 | 1.01 | 1.14 | 19.7 | - | 7.9 | 7.1 |
| $\mathrm{C}_{\perp}(\mathrm{SHI})$ | 120 | - | 1.15 | 1.14 | 1.07 | 1.20 | 10.0 | - | 4.2 | 4.9 |
| $\mathrm{C}_{\perp}$ (SKA) | 279 | - | 1.62 | 1.59 | 1.51 | 1.66 | 5.95 | - | 2.4 | 4.6 |
| $\mathrm{C}_{\perp}$ (SBU) | 322 | - | 1.89 | 1.82 | 1.77 | 1.94 | 6.02 | - | 2.6 | 6.2 |
| $\mathrm{C}_{\perp}$ (BKI) | 116 | - | 0.870 | 0.821 | 0.786 | 0.898 | 7.74 | - | 3.1 | 8.6 |
| $\mathrm{C}_{\perp}$ (BSU) | 58.7 | - | 1.05 | 1.04 | 1.01 | 1.13 | 19.3 | - | 7.1 | 8.6 |
| $\mathrm{C}_{\perp}(\mathrm{BHI})$ | 125 | - | 1.15 | 1.15 | 1.07 | 1.20 | 9.60 | - | 4.2 | 4.0 |
| $\mathrm{C}_{\perp}$ (BKA) | 303 | - | 1.61 | 1.60 | 1.50 | 1.65 | 5.45 | - | 2.4 | 3.3 |
| $\mathrm{C}_{\perp}(\mathrm{BBU})$ | 350 | - | 1.87 | 1.84 | 1.75 | 1.91 | 5.46 | - | 2.1 | 3.9 |

Each value of $G, E_{\alpha}, E_{\beta}$, and $E_{\gamma}$ is the average value of three measurements. $G, E_{\alpha}, E_{\beta}$, and $E_{\gamma}$ were reported previously by Park et al. ${ }^{5}$ $G$, Shear modulus of parallel-laminated wood beam; $E_{\alpha}$, measured apparent MOE; $E_{\beta}$, MOE calculated from true MOE values of individual laminae using equivalent cross-section method; $E_{\gamma}$, true MOE of laminated wood beam; $Y_{\mathrm{s}}$, percentage of measured deflection caused by shear force versus total deflection

The true MOE $\left(E_{\gamma}\right)$ of cross-laminated wood beam was obtained as follows. The true $\operatorname{MOE}\left(E_{\gamma}\right)$ of parallellaminated wood beam was calculated using $E=E_{\alpha}(1+\varphi)$ $\left[\varphi=2.4 h^{2} /\left(3 l^{2}-4 l_{1}^{2}\right) \cdot(E / G)=0.00417 \cdot(E / G)\right]$ from $E_{\alpha}$ and $E / G$. $E / G$ was obtained by the method described for shear modulus measurement. The apparent MOEs of individual laminae were measured, and the true MOEs of individual laminae were calculated from $E_{\alpha}$ and $E / G$. The true $\operatorname{MOE}\left(E_{\beta}\right)$ of parallel-laminated wood beams without the contribution of the glue line was calculated from the true MOEs of the individual laminae by the equivalent cross-section method. Furthermore, the relation between the ratio of the true $\operatorname{MOE}\left(E_{\gamma}\right)$ having the contribution of glue line to $E_{\beta}\left(R_{\mathrm{g}}=E_{\gamma} / E_{\beta}\right)$ and $1 / E_{\beta}$ of parallellaminated wood beams was represented by the following equation:

$$
R_{\mathrm{g}}=0.068 \cdot\left(1 / E_{\beta}\right)+1.054(r=0.742, \text { significant at } 1 \% \text { level })
$$

$E_{\beta}$ of cross-laminated wood beams was calculated from the true MOEs of individual laminae using the equivalent crosssection method. Assuming that this regression equation of parallel-laminated wood beam was also valid for crosslaminated wood beam, then $R_{\mathrm{g}}$ of cross-laminated wood beam was obtained from $E_{\beta}$ by the regression equation and $E_{\gamma}$ was obtained from $R_{\mathrm{g}}$ and $E_{\beta}$.

For $\mathrm{C}_{\perp}(\mathrm{S})$ type, the $E_{\gamma} / G_{\mathrm{c}}$ values were in the order $\mathrm{C}_{\perp}(\mathrm{SSU})>\mathrm{C}_{\perp}(\mathrm{SHI})>\mathrm{C}_{\perp}(\mathrm{SKI})>\mathrm{C}_{\perp}(\mathrm{SBU})>\mathrm{C}_{\perp}(\mathrm{SKA})$, and the values had low values of 5.95-19.7, and its difference among species of laminae used in the faces was found to be small. By replacing the perpendicular-direction lamina of five species in the core of $\mathrm{P}_{\perp}$ type with the longitudinaldirection lamina of sugi, $E_{\gamma}$ and $G_{\text {c }}$ increased to 1.2-1.7 times and 1.5-2.8 times those for the $\mathrm{P}_{\perp}$ type, respectively, and $E_{\gamma} / G_{\mathrm{c}}$ decreased to $0.56-0.78$ times that for the $\mathrm{P}_{\perp}$ type. A similar result was found for $\mathrm{C}_{\perp}(\mathrm{B})$ type.

In contrast, for the $\mathrm{C}_{\|}(\mathrm{S})$ type, the $E_{\gamma} / G_{\mathrm{c}}$ values were in the order $\mathrm{C}_{\|}(\mathrm{SSU})>\mathrm{C}_{\|}(\mathrm{SKI})>\mathrm{C}_{\|}(\mathrm{SHI})>\mathrm{C}_{\|}(\mathrm{SKA})>$ $\mathrm{C}_{\|}(\mathrm{SBU})$. Sugi $\left[\mathrm{C}_{\|}(\mathrm{SSU})\right]$ had the highest value (192), whereas buna $\left[C_{\|}(S B U)\right]$ had the lowest value (29.6). There was a marked difference in the value among species of laminae used in the core. By replacing the longitudinaldirection lamina of sugi in the core of $\mathrm{P}_{\|}(\mathrm{SU})$ type with the perpendicular-direction lamina of five species, $E_{\gamma} / G_{\mathrm{c}}$ increased by 1.6 (buna) to 11 times (sugi). The reason is that $E_{\gamma}$ values decreased only to $0.96-0.97$, whereas $G_{\mathrm{c}}$ decreased to 0.09 (sugi) to 0.59 (buna). It was found that there was a large difference in $E_{\gamma} / G_{\mathrm{c}}$ among species used for the core lamina. $E_{\gamma} / G_{\mathrm{c}}$ values were in the order $\mathrm{C}_{\|}(\mathrm{SSU})>\mathrm{C}_{\|}(\mathrm{SKI})$ $>\mathrm{C}_{\|}(\mathrm{SHI})>\mathrm{C}_{\|}(\mathrm{SKA})>\mathrm{C}_{\|}(\mathrm{SBU})$. A similar result was found for $\mathrm{C}_{\|}(\mathrm{B})$ type.

Relation between calculated value and measured value of apparent MOE

The calculated apparent $\operatorname{MOE}\left(E_{\alpha c}\right)$ of cross-laminated wood beam is derived as the following equation from Eq. 33.
$E_{\alpha \mathrm{c}}=E_{\gamma} /(1+\varphi)$
where $E_{\gamma}$ is the true MOE, $\varphi=2.4 h^{2} /\left(3 l^{2}-4 l_{1}^{2}\right) \cdot\left(E_{\gamma} / G_{\mathrm{c}}\right)=$ $0.00417 \cdot\left(E_{\gamma} / G_{\mathrm{c}}\right)$.

Figure 4 shows the percentage of difference between the measured value and the calculated value versus the measured value of apparent MOE of cross-laminated wood beam related to its $G_{\mathrm{c}}$. For the $\mathrm{C}_{\perp}$ type, its difference was in the range of $0.9 \%$ to $-11 \%$, and the calculated value was in fair agreement with the measured value.

On the other hand, for the $\mathrm{C}_{\|}$type, the calculated values of $\mathrm{C}_{\|}(\mathrm{SSU})$ and $\mathrm{C}_{\|}(\mathrm{BSU})$, with core composed of perpendicular-direction lamina of sugi with the lowest shear modulus of five species, were $9.2 \%$ and $4.3 \%$ smaller than the measured values, respectively. Conversely, for the other $\mathrm{C}_{\|}$types, the calculated values were $5.2 \%$ to $14 \%$ greater than the measured values. The range of the difference between both values was slightly wider in $\mathrm{C}_{\|}$type than in $\mathrm{C}_{\perp}$ type, but good agreement between both values was also found. From the above results, it was found that the calculated value of cross-laminated wood beams was able to be obtained from the MOEs and shear moduli of laminae.

Percentage of deflection caused by shear force
The percentage of deflection caused by shear force versus total deflection can be obtained by the following equation from the true MOE and the measured apparent MOE as mentioned in the previous report. ${ }^{5}$
$Y_{\mathrm{s}}=\frac{y_{\alpha}-y_{\mathrm{m}}}{y_{\alpha}} \times 100=\frac{E_{\gamma}-E_{\alpha}}{E_{\gamma}} \times 100(\%)$
Also, the percentage of deflection caused by shear force versus total deflection of cross-laminated wood beams can be obtained by the following equation from the true MOE and the calculated apparent MOE.

$$
\begin{equation*}
Y_{\mathrm{sc}}=\frac{y_{\alpha \mathrm{c}}-y_{\mathrm{m}}}{y_{\alpha \mathrm{c}}} \times 100=\frac{E_{\gamma}-E_{\alpha \mathrm{c}}}{E_{\gamma}} \times 100(\%) \tag{36}
\end{equation*}
$$

Table 2 shows the $Y_{\mathrm{s}}$ values that were reported in our previous article ${ }^{5}$ and $Y_{\text {sc }}$ values, and the comparison of these values is shown in Fig. 5.

For the $\mathrm{C}_{\perp}(\mathrm{S})$ type, the $Y_{\mathrm{sc}}$ value, which is the calculated value of the percentage of deflection caused by shear force, was in the range of $2.4 \%-7.9 \%$, and the values were slightly lower than $Y_{\mathrm{s}}$ values of $4.6 \%-13.1 \%$ calculated from the measured values in the previous study. ${ }^{5}$ However, their differences were small. A similar result was found for $C_{\perp}(B)$ type with the core composed of longitudinal-direction lamina of buna.

On the other hand, for the $\mathrm{C}_{\|}(\mathrm{S})$ type, the $Y_{\text {sc }}$ of $\mathrm{C}_{\| \mid}(\mathrm{SSU})$ with the core composed of perpendicular-direction lamina of sugi had the highest value of $44.5 \%$, and that of $\mathrm{C}_{\mid}(\mathrm{SBU})$ with the core composed of perpendicular-direction lamina of buna had the lowest value of $11.0 \%$. The $Y_{\text {sc }}$ value was in the order $\mathrm{C}_{\|}(\mathrm{SSU})>\mathrm{C}_{\|}(\mathrm{SKI})>\mathrm{C}_{\|}(\mathrm{SHI})>\mathrm{C}_{\|}(\mathrm{SKA})>$ $\mathrm{C}_{\|}(\mathrm{SBU})$, and it had the same order as the $Y_{\mathrm{s}}$ described in the previous article. ${ }^{5}$ A similar result was found for $\mathrm{C}_{\|}(\mathrm{B})$ type.

Figure 5 shows the regression line for the relation between $Y_{\mathrm{sc}}$ and $Y_{\mathrm{s}}$ by the least-squares method and a very high correlation ( $r=0.955$, significant at $1 \%$ level) was obtained. In this figure, the straight line of $y=x$ is shown by the dotted line to examine if $Y_{\mathrm{sc}}$ agreed with $Y_{\mathrm{s}} . \mathrm{C}_{\perp}(\mathrm{SKI})$ and $\mathrm{C}_{\perp}(\mathrm{BKI})$ with faces composed of perpendicular-


Fig. 4. Percentage of difference between measured value and calculated value versus measured value of apparent modulus of elasticity (MOE) of cross-laminated wood beam related to its $G_{\mathrm{c}} \cdot E_{\alpha}$, measured apparent MOE; $E_{\alpha c}$, calculated apparent MOE. Open circles, SSU; filled circles, BSU; open squares, SKI; filled squares, BKI; open triangles, SHI; filled
triangles, BHI ; open diamonds, SKA; filled diamonds, BKA; open inverted triangles, SBU; filled inverted triangles, BBU. Prefix $S$, sugi; prefix $B$, buna used as longitudinal-direction laminae of crosslaminated woods. $K I$, kiri; $S U$, sugi; $H I$, hinoki; $K A$, katsura; $B U$, buna


Fig. 5. Comparison of $Y_{\mathrm{s}}$ value with $Y_{\text {sc }}$ value of cross-laminated wood beam. $Y_{\mathrm{s}}$, percentage of deflection caused by shear force and calculated from measured apparent MOE and true MOE; $Y_{\mathrm{sc}}$, percentage of deflection caused by shear force and calculated from calculated apparent MOE and true MOE. Dotted line, $y=x$; open circles, $\mathrm{C}_{\|}(\mathrm{S})$ type; filled circles, $\mathrm{C}_{\| \|}(\mathrm{B})$ type; open triangles, $\mathrm{C}_{\perp}(\mathrm{S})$ type; filled triangles $\mathrm{C}_{\perp}(\mathrm{B})$ type; double asterisk, significant at $1 \%$ level
direction lamina of kiri were situated somewhat above the line, whereas $\mathrm{C}_{\|}(\mathrm{SSU})$ and $\mathrm{C}_{\|}(\mathrm{BSU})$ with cores composed of perpendicular-direction lamina of sugi were situated a little below it. On the whole, the $Y_{\mathrm{s}}$ values were higher than the $Y_{\mathrm{sc}}$ values, but their values were near the line. From the above results, it is considered that the validity of the derived equation for calculating shear modulus was verified.

## Conclusions

In this study, we derived an equation for calculating the shear modulus of a three-ply laminated material beam from shear moduli of individual laminae. The validity of the derived equation was investigated using cross-laminated wood beams made with five species reported in our previous article. ${ }^{5}$ The key findings of the study are:

1. The calculated shear moduli of cross-laminated wood beams increased markedly with increasing shear modulus in cross section for perpendicular-direction laminae of both core and faces.
2. The calculated value and the measured value of apparent MOE of cross-laminated wood beam were in good agreement, and it was found that the apparent MOE was able to be calculated from the true MOEs and shear moduli of laminae.
3. For a cross-laminated wood beam with perpendiculardirection laminae in the faces, the calculated value and the measured value of the percentage of deflection caused by shear force were small. For beams with longitudinal-direction laminae in the faces, these same values increased markedly with decreasing shear modulus in cross section of core lamina. The $Y_{\mathrm{s}}$ values were close to the $Y_{\mathrm{sc}}$ values and there was a very high correlation between them.

From the above results, the high validity of the derived equation for calculating shear modulus of cross-laminated wood beams was apparent.

## References

1. Japanese Agricultural Standards (2007) Glued laminated wood. Bending test. Japanese Agricultural Standards Association, Tokyo, pp 55-57
2. Japanese Agricultural Standards (2008) Laminated veneer lumber. Bending test. Japanese Agricultural Standards Association, Tokyo, pp 21-22
3. Park HM, Fushitani M, Ohtsuka T, Nakajima T, Sato K, Byeon HS (2001) Effect of annual ring angle on static bending strength performances of cross-laminated woods made with sugi wood (in Japanese). Mokuzai Gakkaishi 47:22-32
4. Park HM, Fushitani M (2006) Effects of component ratio of the face and core laminae on static bending strength performance of threeply cross-laminated wood panels made with sugi. Wood Fiber Sci 38:278-291
5. Park HM, Fushitani M, Sato K, Kubo T, Byeon HS (2003) Static bending strength performances of cross-laminated woods made with five species. J Wood Sci 49:411-417
6. Park HM, Fushitani M, Sato K, Kubo T (2004) Static bending strength performances of wood-aluminum hybrid laminated material. Trans Mater Res Soc Jpn 29:2503-2506
7. Utokuchi T, Kawada Y, Kuranishi M (1998) Strength of materials (in Japanese). Shokabo, Tokyo, pp 268-272
8. Yoshihara H, Kubojima Y (2002) Measurement of shear modulus of wood by asymmetric four-point bending tests. J Wood Sci 48: 14-19
9. Sakai J (1970) Strength of structures (in Japanese). Gihodo, Tokyo, p 77

[^0]:    H.-M. Park ( $\boxtimes$ ) • H.-S. Byeon

    College of Agriculture, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
    Tel. +82-55-751-5503; Fax +82-55-762-5999
    e-mail: phm0691@gnu.ac.kr
    M. Fushitani

    Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan

