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Abstract Various types of crystalline celluloses I, II, IIII,

IIIII, IVI and IVII that have been adjusted for their degree of

polymerization were treated by semi-flow hot-compressed

water (HCW) at 230–270 �C/10 MPa/15 min to study their

hydrothermal decomposition. The treatments resulted in

either partial or complete decomposition of the celluloses

and the decomposed products were primarily recovered as

hydrolyzed, dehydrated and fragmented ones as well as

organic acids in the water-soluble (WS) portions. Their

results of hydrothermal decomposition and its kinetics

revealed that the celluloses decomposition is dependent on

the types of crystalline celluloses as well as temperature of

the HCW treatment. The outcome from the WS portions at

270 �C/10 MPa/15 min showed that the degree of diffi-

culty for decomposition is lower in group II (cell II, cell

IIIII, cell IVII) than group I (cell I, cell IIII, cell IVI),

indicating that group II is less resistant to decomposition by

HCW treatment. Therefore, the decomposition behaviors

of the cellulose are due to the inherent differences in the

crystalline structures.

Keywords Cellulose � Cotton linter � Crystalline

structure � Hydrolysis � Semi-flow hot-compressed water

Introduction

Currently, almost all ethanol from renewable carbon is

obtained from food-based sources such as starch and

molasses. The shortage of capacity and competition from

food requirement drives the need for lignocellulose, such as

grasses and woods, to serve carbon resources for promising

biofuels [1]. Cellulose as one of the main components in

lignocellulose with approximate production of 1.5 9 1012

tons each year globally has high potential to be exploited

for this purpose [2, 3]. It can be chemically converted into

fermentable saccharides; however, this is usually hindered

by its great resistance to hydrolysis [4].

Cellulose is a linear crystalline homopolymer consisting

of b-1,4-linked D-glucopyranose units. It exists in six

known polymorphs of celluloses (I, II, IIII, IIIII, IVI, IVII)

identified by their characteristic X-ray diffraction (XRD)

patterns as well as 13C nuclear magnetic resonance (NMR)

spectra. In nature, cellulose has high degree of polymeri-

zation (DP), in a range of about 6000–15000 glucopyra-

nose units [5] which makes it highly crystalline and not

easy to be separated or dissolved in almost any solvents [6,

7]. Thus, numerous biological, chemical, and/or physical

treatments such as enzymatic saccharification, acid/alkali

treatments, steam explosion, supercritical and subcritical

treatments have been applied and developed for cellulose

hydrolysis [8–14].

Hydrothermal treatment in hot-compressed water

(HCW) has been proposed as a promising method to

hydrolyze cellulose mostly due to its non-toxic, non-cata-

lytic and environmentally benign properties [15–18]. Fur-

thermore, over conventional method, it has advantages

such as limited corrosion problem, no sludge generation,

low capital and operational cost, as well as no significant

degradation of cellulose at normal operating conditions
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[19]. The conventional methods such as acid/alkali treat-

ment and acid/alkali pretreatment followed by enzymatic

hydrolysis are associated with serious economic and

environmental constraints due to the heavy use of

chemicals.

Hot-compressed water is highly pressurized, high-tem-

perature liquid water at subcritical condition, below the

critical point of water at 374 �C/22.1 MPa [20]. It is

characterized by a higher ionic product and thus higher

concentration of H? and OH- ions, compared to ambient

water, offering a highly interesting reaction medium for

hydrolysis processes. In addition, acid neutralization is not

required because the concentration of H? ion is a function

of temperature and decreases when the temperature is

lowered. Many studies have confirmed that cellulose can be

largely hydrolyzed in subcritical water without addition of

a catalyst [21–26].

The experimental results using a flow-type HCW treat-

ment showed that glucose yield increases with increasing

temperature [27]. It has less significant degradation reac-

tions as compared to batch-type treatment that makes it

preferable for hydrolysis process of lignocellulose [28–30].

It has been reported that 4–22 % of cellulose could be

hydrolyzed by flow-type HCW treatment (200–230 �C/

34.5 MPa/15 min) [31].

To the best of authors’ knowledge, studies have been

done on analysis of cellulose hydrolysis using HCW

treatment; however, the comprehensive investigation has

been rarely conducted on various crystalline celluloses as

feedstocks. The physical characteristics such as crystal-

linity and DP of various crystalline cellulose residues as

treated by semi-flow HCW were thoroughly explored in

previous study together with a brief evaluation on the

water-soluble (WS) portions [32]. Therefore, as a further

approach, the primary objective of this work is to study

quantitatively the chemical decomposition from various

crystalline celluloses as treated by semi-flow HCW through

the yields of WS portions.

Materials and methods

Preparation of various types of crystalline cellulose

samples

Cotton linter (Buckeye 1AY-500), in the form of cellulose I

(cell I), was used to prepare various types of crystalline

celluloses. Cellulose II (cell II) was prepared from cell I

through mercerization by soaking it into 20.0 % of aqueous

NaOH solution for 24 h at ambient condition of tempera-

ture (20 �C) and pressure (0.1 MPa), followed by washing

thoroughly with water and freeze-drying [33]. As for cel-

luloses IIII (cell IIII) and IIIII (cell IIIII), they were prepared

from cell I and cell II, respectively. Cell I and cell II were

soaked in 100 % ethylenediamine for 24 h at ambient

condition, washed with dried methanol and kept under

vacuum.

The prepared cell IIII and cell IIIII were further used for

the preparation of celluloses IVI (cell IVI) and IVII (cell

IVII), by firstly soaking them in glycerol for 3 days at

ambient condition. They were then heated in a reaction

vessel at 260 �C/0.6 MPa for 30 min and cooled down to

ambient condition [34]. The product was, then, washed

with water and acetone successively, and dried in vacuum.

Basically, the converted celluloses consisted of group I

(celI I, cell IIII, cell IVI) and group II (cell II, cell IIIII, cell

IVII). Their chemical compositions were also analyzed and

all these celluloses were found to contain similar mono-

saccharide components of about 99.9 wt% glucose and

0.1 wt% xylose [35].

To compare the decomposition products from WS por-

tions on various types of crystalline celluloses by semi-flow

HCW treatment, cellulose with similar DP are necessary

for their evaluation. Consequently, these celluloses were

adjusted by trial and error for their DPs by changing the

treatment condition mentioned above for converting cell I

to various forms of celluloses.

The determination of DP and crystallinity

of the celluloses

The celluloses were dissolved in 0.5 M cupriethylenedi-

amine (Cuen) by viscometry as per TAPPI method [36].

The DP of the celluloses was then calculated from the

intrinsic viscosity [g] according to the equation

DP0.905 = 0.75[g] [37]. For the crystallinity determination,

Gaussian functions were used to deconvolute the XRD

patterns of various crystalline celluloses [38]. These XRD

patterns were recorded by X-ray diffractometer Rigaku

RINT 2200 [32].

Treatment of various crystalline cellulose samples

by semi-flow HCW treatment

The prepared celluloses as starting materials were then

treated individually in a semi-flow HCW system. The

conversion system and its operational procedures as

explained elsewhere were adapted for this study [24–26].

Briefly, about 0.4 g of cellulose was treated individually

within a 5-mL reaction vessel. The ambient distilled water

from a water tank was flown through the reaction vessel by

a pump to pressurize the system at 10 MPa controlled by a

back-pressure regulator. To raise the temperature, the

preheating unit monitored by thermocouples was used to

reach at the designated temperatures of 230, 250 and

270 �C for about 20 min under 10 MPa and remains
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constant for additional 15 min, totally 35 min. In addition,

another heating unit was installed at the reaction vessel to

maintain the designated temperature in the reaction vessel,

into which the HCW was passed through at the flow rate of

10 mL/min.

These treatments yielded insoluble residues [32] and

WS portions. After the HCW passing through the reaction

vessel, the WS portions were cooled down immediately by

the cooling system to terminate all reactions and collected

every 5 min. They were allowed to settle in ambient tem-

perature and pressure for a minimum of 12 h. Though no

precipitation was observed after at least 12 h, it was filtered

by 0.45-lm membrane prior to the subsequent analyses.

Analytical methods

The WS portions collected were analyzed and character-

ized using high-performance anion exchange chromatog-

raphy (HPAEC), high-performance liquid chromatography

(HPLC) and capillary electrophoresis (CE). The HPAEC

system (Dionex ICS-1000 system) equipped with the

CarboPac PA-1 column (4 mm 9 250 mm) and electro-

chemical detector for pulsed amperometric detection was

employed and operated at 35 �C and flow rate of 1.0 mL/

min under the helium atmosphere for monosaccharides and

cello-oligosaccharides in the WS portions. The mobile

phase was a gradient-programmed mixture of deionized

water, 0.2 M NaOH and 2.0 M CH3COONa, as eluents. All

eluents contained in 3 separate reservoirs were degassed by

an aspirator and subsequently purged with helium to pre-

vent the absorption of CO2.

The HPLC system (Shidmadzu, LC-10A) equipped with

a Shodex Sugar KS-801/Ultron PS-80P columns and

refractive index/UV–Vis detector was applied. The eluent

used was deionized water at a flow rate of 1.0 mL/min and

oven temperature was set to be 80 �C for the columns. The

CE (Agilent; Germany) was used to assay the low molec-

ular weight organic acids. A fused-silica capillary (Agilent;

75 lm diameter, 104 cm total length, 95.5 cm effective

length) was used at 15 �C.

Concentrations of the products in the WS portions were

calculated based on the peak areas on chromatograms

obtained from HPAEC, HPLC and CE. A set of standards with

known concentrations, containing the compounds that were to

be identified both quantitatively and qualitatively, was pre-

pared and analyzed together with the samples using the rele-

vant analytical equipment as mentioned above [18, 24, 25].

Results and discussion

To investigate the decomposition behaviors on various

types of crystalline celluloses by semi-flow HCW

treatment, the celluloses must have the same DPs as the

starting materials. Thus, a direct comparison between the

celluloses is feasible, as listed in Table 1. Treatments by

semi-flow HCW were then carried out for these celluloses

at temperatures of 230, 250 and 270 �C under 10 MPa for

15 min (230–270 �C/10 MPa/15 min).

Decomposition kinetics

The semi-flow HCW treatment decomposed various crys-

talline celluloses either partially or completely to the WS

portions. The yield on WS portions from various crystalline

celluloses, as shown in Fig. 1, is a function of treatment

temperatures. At constant treatment time, the yield on WS

portions increased as the temperature increased. They were

measurable even at lower temperature, 230 �C/10 MPa,

with approximately 10–30 wt% and increased to more than

70 wt% at higher temperature, 270 �C/10 MPa. At 270 �C/

10 MPa/15 min, cell II was shown to be totally decom-

posed to WS portions as compared to other celluloses. The

overall results from Fig. 1 illustrated that higher yields

were obtainable for group II celluloses than group I.
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Fig. 1 The yield on WS portions from various types of crystalline

celluloses as treated at different temperatures under 10 MPa for

15 min (230–270 �C/10 MPa/15 min) by semi-flow HCW

Table 1 The crystallnity and

DP for various types of crystal-

line celluloses prepared in this

study

Cellulose Crystallinity

(%)

DP

Group I

Cell I 92 176

Cell IIII 86 164

Cell IVI 90 167

Group II

Cell II 85 173

Cell IIIII 87 176

Cell IVII 85 164
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Figure 2 shows the Arrhenius plot of the present results

according to the pseudo-first-order reaction kinetics. The

relationship between natural logarithms of reaction con-

stants, ln k, and T-1 shows good linear fits with the results

indicating that the decomposition follows the pseudo-first-

order reaction kinetics. Every parameter used such as time,

pressure and DP on the celluloses were kept constant,

satisfying the assumption that the Arrhenius plot is tem-

perature dependent. Though, the data points obtained in

this study are only based on three different temperature

profiles, the degree of decomposition could be determined

reliably and the comparison of kinetics on various crys-

talline celluloses can be done directly.

The apparent activation energies, Ea, for the celluloses

can be calculated from Fig. 2. Activation energy of any

reaction mainly explains its degree of temperature sensi-

tiveness; reactions with higher Ea are high in temperature

sensitiveness, while the reactions with lower Ea are low

temperature-sensitive [39]. It can also be said that Ea is

defined as the minimum energy required for decomposition

to occur. The smaller Ea for decomposition of cellulose

signifies the requirement of less energy for its decompo-

sition and vice versa. In Fig. 2, it was shown that different

slopes obtained for each of the celluloses suggested dif-

ferent Ea for cellulose decomposition in the studied tem-

perature range.

Table 2 shows the obtained Ea for all celluloses within

the treatment temperatures. The Ea for group I and group II

celluloses are, respectively,[70 kJ/mol and in between 50

and 60 kJ/mol. It is apparent that the celluloses in group I

have higher Ea than those in group II, which implies an

easier decomposition process for group II celluloses by

semi-flow HCW treatment. However, due to the afore-

mentioned limitations such as limited numbers of experi-

ments carried out in a relatively narrow temperature range,

the obtained Ea must be judged critically. The acquired Ea

was based on the best-fit curves. As a result, a higher Ea

was obtained for cell IVI as compared to cell I and cell IIII.

Since comparison of Ea was done between group I and

group II, the above observation of group I having higher Ea

than group II is valid.

These Ea are lower than previously reported, 164 kJ/mol

[7] and 145 kJ/mol [40] without catalysts, whereas 144 and

100 kJ/mol [41] in dilute sulfuric acid catalyst. The dif-

ferences in Ea could be due to various definitions of

decomposition processes and treatment conditions used.

For instance, Sasaki et al. [40] studied just the kinetics of

cellulose hydrolysis only at elevated temperatures (above

290 �C/25 MPa), whereby in this work the kinetics of

various cellulose decomposition was measured at

230–270 �C/10 MPa.

Here, the observed decomposition of cellulose in sub-

critical water appears to be as good as that occurring in

dilute sulphuric acid hydrolysis [41]. Cellulose firstly

undergoes a rapid weight loss and followed by a slow

hydrolysis step of the remaining cellulose. The high reac-

tivity is associated with accessible amorphous regions in

cellulose that are more vulnerable to chemical attacks than

the crystalline regions [42]. The reaction temperature has

influence on the solvent properties of water [15, 43]. It has

been suggested that the shift in solvent properties affects the

kinetics of cellulose decomposition [44, 45]. However, in

this present work, the constant Ea implies that the reaction

mechanism of the hydrothermal decomposition is not dis-

tinctly affected. The lower Ea obtained indirectly showed

that the decomposition of various celluloses in this system

is a catalytic process, in agreement with the literature [41].

Quantification of water-soluble (WS) portions

Figure 3 shows the reaction scheme of cellulose I decom-

position into hydrolyzed and degraded products as treated
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Fig. 2 The Arrhenius plot for various crystalline celluloses using

pseudo-first-order reaction kinetics as treated by semi-flow HCW at

230–270 �C/10 MPa/15 min

Table 2 The apparent activa-

tion energies of various types of

crystalline celluloses as treated

by semi-flow HCW at

230–270 �C/10 MPa/15 min

Cellulose Activation energy,

Ea (kJ/mol)

Group I

Cell I 71.4

Cell IIII 78.0

Cell IVI 90.2

Group II

Cell II 53.3

Cell IIIII 59.0

Cell IVII 56.6
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by semi-flow HCW treatment, adapted from [32]. In the

present work, the WS portions for various crystalline cel-

luloses obtained from each treatment were found to follow

a similar decomposition pathway as in Fig. 3. It is impor-

tant to know the decomposition pathway of cellulose as the

degraded products inhibit the fermentation process for

ethanol production [46].

Under the HCW conditions, the ionization constant of

water increases with temperature and the amount of disso-

ciation also increases, compared with normal temperature

and pressure. The glucosidic linkages of cellulose are

cleaved and cellulose starts to hydrolyze into cello-oligo-

saccharides, and subsequently, hydrolyzed to monosaccha-

ride of glucose [20, 25, 47, 48]. Isomerization of glucose

occurred producing fructose and mannose. These mono-

saccharides are unstable at high temperature and thus some

parts of them are further converted into their degraded

products such as furfural, 5-hydroxymethyl furfural

(5HMF), levoglucosan through dehydration, and erythrose,

glycolaldehyde, methylglyoxal through fragmentation [49].

Prolonged treatment, however, allows further degradation to

take place, generating other products such as organic acids.

The resulted WS portion percentages based on the dried

weight of cellulose samples clearly indicated that the cel-

luloses have been converted to the hydrolyzed and degra-

ded products. The hydrolyzed products comprise cello-

oligosaccharides, glucose, fructose and mannose, whereas

the degraded products consist of dehydrated and frag-

mented products, as well as organic acids. Their produc-

tions were recorded higher in hydrolyzed products as

compared to degraded products, and more yields were

obtained as treatment temperatures increased.

These WS portions were calculated similarly as in the

previous studies [24, 25]. The cello-oligosaccharides were

consisted of cellobiose, cellotriose, cellotetraose, cello-

pentaose, cellohexaose and other cello-oligosaccharides

with the higher DP. The more existence of the cello-oli-

gosaccharides with the higher DP shows that the cellulose

has more resistance against hydrolysis by semi-flow HCW

treatment. In addition to cello-oligosaccharides and glu-

cose, a smaller amount of fructose was also detected and

only traces of mannose were identified.

A much lower yield of the WS portions obtained at

230 �C/10 MPa/15 min (data not shown) was due to the

difficulty of the crystalline structures of celluloses to be

hydrolyzed at such lower temperature [26]. The cello-oli-

gosaccharides observed could be obtained from the para-

crystalline cellulose. The observed fructose is not a sugar

component in cotton linter, but it may be isomerized from

glucose after hydrolysis from cellulose [50, 51].

To evaluate the decomposition behavior of various

crystalline celluloses in details, the results from 270 �C/
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10 MPa/15 min would be more appropriate, as at this

condition, crystalline cellulose is known to decompose [20,

25, 26]. Table 3 shows the comparison between hydrolyzed

and degraded products for the two groups of cellulose

samples at 270 �C/10 MPa/15 min. It can be seen that for

both group I and group II celluloses, more than 50 wt% of

hydrolyzed products were obtained as compared to degra-

ded products. It was reported that about 31.2, 28.1 and

20.5 wt% of hydrolyzed products were obtained from the

cellulose of Japanese cedar, Japanese beech and Nipa

frond, respectively [52]. However, there were no results for

DP of the cellulose from this study that it can be compared

with. The higher yield in WS portions observed in this

present work could probably be due to the shorter DP

celluloses used for the starting materials.

According to Fig. 3, the hydrolyzed products were

produced at the early stage of cellulose decomposition

pathway. This could signify that these celluloses have

resistance against decomposition. The total hydrolyzed

products for cell I and cell IIII is similar but much lesser

than cell IVI, whereas the highest hydrolyzed products

obtained in group II is from cell IIIII, followed by cell IVII

and cell II. Overall, celluloses in group II have resulted

more hydrolyzed products than those in group I. The

observation is similar for the degraded products.

Figures 4 and 5, respectively, illustrated how the

hydrolyzed and degraded products were obtained at every

5 min intervals at 270 �C/10 MPa/15 min. In Fig. 4, only

the yields of cello-oligosaccharides, glucose and fructose

were shown. These yields are comparable with the results

in the literatures [20, 24–26]. Based on these results, the

cellulose has been cleaved into cello-oligosaccharides at

the early stage of the treatment time and the production of

glucose and fructose was seen to occur simultaneously.

Celluloses in both group I and group II have similar
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Table 3 The total hydrolyzed and degraded products of WS portions

from various types of crystalline celluloses as treated by semi-flow

HCW at 270 �C/10 MPa/15 min

Cellulose Hydrolyzed

product (wt%)

Degraded

product (wt%)

Group I

Cell I 52.0 10.5

Cell IIII 52.7 10.6

Cell IVI 67.0 11.1

Group II

Cell II 67.3 18.8

Cell IIIII 71.0 8.9

Cell IVII 67.0 12.6
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Fig. 5 The dehydrated, fragmented products and organic acids in the
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treatment temperature (open squares)
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behaviors; however, more products were seen from group

II celluloses. The cello-oligosaccharides and glucose were

recovered from the treatment time of 35 min. The crys-

talline structure of cellulose remained unchanged at tem-

peratures around 230 �C [53]; thus, the WS portions

emerged from the time-up (0–20 min treatment time) could

be from paracrystalline cellulose, and the time-at

(20–35 min treatment time) was from cellulose.

Generally, these monosaccharides are further degraded

by dehydration or fragmentation process [15, 24, 54, 55].

Figure 5 illustrated that more dehydrated products were

obtained than fragmented products and organic acids.

During the treatments, it can be seen that the degraded

products were generated at almost similar time as the

hydrolyzed products (Fig. 4). Moreover, the productions of

dehydrated and fragmented products as well as organic

acids were generated concurrently. Both group I and group

II celluloses in Fig. 5 have the same trends as in Fig. 4, i.e.,

more products resulted from group II celluloses. The gen-

eration of hydrolyzed products started to be noticeable

from around 3 min (Fig. 4) and followed by degraded

products (Fig. 5) about 10 min later. This sequence is

parallel with that shown in Fig. 3 at which the hydrolyzed

products were produced earlier in the decomposition

pathway, and later on followed by the production of

degraded products.

Figure 6 shows the yield in wt% for the individual

degraded products in the WS portions for both group I and

group II celluloses as treated by semi-flow HCW at

270 �C/10 MPa/15 min. The dehydrated products detected

were consisted of levoglucosan, furfural and 5HMF

whereas fragmented products consisted of erythrose, gly-

colaldehyde and methylglyoxal. While for organic acids,

lactic, acetic, glycolic and formic acids were identified.

The furfural in Fig. 6 can not only be produced from

pentose but also from hexose such as glucose. This means

that the formation of furfural is possible without pentose

via five-carbon ketoses pathway as proposed in the litera-

ture [56].

Glycolaldehyde and erythrose were formed via retro-

aldol condensation in glycolaldehyde/erythrose pathway

[44, 51], while methylglyoxal was produced via glycer-

aldehyde/dihydroxyacetone pathway in hexose fragmenta-

tion. Nevertheless, the production of methylglyoxal in this
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case was too minute that it was excluded from Fig. 6. The

production of furfural and 5HMF was significant as com-

pared to other degraded products. The organic acids pro-

duced are the results of further degradation of dehydrated

and fragmented products [51, 57]. Formic acid production

was only a trace to be included in Fig. 6. All the sequences

of degradation reactions and productions are agreeable

with Fig. 3.

Based on those results above, it can be seen that group II

celluloses dominated both the hydrolyzed and degraded

products as compared to group I celluloses. The result on

the WS portions at 270 �C/10 MPa/15 min revealed that

the degree of difficulty for decomposition is greater for

celluloses in group I than those in group II.

Conclusion

This study reveals the essential effects of various crystal-

line celluloses on their hydrothermal decomposition and its

kinetic behaviors as treated by semi-flow HCW. Both

decomposition rate and Ea are helpful in defining the

degree of difficulty for decomposition of various crystal-

line celluloses; however, the Ea obtained were merely

based on empirical relationships of Arrhenius equation.

Consequently, the direct method is more preferable than

the latter. Nevertheless, this study showed the new kinetic

data as there were no previous data on these specific

reaction systems.

These treatments can be used as viable decomposition

media for celluloses at which under the given treatment

conditions, cellulose is more readily hydrolyzed with less

degraded products. Group I celluloses (cell I, cell IIII, cell

IVI) have shown to have more resistance to decompose

than group II celluloses (cell II, cell IIIII, cell IVII). Based

on this evidence, it was clear that the decomposition

behaviors are due to the different crystalline forms of

celluloses. Therefore, it is recommended to transform cel-

lulose I to the other for a better hydrolysis reaction. These

presented data are useful for understanding how various

types of crystalline celluloses are hydrothermally decom-

posed, providing useful insights to efficient utilization of

lignocellulose for biofuels and biochemicals.
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