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Abstract Sugi (Cryptomeria japonica D. Don) lumber is

known to have a large variability in final moisture content

(MCf) and is difficult to dry. This study assessed the

capability of artificial neural networks (ANNs) to predict

the MCf of individual wood samples. An ANN model was

developed based on initial moisture content, basic density,

annual ring orientation, annual ring width, heartwood ratio

and lightness (L* in the CIE L*a*b* system). The perfor-

mance of the ANN model was compared with a principal

component regression (PCR) model. The ANN model

showed good agreement with the experimentally measured

MCf with a higher correlation coefficient (r) and a lower

root mean square error (RMSE) than the PCR model,

demonstrating the importance of nonlinearity of the vari-

ables and the higher capability of the ANN model than the

PCR model. By adding redness (a*) and yellowness (b*)

and drying time to the input variables of ANNs, r and

RMSE values were improved to 0.98 and 1.2 % for the

training data set, and 0.85 and 2.2 % for the testing data

set, respectively. Although the developed ANNs are

available under the limited conditions of this study, our

results suggest that the ANNs proposed offer reliable

models and powerful prediction capability for the MCf,

even though wood properties vary considerably and their

complex interrelations are not fully elucidated.
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Introduction

In our previous paper [1], drying tests were conducted with

Sugi (Cryptomeria japonica D. Don) blocks and the vari-

ability in final moisture content (MCf) in relation to wood

properties was investigated using principal component

regression (PCR) analysis. The MCf of the blocks was

demonstrated to be affected by many factors including

initial moisture content (MCi), basic density (BD), annual

ring orientation (ARO), heartwood ratio (HR) and CIE L*

color. However, the relationships between the MCf and

these wood properties could not be sufficiently described

by the PCR, because there are complex interrelations

between the MCf and the wood properties and some of the

interrelations are nonlinear, which cannot be modeled by

the PCR. Therefore, a nonlinear approach is more useful in

describing their relationships and predicting the MCf of

wood.

Artificial neural networks (ANNs) are a powerful non-

linear data modeling method, capable of finding complex

nonlinear interrelations among many variables that produce

outcomes. The concept of ANNs is inspired from the bio-

logical system of the brain comprising many neurons

interconnected through synapses that process information.

The background information on ANNs can be found in the

literatures [2, 3]. The characteristic feature of ANNs is that

they are not programmed; they are trained from a series of

examples without needing to know beforehand the rela-

tions which may exist between the variables involved in the

process, by adjusting the weight of the relations between
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the variables. Thus, we hypothesize that ANNs may be

applicable for describing the complex interrelations

between MCf and wood properties.

ANNs have been applied to a steadily increasing number

of modeling tasks in diverse fields of engineering and sci-

ence [3]. In the field of wood science, ANN modeling has

been used to predict mechanical and physical properties of

wood, such as bending strength and stiffness [4–6], fracture

toughness [7], thermal conductivity [8], hygroscopic equi-

librium moisture content [9], non-isothermal diffusion of

moisture [10] and dielectric loss factor [11]. Few studies

have attempted to model the moisture content of wood

during drying process. Wu and Avramidis (2006) [12]

applied ANN modeling to the prediction of timber kiln

drying rates based on species, basic density and drying time.

Accurate prediction of the experimental drying rate data

was achieved with the developed ANN model, supporting

the powerful predictive capacity of ANN modeling method.

Ceylan (2008) [13] developed ANNs to predict the drying

rate of the timber stack based on temperature and humidity

inside the kiln and drying time, and showed that the drying

rate was successfully predicted. In the above studies,

however, the inherent variation in the drying characteristics

between individual timbers was not taken into consider-

ation, and it is unclear that ANNs would be applicable for

predicting the moisture contents of each timber in the stack.

If the MCf of individual timbers can be predicted by ANNs

prior to drying, it will be beneficial for sawmills to improve

pre-sorting strategies and drying schedules.

This study was aimed at assessing the capability of

ANNs to predict the MCf of individual wood samples. An

ANN model for MCf was developed based on wood

properties and compared with a PCR model employed in

our previous study [1]. Furthermore, an additional ANN

model for the prediction of moisture content during the

drying process (MCd) was developed, and the possibility of

improving the capability of ANNs was evaluated.

Materials and methods

Data collection

This study incorporated the data obtained from the exper-

imental work by Watanabe et al. (2012) [1]. The materials

and methods of the work are briefly mentioned as follows.

79 small samples were cut from 10 green lumbers of Sugi.

The MCi, BD, ARO, HR, L* and annual ring width (ARW)

of the samples were measured. The samples were air-dried

for 28 days in a conditioning room at a temperature of

20 ± 1 �C and a relative humidity of 44 ± 2 % RH. The

weight of each sample was measured once in a day and the

MCd was determined by oven-dry method. The moisture

content of the samples took 8 days on average to reach air-

dry moisture content of 15 %. Therefore, the MCf of the

samples was defined as the moisture content after a drying

period of 8 days. In addition to the above wood properties,

the CIE a* and b* color of the samples were additionally

measured and included in the model construction.

ANN modeling

ANNs consist of many artificial neurons that process their

inputs and send the output to one or many connected neu-

rons until the information propagation is complete and the

network produces an output. The ANNs are trained to learn

the relationships in data by adjusting internal parameters

until the predicted outcome is as close to the desired out-

come as possible. The architecture of the most popular

neural networks, called feedforward multilayer perceptron,

is depicted in Fig. 1. The ANNs consist of the input layer,

the one or more hidden layers and the output layer. The

input layer receives the initial values of the variables; the

output layer shows the results of the network for the input

values; and the hidden layer is where data are being pro-

cessed and makes it possible to model highly nonlinear

relationships between input and output. To determine the

optimum architecture and performance of the ANN, several

parameters are adjusted, such as number of neuron layers,

number of neurons in each layer, transfer functions, learn-

ing rule, learning coefficient ratio, number of learning

cycles, and initialization of weights and biases [2, 3]. The

parameters, which are varied based on the complexity of the

problem, are determined by a designer, and the choice of

specific parameters is more or less subjective [10, 14].

ANN model construction

Error-back propagation [15] is a well-known method to

determine the weights systematically. However, this is

known to involve several problems. The most important of

these is the slow pace of learning from examples.

Fig. 1 General architecture of feedforward multilayer perceptron

ANN
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Moreover, the weights are computed by fixing the number

of nodes in the hidden layer but the problem of arbitrari-

ness of it could not be avoided.

As one of the approaches to improve these problems,

cascade-correlation learning algorithm was developed by

Fahlman and Lebiere (1991) [16] and showed significant

improvements. Cascade-correlation is a method of incre-

mentally adding processing elements. Instead of adjusting

the weights in an ANN of fixed topology, cascade-corre-

lation begins with a minimal network, then automatically

trains and adds new hidden units one by one, creating a

multi-layer structure. Once a new hidden unit has been

added to the ANN, its input-side weights are frozen. This

unit then becomes a permanent feature-detector in the

ANN, available for producing outputs or for creating other,

more complex feature detectors. NeuralWorks Predict

(NWP) software (NeuralWare Inc., Pittsburgh, PA, USA)

was used in this study which implements the cascade-

correlation learning algorithm. NWP outperforms other

neural network tools in that it also builds ANNs in the

clever strategy of stopping rules against over-fitting on

empirical data. Moreover, NWP undertakes some nonlinear

transformation for input variables, and produces input

neurons for each transformation in advance of learning

process to avoid the complex representation of the model.

Types of transformation used include linear (scaling), log,

log–log, exponential, exponential of exponent, square-root,

square, inverse, inverse of square-root, inverse of square,

and so on, depending on the complexity of the problem

[17]. NWP also uses a genetic algorithm to make a suitable

choice of input variables from the set of all input variables

and transformations of input variables [17], since it effi-

ciently explores the large space of subsets of possible input

variables.

Two types of ANN models were constructed to model

MCf and MCd, respectively. In the case of MCf, the input

variables are MCi, BD, HR, ARO, ARW and L* that were

used to develop a PCR model for MCf [1], whereas in the

case of MCd, the input variables are MCi, BD, HR, ARO,

ARW, L*, a*, b* and drying time. The a*, b* and drying

time were additionally included in the input variables of

the ANN model for MCd, because the inclusion of more

input variables increases the data size, which may enhance

the number of possible structures and model performance.

The output layer in both cases consisted of only one vari-

able (an output neuron) corresponding to MCf or MCd. By

employing the genetic algorithm, the each input variable

was transformed by scaling, hyperbolic-tangent or natural

logarithm functions.

The required data set for training and testing of the

model were obtained from the experimental results of a

total of 79 samples above mentioned. 60 samples were

randomly selected for ANN training data set, while the

remaining 19 samples were used to test the generalization

capability of ANNs. The ANNs were trained with the

training data set and the optimum number of neurons in the

input (data transformation) and hidden layer were deter-

mined. The ANNs were then tested with the testing data set

which was not used in the training process.

Besides the ANN modeling, a PCR model for MCf was

developed with the training data set in the same manner as

in our previous study [1]. The MCf of the 19 samples in the

testing data set was predicted using the PCR model

developed.

The error measurements between the measured and the

predicted values were performed in both the training and

testing processes using Pearson’s r correlation by the fol-

lowing Eq. (1):

Pearson’s r correlation ¼

PN

i¼1

xp� xpð Þ xm� xmð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

xp� xpð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1

xm� xmð Þ2
s

ð1Þ

where N is the number of data sets, xp is the predicted

value, xm is the measured value, xp and xm are the average

values of each variable, respectively.

In order to show the degree of contribution of the input

variables to the determination of the network output, a

sensitivity analysis was performed with NWP, which

computes partial derivatives of the output variable with

respect to each of the input variables. The sensitivity

analysis produces a quantitative measure of the variation in

the MCf calculated by the network, when each variable

changes. The normalized sensitivity for each input variable

was calculated according to Eq. (2):

Normalized sensitivity ¼

PN

i¼1

oyi

oxi

� �2

r2N
ð2Þ

where r2 is the variance of the partial derivatives for each

input variable, xi and yi are the input and output vectors for

each data set. High values of this sensitivity indicate that a

slight variation of the variable produces considerable

changes in the output MCf, and vice versa. Furthermore,

the average value of sensitivity for each input variable was

calculated according to Eq. (3):

Average value of sensitivity ¼

PN

i¼1

oyi

oxi

N
ð3Þ

which indicates a positive relationship between input and

output variables for its positive sign, while a negative sign

indicates an inverse relationship. This is a standard diag-

nostic procedure commonly used to gain insight into a

multilayer neural network solution [17].
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Results and discussion

A summary of the input and output variables for the

training data set and the testing data set is listed in Table 1.

There was a large variation in each variable. The testing

data set was almost within the range of the training data set,

but the maximum values of BD, ARW and b* in the testing

data set exceeded the range of the training data set. This

may lead to an error in the prediction of MCf and MCd,

because the developed models cannot extrapolate beyond

the range of the data used for training (clipping to maxi-

mum and minimum values of the field).

Prediction of MCf

Figure 2 shows the plots of the experimentally measured

versus predicted MCf in the training process. The ANN

model yielded a correlation coefficient (r) of 0.91 and an

RMSE of 2.8 %, while the PCR model yielded an r of 0.76

and an RMSE of 4.2 %. The r value in the PCR model is

comparable with the one obtained in our previous study

(r = 0.74) where a PCR model was developed and vali-

dated with the entire data set [1]. In both the models, the

predicted MCf was in good agreement with the measured

one. It should be emphasized that the correlations produced

by the models were much higher than the correlations

between the MCf and the input variables. When the entire

data set was analyzed, significant r correlations between

MCf and MCi (r = 0.33, P \ 0.01), HR (r = 0.38,

P \ 0.001), and L* (r = –0.60, P \ 0.001) were identified,

whereas no significant correlations were observed between

MCf and BD, ARO, and ARW [1]. Hence, both the ANN

and PCR models had much better predictive ability for

MCf than the traditional simple linear regression.

When the MCf of the testing data set was predicted

(Fig. 3), the values of r and RMSE were 0.80 and 2.8 %

(ANN model), and 0.66 and 3.8 % (PCR model). Com-

pared with the statistics in Fig. 2, the correlation coeffi-

cients in the testing data set were lower than that in theTable 1 Range and standard deviation of input and output variables

for training data set and testing data set, respectively

Variables Training data set (n = 60) Testing data set (n = 19)

Mean SD Max Min Mean SD Max Min

MCi (%) 80.3 40.4 284.4 39.8 80.2 26.5 144.1 50.7

BD

(kg/m3)

313.2 35.2 463.1 263.7 317.0 53.1 515.6 264.3

ARO (�) 33 17 65 0 30 20 57 0

ARW

(mm)

4.5 1.4 7.9 1.9 4.6 1.9 8.2 1.6

HR 0.8 0.3 1.0 0.0 0.7 0.4 1.0 0.0

L* 33.8 8.7 52.3 11.9 36.4 8.0 51.0 21.1

a* 14.3 3.4 22.3 7.9 14.2 2.9 20.0 11.2

b* 28.9 4.1 34.6 14.9 30.2 3.3 35.9 24.7

MCf (%) 15.8 6.5 36.2 8.8 13.5 4.1 22.5 9.0

SD standard deviation, BD basic density, ARO annual ring orientation,

ARW annual ring width, HR heartwood ratio

Fig. 2 Plots of the experimentally measured versus predicted MCf in

the training process using the ANN model and the PCR model. The

Solid line, a one–one relationship between measured and predicted

values, RMSE root mean square error

Fig. 3 Plots of the experimentally measured versus predicted MCf in

the testing process using the ANN model and the PCR model. The

Solid line, a one–one relationship between measured and predicted

values, RMSE root mean square error

Fig. 4 Results of sensitivity analysis in the ANN model for

predicting MCf. The sign of the average sensitivity for each input

variable is shown in brackets. BD basic density, ARO annual ring

orientation, ARW annual ring width, HR heartwood ratio
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training data set. However, the performance of the models

was still moderate to high.

In both the training and testing data sets, the ANN

model consistently gave higher r values and lower RMSE

values than the PCR model (Figs. 2 and 3). Thus, the

predictive ability of the ANN model was demonstrated to

be greater than that of the PCR model. The architecture of

the ANN model for MCf was consisted of 7 input neurons,

10 neurons having a hyperbolic-tangent transfer function in

the hidden layer and 1 output neuron with a logistic transfer

function. The number of neurons in the hidden layer was

much higher than those reported by Wu and Avramidis

(2006) [12] and Ceylan (2008) [13], who predicted the

drying rate of timber stacks using the ANN models with

4–5 neurons in the hidden layer. In general, the more

neurons the hidden layer contains, the higher the nonlin-

earity of the ANNs is. Therefore, the 10 neurons in the

hidden layer of the present ANN model indicate the highly

nonlinear relationships between the input wood properties

and the output MCf, which may probably result in the

higher predictive ability of the ANN model than the PCR

model.

To estimate the relative importance of the individual

inputs to model predictions, sensitivity analysis was

Fig. 5 Comparison between measured and ANN predicted MCd for each sample in the testing data set
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conducted. Figure 4 shows the normalized sensitivity for

each input variable. The sensitivity value of ARW was 0,

which means that the ARW was eliminated substantially

from the input variables by the genetic algorithm. The

sensitivity analysis revealed that all the variables except

ARW had an influence on MCf. The MCi, BD, ARO and

HR had a positive influence on the MCf, while the L* had a

negative influence on the MCf. This finding is in consistent

with the results of the PCR analysis reported in our pre-

vious paper [1]. It is apparent from the figure that HR was

the variable presenting a higher influence on MCf, followed

by BD, ARO, MCi and L* in decreasing order. This order is

quite different from the one obtained from the PCR anal-

ysis [1]. Because the ANN model could describe the non-

linear relationships between the wood properties and the

MCf more fully than the PCR model, the results of the

sensitivity analysis are considered to be more reasonable

than those of the PCR analysis.

Prediction of MCd

The ANN model for MCd was developed based on MCi,

BD, HR, ARO, ARW, L*, a*, b* and drying time. The

architecture of the ANN for MCd was consisted of 9 input

neurons, 20 neurons having a hyperbolic-tangent transfer

function in the hidden layer and 1 output neuron with a

logistic transfer function. Figure 5 shows the comparison

between the measured and the ANN predicted MCd for

each sample in the testing data set. The predicted drying

curves were roughly in agreement with the measured ones,

in spite that the MCi of the testing samples varied, ranging

from 50.7 to 144.1 %. In around half of the samples, the

ANN predicted drying curves fitted well to the measured

ones, whereas in other samples, the predicted MC values

in the early stage of drying did not closely follow the

experimental ones. This discrepancy can be partially

explained by the insufficient number of data sets in the

early stage of drying where the MCd varied widely.

To further validate the ANN model for MCd, the MCf

values were read from the drying curves obtained, and the

measured and predicted MCf values were compared. Fig-

ure 6 shows the plots of the measured MCf versus ANN

predicted MCf for the training and testing data sets,

respectively. The relationships between the two were good

with an r of 0.98 and an RMSE of 1.2 % in the training

data set and an r of 0.85 and an RMSE of 2.2 % in the

testing data set. Compared with the results of the ANN

model for MCf (Figs. 2 and 3), higher correlations and

lower RMSEs were found in both the training and testing

data sets, which could be attributed to the additional input

variables and the consequent larger data size in construct-

ing the ANN model for MCd. These results demonstrate

that the capability of predicting the MCf could be improved

by the ANN model developed based on MCi, BD, HR,

ARO, ARW, L*, a*, b* and drying time.

Overall, the ANN models had good predictive ability for

MCf, and therefore it can be suggested that the ANNs

proposed offer reliable models and good prediction capa-

bility, even though wood properties vary considerably and

their complex interrelations are not fully elucidated.

However, the predictive ability of the ANN models in the

testing process was poorer than that in the training process.

This implies that the volume of data was not sufficiently

large to guarantee the generalization of the ANNs, and new

data sets may be required for further improvement.

Conclusions

The capability of ANNs to predict the MCf of the indi-

vidual small Sugi samples during air-drying was evaluated,

comparing with the PCR model employed in our previous

study. Our results showed that the proposed ANNs could

model highly nonlinear relationships between the inherent

wood properties and the MCf, and successfully predicted

the MCf more accurately than the PCR model. These

results suggest that the ANNs proposed offer reliable

models and good prediction capability, even though wood

properties vary considerably and their complex interrela-

tions are not fully elucidated. It should be noted that the

developed ANNs are available under the limited conditions

of this study, although if this ANN approach can be scaled

up to a real-size timber, it will allow sawmills to refine pre-

sorting strategies by predicting the MCf of individual

timbers.
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