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Abstract To elucidate the electroelastic field in woods,

which are piezoelectric bodies belonging to point group D?,

we construct an analytical technique for general solutions to

electroelastic problems in these bodies. First, the constitutive

equations are derived considering the microstructures and

their combined behaviors. Then, the displacement and

electric field are expressed in terms of two types of dis-

placement potential functions and the electric potential

function, and their governing equations are obtained using

the fundamental equations for the electroelastic field. As a

result, the electroelastic field quantities are found to be ex-

pressed in terms of four functions, namely two elastic dis-

placement potential functions and two piezoelastic

displacement potential functions, each of which satisfies a

Laplace equation with respect to the appropriately trans-

formed spatial coordinates. As an application of the tech-

nique, the electroelastic field in a semi-infinite body

subjected to a prescribed electric potential on its surface is

analyzed, and the numerical results are illustrated. This

novel technique serves to investigate the electroelastic field

inside wooden materials.

Keywords Piezoelectric body � Point group D? �
Electroelastic problem � General solution technique

Introduction

The concepts of carbon neutrality have attracted consid-

erable attention recently because of an increasing demand

for a reduction in environmental loads. From the viewpoint

of engineering production, wooden materials are one of the

most promising candidates for achieving carbon neutrality.

To ensure the quality of wooden materials, nonde-

structive evaluation techniques need to be developed. In

particular, the detection of local defects such as cracks,

knots, and pith is of great importance for ensuring struc-

tural integrity. Wood has been known as a piezoelectric

material since the middle of the 20th century, when Fukada

succeeded in experimentally verifying the direct and con-

verse piezoelectric effects of wood [1]. Using piezoelectric

effects, the mechanical behaviors of wood were investi-

gated; the piezoelectric signals were related to the profiles

of defects [2–4] and to the deformation [5, 6] and stress–

strain relation [7, 8].

Because wooden materials are composed of complicated

microstructures, a microscopic approach is preferable to

investigate their electroelastic properties in detail, and in-

vestigations from such an approach were actually made for

elastic [9, 10], dielectric [11, 12], and piezoelectric [13]

properties. In the design procedures of engineering appli-

cations, however, such an approach requires a considerably

high computational cost and is not practical. Therefore, a

macroscopic approach is required.

From a macroscopic viewpoint, woods are generally

recognized as orthotropic materials with their principal

axes in the longitudinal, radial, and tangential directions:

the piezoelectric constants as orthotropic materials are

actually detected [13, 14]. From a mesoscopic viewpoint,

however, woods are considered to belong to point group

D1 [1], which is characterized by an 1-fold rotation axis

and a twofold rotation axis perpendicular to it [15]. More

specifically, the elastic stiffness constant and dielectric

constant exhibit the same symmetry as transverse isotropy,

but the nonzero components of the piezoelectric constant
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are d14 and d25 ¼ �d14ð Þ only, allowing the 1-fold rota-

tion axis be the third axis, and the pyroelectric constant

disappears. In that case, the electric field perpendicular to

the 1-fold rotation axis (third axis) induces shear strain in

the plane perpendicular to the direction of the electric

field, as shown in Fig. 1. In woods, D1 symmetry appears

as follows. Many molecular chains of natural cellulose

aggregate into a microcrystalline structure called a mi-

celle, which belongs to point group C2 and has the re-

sultant dipole moment in the chain direction; many

micelles aggregate into a microfibril and then into a fiber,

in a manner that makes the twofold rotation axes of C2

randomly parallel or antiparallel to the fiber direction and

orients the axes perpendicular to the twofold rotation axes

in random directions [1, 8]. As a result, D1 symmetry

appears.

As stated above, the elastic stiffness constant and di-

electric constant of a body belonging to point group D1
exhibit the same symmetry as those of transversely

isotropic bodies. Therefore, elastic problems, which do not

involve the piezoelectric constants, of bodies with D1
symmetry can be regarded as elastic problems of trans-

versely isotropic bodies, which were extensively analyzed

for two- or three-dimensional cases, e.g., [16–31]. On the

other hand, electroelastic problems of bodies belonging to

point group D1 were investigated experimentally for wood

[5–8]. To the best of our knowledge, however, theoretical

analyses of electroelastic problems in such bodies do not

appear in the literature.

In this study, therefore, we construct an analytical tech-

nique for obtaining general solutions to electroelastic prob-

lems in bodies belonging to point group D1. First, the

displacement and electric field are expressed in terms of two

types of displacement potential functions and the electric

potential function. Then, the equations that these potential

functions should satisfy are obtained by the equilibrium

equations of stresses and the Gauss law. As a result, the

electroelastic field quantities, including the displacement,

strain, stress, electric potential, electric field, and electric

displacement, are found to be expressed in terms of four

functions, namely, two elastic displacement potential func-

tions and two piezoelastic displacement potential functions,

each of which satisfies a Laplace equation with respect to the

spatial coordinates transformed by the material properties of

the body. Moreover, as an application of the technique, we

analyze the electroelastic field in a semi-infinite body sub-

jected to a prescribed electric potential on its surface, which

is one of the most elementary models of nondestructive

evaluation by use of the piezoelectric effects, and illustrate

the results graphically.

General solution technique

Fundamental equations

We consider a piezoelectric body belonging to point group

D1. The Cartesian coordinate system ðx; y; zÞ is defined so

that the z axis is parallel to the 1-fold rotation axis of the

body. Let ðux; uy; uzÞ, ðexx; eyy; ezz; eyz; ezx; exyÞ, ðrxx; ryy; rzz;
ryz; rzx; rxyÞ, ðEx;Ey;EzÞ, and ðDx;Dy;DzÞ be the compo-

nents of the displacement, strain, stress, electric field, and

electric displacement, respectively. The displacement–

strain relations are given as

exx ¼
oux

ox
; eyy ¼

ouy

oy
; ezz ¼

ouz

oz
; 2eyz ¼

ouy

oz
þ ouz

oy
;

2ezx ¼
ouz

ox
þ oux

oz
; 2exy ¼

oux

oy
þ ouy

ox
: ð1Þ

The constitutive equations of the body for an isothermal

case are given as
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Fig. 1 Piezoelectric effect through d14
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;
; ð3Þ

where cij, gkl, and ekj denote the elastic stiffness constant,

dielectric constant, and piezoelectric constant, respectively.

Equations (2) and (3) are derived in Appendix 1. The

components of stress and electric displacement are chosen

as dependent variables in Eqs. (2) and (3) because the

governing equations are described in terms of those com-

ponents as shown later in Eqs. (7) and (8). Here, by

denoting

rf g � rxx ryy rzz ryz rzx rxyf gT;
ef g � exx eyy ezz 2eyz 2ezx 2exyf gT;
Df g � Dx Dy Dzf gT; Ef g � Ex Ey Ezf gT;

c½ � �
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g½ � �
g11 0 0

g11 0

sym: g33

2
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3

7
5; e½ � ¼

0 0 0 e14 0 0

0 0 0 0 �e14 0

0 0 0 0 0 0

2

6
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3
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9
>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ð4Þ

the energy density stored in the body, upiezo, is defined and

calculated from Eqs. (2) and (3) as

upiezo �
1

2
rf gT ef g þ Ef gT Df g

� �

¼ 1

2
ef gT c½ � ef g þ Ef gT g½ � Ef g

� �
: ð5Þ

For an equilibrium state to be stable, the quadratic forms

ef gT c½ � ef g and Ef gT g½ � Ef g in Eq. (5) must be positive

definite. They are positive definite if and only if all the

principal minors of c½ � and g½ � are positive [32]. By ar-

ranging these conditions, we finally have the conditions

required for the material properties:

c11 [ 0; c33 [ 0; c44 [ 0; c11 � c12 [ 0; c11 þ c12 [ 0;

c11c33 � c213 [ 0; c11 þ c12ð Þc33 � 2c213 [ 0; g11 [ 0; g33 [ 0

)

:

ð6Þ

The equilibrium equations of stresses and the Gauss law

are given, respectively, by

orxx
ox

þ orxy
oy

þ orzx
oz

¼ 0;
oryy
oy

þ oryz
oz

þ orxy
ox

¼ 0;

orzz
oz

þ orzx
ox

þ oryz
oy

¼ 0;

ð7Þ

oDx

ox
þ oDy

oy
þ oDz

oz
¼ 0: ð8Þ

Governing equations for potential functions

We introduce the displacement potential functions u and #

as

ux ¼
ou
ox

þ o#

oy
; uy ¼

ou
oy

� o#

ox
; uz ¼ k

ou
oz

; ð9Þ

where k is an unknown coefficient at present. The com-

ponents of the electric field are expressed by the electric

potential function U as

Ex ¼ � oU
ox

; Ey ¼ � oU
oy

; Ez ¼ � oU
oz

: ð10Þ

Substituting Eqs. (1), (9), and (10) into Eqs. (2) and (3)

and the results into Eqs. (7) and (8), we have

c11Dpuþ kc13 þ 1þ kð Þc44½ � o
2u
oz2

¼ 0; ð11Þ

c13 þ 1þ kð Þc44½ �Dpuþ kc33
o2u
oz2

¼ 0; ð12Þ

c11 � c12

2
Dp#þ c44

o2#

oz2
� e14

oU
oz

¼ 0; ð13Þ

e14
o

oz
Dp#
� �

þ g11DpUþ g33
o2U
oz2

� �

¼ 0; ð14Þ

where

Dp �
o2

ox2
þ o2

oy2
: ð15Þ

For the governing Eqs. (11) and (12), which are both for

u, to be identical, the relation

kc13 þ 1þ kð Þc44
c11

¼ kc33

c13 þ 1þ kð Þc44
� l ð16Þ

must hold. Solving Eq. (16) for k, we have

k ¼ c11l� c44

c13 þ c44
¼ c13 þ c44ð Þl

c33 � c44l
; ð17Þ

which leads to a quadratic equation for l:

c11c44l
2 � c11c33 � c213 � 2c13c44

� �
lþ c33c44 ¼ 0: ð18Þ

Therefore, to solve l in Eq. (18), Eqs. (11) and (12)

both become
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Dpuþ l
o2u
oz2

¼ 0: ð19Þ

Because the governing equation for the potential

function u is found to be independent of the electric

potential function U from Eq. (19), we refer to u as an

elastic displacement potential function. On the other

hand, because the potential function # is found to be

coupled to the electric potential function U through a

piezoelectric constant from Eqs. (13) and (14), we

refer to # as a piezoelastic displacement potential

function.

Governing equation for elastic displacement potential

function

Let us denote the two roots of quadratic Eq. (18) as l1 and
l2, the corresponding u as u1 and u2, and the corre-

sponding k as k1 and k2. Then, from Eq. (19), the governing

equations for u1 and u2 are

Dpui þ li
o2ui

oz2
¼ 0 i ¼ 1; 2ð Þ: ð20Þ

From Eq. (17), we have

ki ¼
c11li � c44

c13 þ c44
¼ c13 þ c44ð Þli

c33 � c44li
i ¼ 1; 2ð Þ: ð21Þ

When the condition

c44\
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p � c13

2
ð22Þ

holds, in other words, when the stiffness against the shear

in the plane containing the 1-fold rotation axis is low

relative to the other stiffness components, we can obtain,

from Eqs. (6) and (18),

l1 6¼ l2; l1 [ 0; l2 [ 0; ð23Þ

therefore, u1 and u2 are independent of each other. We

treat the case described by Eqs. (22) or (23). The other

cases are omitted for brevity.

Governing equation for piezoelastic displacement potential

function

From Eqs. (13) and (14), we have

2e14

c11 � c12

oU
oz

¼ Dp#þ l3
o2#

oz2
; ð24Þ

e14

g11

o

oz
Dp#
� �

þ DpUþ g
o2U
oz2

¼ 0; ð25Þ

and, by substituting Eq. (24) into Eq. (25), we have

DpDp#þ l3 1þ k2couple

� �
þ g

h i
Dp

o2#

oz2

� �

þ l3g
o4#

oz4
¼ 0;

ð26Þ

where

l3 ¼
2c44

c11 � c12
; g ¼ g33

g11
; k2couple ¼

e214
c44g11

: ð27Þ

Equation (26) is rewritten as

Dp þ t1
o2

oz2

� �

Dp þ t2
o2

oz2

� �

# ¼ 0; ð28Þ

where t1 and t2 are the two roots of a quadratic equation

with respect to t:

t2 � l3 1þ k2couple

� �
þ g

h i
tþ l3g ¼ 0: ð29Þ

When e14 6¼ 0, we can obtain, from Eqs. (6), (27), and

(29),

t1 6¼ t2; t1 [ 0; t2 [ 0; ð30Þ

a general solution to Eq. (28) is obtained as

# ¼ #1 þ #2; ð31Þ

where #1 and #2 denote general solutions to

Dp þ ti
o2

oz2

� �

#i ¼ 0 i ¼ 1; 2ð Þ: ð32Þ

Moreover, by substituting the # obtained in this manner

into Eq. (24), we can obtain the solution of U.

General solution of electroelastic field

From Eq. (23) or (30), the governing Eq. (20) or (32) is

regarded as a Laplace equation with respect to

x; y; z
	 ffiffiffiffi

li
p� �

or x; y; z
	 ffiffiffiffi

ti
p� �

, respectively, whose general

solutions are well established. By substituting the general

solutions for ui and #i i ¼ 1; 2ð Þ and the resulting electric

potential function U obtained from Eqs. (24) and (31) into

Eqs. (9) and (10) and, furthermore, by substituting the re-

sults into Eqs. (1)-(3), we have the general solutions for the

electroelastic field quantities in the body as follows:

ux ¼
X2

i¼1

oui

ox
þ o#i

oy

� �

; uy ¼
X2

i¼1

oui

oy
� o#i

ox

� �

;

uz ¼
o

oz

X2

i¼1

kiui;

ð33Þ

Ex ¼ � oU
ox

; Ey ¼ � oU
oy

; Ez ¼ � oU
oz

; ð34Þ
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Application

In this section, the general solution technique presented in

‘‘General solution technique’’ is applied to a concrete

boundary value problem. As a first step, we choose one of

the most fundamental problems to verify the validity of the

proposed technique.

We consider a semi-infinite piezoelectric body ðx[ 0Þ
belonging to point group D1, as shown in Fig. 2, where the

z axis is parallel to the 1-fold rotation axis of the body. The

surface of the body is subjected to the electric potential

distribution Usðy; zÞ, which is symmetric with respect to y

and z, and is free from stresses. It should be noted that this is

one of the most elementary models of nondestructive eval-

uation by use of the piezoelectric effects. The displacements

and electric potential are assumed to be zero at infinity. Fig. 2 Analytical model

exx ¼
X2

i¼1

o2ui

ox2
þ o2#i

oxoy

� �

; eyy ¼
X2

i¼1

o2ui

oy2
� o2#i

oxoy

� �

; ezz ¼
X2

i¼1

ki
o2ui

oz2
;

2eyz ¼
X2

i¼1

1þ kið Þ o
2ui

oyoz
� o2#i

ozox


 �

; 2ezx ¼
X2

i¼1

1þ kið Þ o
2ui

ozox
þ o2#i

oyoz


 �

;

2exy ¼
X2

i¼1

2
o2ui

oxoy
þ � o2#i

ox2
þ o2#i

oy2

� �
 �

9
>>>>>>>>>>=

>>>>>>>>>>;

; ð35Þ

rxx ¼
X2

i¼1

c11
o2ui

ox2
þ c12

o2ui

oy2
þ kic13

o2ui

oz2

� �

þ c11 � c12ð Þ o
2#i

oxoy


 �

;

ryy ¼
X2

i¼1

c12
o2ui

ox2
þ c11

o2ui

oy2
þ kic13

o2ui

oz2

� �

� c11 � c12ð Þ o
2#i

oxoy


 �

;

rzz ¼
X2

i¼1

c13Dpui þ kic33
o2ui

oz2

� �

;

ryz ¼ c44
X2

i¼1

1þ kið Þ o
2ui

oyoz
� o2#i

ozox


 �

þ e14
oU
ox

;

rzx ¼ c44
X2

i¼1

1þ kið Þ o
2ui

ozox
þ o2#i

oyoz


 �

� e14
oU
oy

;

rxy ¼
c11 � c12

2

X2

i¼1

2
o2ui

oxoy
þ � o2#i

ox2
þ o2#i

oy2

� �
 �

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð36Þ

Dx ¼ e14
X2

i¼1

1þ kið Þ o
2ui

oyoz
� o2#i

ozox


 �

� g11
oU
ox

;

Dy ¼ �e14
X2

i¼1

1þ kið Þ o
2ui

ozox
þ o2#i

oyoz


 �

� g11
oU
oy

; Dz ¼ �g33
oU
oz

9
>>>>=

>>>>;

: ð37Þ
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Analysis

The boundary conditions are described as

x ¼ 0 : rxx ¼ 0; rzx ¼ 0; rxy ¼ 0; U ¼ Us y; zð Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
! 1 : ux ! 0; uy ! 0; uz ! 0; U ! 0

)

:

ð38Þ

By considering the symmetry of the electroelastic field,

it is found that ui is antisymmetric with respect to y and z

and that #i is symmetric and antisymmetric with respect to

y and z, respectively. Therefore, the Fourier sine transforms

with respect to y and z and their inversions [33] are applied

to Eq. (20); the Fourier cosine transform with respect to y

and its inversion [33], and the Fourier sine transform with

respect to z and its inversion are applied to Eq. (32). Then,

by considering the conditions at infinity described by

Eq. (38), the general solutions to Eqs. (20) and (32) are

obtained as

ui ¼
Z1

0

Z1

0

Ai a; bð Þ exp �clix
� �

sin ayð Þ sin bzð Þdadb i ¼ 1; 2ð Þ ;

ð39Þ

#i ¼
Z1

0

Z1

0

Ci a;bð Þ exp �ctixð Þ cos ayð Þ sin bzð Þdadb i ¼ 1; 2ð Þ ;

ð40Þ

where

cli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ lib
2

q

; cti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ tib
2

q

; ð41Þ

Ai a; bð Þ and Ci a; bð Þ i ¼ 1; 2ð Þ are unknown constants to
be determined by the boundary conditions described by

Eq. (38). Furthermore, by substituting Eq. (40) into

Eqs. (24) and (31) and integrating the result with respect to

z, the general solution of the electric potential function is

obtained as

U ¼ c44

e14

1

l3

X2

i¼1

Z1

0

Z1

0

l3 � tið ÞbCi a; bð Þ exp �ctixð Þ

2

4

� cos ayð Þ cos bzð Þdadb
#

: ð42Þ

By substituting Eqs. (39)–(42) into Eqs. (33)–(37), the

electroelastic field quantities are obtained as

ux ¼
X2

i¼1

Z1

0

Z1

0

�cliAi a; bð Þ exp �clix
� �

�aCi a;bð Þ exp �ctixð Þ

" #

sin ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

uy ¼
X2

i¼1

Z1

0

Z1

0

aAi a; bð Þ exp �clix
� �

þctiCi a; bð Þ exp �ctixð Þ

" #

cos ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

uz ¼
X2

i¼1

ki

Z1

0

Z1

0

bAi a;bð Þ exp �clix
� �

sin ayð Þ cos bzð Þdadb

2

4

3

5

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

;

ð43Þ

Ex ¼
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3 � tið ÞctibCi a; bð Þ exp �ctixð Þ cos ayð Þ cos bzð Þdadb

2

4

3

5;

Ey ¼
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3 � tið ÞabCi a;bð Þ exp �ctixð Þ sin ayð Þ cos bzð Þdadb

2

4

3

5;

Ez ¼
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3 � tið Þb2Ci a; bð Þ exp �ctixð Þ cos ayð Þ sin bzð Þdadb

2

4

3

5

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

; ð44Þ
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exx ¼
X2

i¼1

Z1

0

Z1

0

c2liAi a; bð Þ exp �clix
� �

þctiaCi a; bð Þ exp �ctixð Þ

" #

sin ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

eyy ¼
X2

i¼1

Z1

0

Z1

0

�a2Ai a; bð Þ exp �clix
� �

�ctiaCi a; bð Þ exp �ctixð Þ

" #

sin ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

ezz ¼
X2

i¼1

Z1

0

Z1

0

�kib
2

� �
Ai a;bð Þ exp �clix

� �
sin ayð Þ sin bzð Þdadb

2

4

3

5;

2eyz ¼
X2

i¼1

Z1

0

Z1

0

1þ kið ÞabAi a;bð Þ exp �clix
� �

þ ctibCi a; bð Þ exp �ctixð Þ

" #

cos ayð Þ cos bzð Þdadb

8
<

:

9
=

;
;

2ezx ¼
X2

i¼1

Z1

0

Z1

0

� 1þ kið ÞclibAi a; bð Þ exp �clix
� �

� abCi a; bð Þ exp �ctixð Þ

" #

sin ayð Þ cos bzð Þdadb

8
<

:

9
=

;
;

2exy ¼
X2

i¼1

Z1

0

Z1

0

� 2cliaAi a;bð Þ exp �clix
� �

� 2a2 þ tib
2

� �
Ci a; bð Þ exp �ctixð Þ

" #

cos ayð Þ sin bzð Þdadb

8
<

:

9
=

;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð45Þ

rxx ¼
c44

l3

X2

i¼1

Z1

0

Z1

0

2a2 þ 1þ kið Þl3b2
� �

Ai a; bð Þ exp �clix
� �

þ 2ctiaCi a; bð Þ exp �ctixð Þ

" #

sin ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

ryy ¼
c44

l3

X2

i¼1

Z1

0

Z1

0

� 2a2

þ �2li þ 1þ kið Þl3ð Þb2

2

4

3

5Ai a; bð Þ exp �clix
� �

� 2ctiaCi a; bð Þ exp �ctixð Þ

2

6
6
6
6
4

3

7
7
7
7
5

� sin ayð Þ sin bzð Þdadb

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

;

rzz ¼
X2

i¼1

Z1

0

Z1

0

c13li � c33kið Þb2Ai a; bð Þ exp �clix
� �� 

sin ayð Þ sin bzð Þdadb

8
<

:

9
=

;
;

ryz ¼
c44

l3

X2

i¼1

Z1

0

Z1

0

l3 1þ kið ÞabAi a; bð Þ exp �clix
� �

þ tictibCi a; bð Þ exp �ctixð Þ

" #

cos ayð Þ cos bzð Þdadb

8
<

:

9
=

;
;

rzx ¼
c44

l3

X2

i¼1

Z1

0

Z1

0

� l3 1þ kið ÞclibAi a; bð Þ exp �clix
� �

� tiabCi a; bð Þ exp �ctixð Þ

" #

sin ayð Þ cos bzð Þdadb

8
<

:

9
=

;
;

rxy ¼
c44

l3

X2

i¼1

Z1

0

Z1

0

� 2cliaAi a; bð Þ exp �clix
� �

� 2a2 þ tib
2

� �
Ci a; bð Þ exp �ctixð Þ

" #

cos ayð Þ sin bzð Þdadb

8
<

:

9
=

;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð46Þ
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For the subsequent analytical procedures, the electric

potential distribution on the surface, Usðy; zÞ, is expressed
in the Fourier integral form [33] as

Us y; zð Þ ¼
Z1

0

Z1

0

U�
s a; bð Þ cos ayð Þ cos bzð Þdadb; ð48Þ

where

U�
s a; bð Þ ¼ 4

p2

Z1

0

Z1

0

Usðy; zÞ cos ðayÞ cos ðbzÞdydz: ð49Þ

By substituting Eqs. (42), (46), and (48) into Eq. (38), a

set of simultaneous equations for Aiða; bÞ and Ciða; bÞ ði ¼
1; 2Þ is obtained as

X2

i¼1

2a2þ 1þ kið Þl3b2
� 

Ai a;bð Þþ 2ctiaCi a;bð Þ
� �

¼ 0;

X2

i¼1

l3 1þ kið ÞclibAi a;bð Þþ tiabCi a;bð Þ
� 

¼ 0;

X2

i¼1

2cliaAi a;bð Þþ 2a2þ tib
2

� �
Ci a;bð Þ

� 
¼ 0;

X2

i¼1

l3� tið ÞbCi a;bð Þ ¼ e14l3
c44

U�
s a;bð Þ

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

:

ð50Þ

Equation (50) is solved as

A1 a; bð Þ
A2 a; bð Þ
C1 a; bð Þ
C2 a; bð Þ

8
>><

>>:

9
>>=

>>;

¼ e14

c44

U�
s a; bð Þ
b

1

D a; bð Þ

A�
1 a; bð Þ

A�
2 a; bð Þ

C�
1 a; bð Þ

C�
2 a; bð Þ

8
>><

>>:

9
>>=

>>;

; ð51Þ

Dx ¼ g11
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3k
2
couple 1þ kið ÞabAi a; bð Þ exp �clix

� �

þ l3 1þ k2couple

� �
� ti

� �
ctibCi a; bð Þ exp �ctixð Þ

2

6
4

3

7
5

� cos ayð Þ cos bzð Þdadb

8
>>>><

>>>>:

9
>>>>=

>>>>;

;

Dy ¼ g11
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3k
2
couple 1þ kið ÞclibAi a; bð Þ exp �clix

� �

þ l3 1þ k2couple

� �
� ti

� �
abCi a; bð Þ exp �ctixð Þ

2

6
4

3

7
5

� sin ayð Þ cos bzð Þdadb

8
>>>><

>>>>:

9
>>>>=

>>>>;

;

Dz ¼ g33
c44

e14l3

X2

i¼1

Z1

0

Z1

0

l3 � tið Þb2Ci a; bð Þ exp �ctixð Þ cos ayð Þ sin bzð Þdadb

2

4

3

5

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð47Þ
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and A�
2 a; bð Þ and C�

2ða; bÞ are obtained by interchanging

subscripts ‘‘1’’ and ‘‘2’’ in A�
1ða; bÞ and C�

1ða; bÞ, respec-
tively. By substituting Eqs. (51) and (52) into Eqs. (42)–

(47), the electroelastic field quantities are formulated.

Numerical calculations

The electric potential distribution on the surface, Us y; zð Þ,
is assumed to have Gaussian distributions with respect to y

and z with a maximum value U0 and standard deviation d,

Us y; zð Þ ¼ U0 exp � y2 þ z2

d2

� �

; ð53Þ

for which Eq. (49) is calculated as

U�
s a; bð Þ ¼ U0

d2

p
exp � adð Þ2þ bdð Þ2

4

" #

: ð54Þ

As the piezoelectric body, Sitka spruce (Picea sitchen-

sis) is chosen. Because it is hard to find a complete set of its

material constants, the required parameters are constructed

using data from several sources in the literature [34–36] as

which satisfy Eqs. (6) and (22). The construction of

Eq. (55) is described in Appendix 2. To illustrate the nu-

merical results, the following nondimensional quantities

are introduced:

x
_
; y
_
; z
_

� �
� x; y; zð Þ

d
; E

_

x;E
_

y

� �
�

Ex;Ey

� �

U0

d

� � ;

r_yz; r
_

zx

� �
�

ryz; rzx
� �

e14j j U0

d

� � : ð56Þ

Equation (2) reveals that the shear stress ryz reflects

mainly the electric field Ex and that the shear stress rzx
reflects mainly the electric field Ey. Figure 3 shows the

distributions of the electric fields and the resulting shear

stresses. Figure 3a shows that the electric field E
_

x is

maximum at the boundary x
_ ¼ 0 and decreases mono-

tonically toward zero with x
_
and that the resulting shear

stress r_yz exhibits similar behavior. Figure 3b shows that

the electric field E
_

x and shear stress r
_

yz are maximum at the

center of the surface electric potential and, roughly

where

D a; bð Þ � 2 2l3 � t1 þ t2ð Þ½ � k1 � k2ð Þa2cl1cl2 ct1 � ct2ð Þ

þ t1 � t2ð Þ

2 k1 � k2ð Þa2 cl1cl2 ct1 þ ct2ð Þ � l3b
2 cl1 þ cl2
� �� 

� l3 1þ k1ð Þ 1þ k2ð Þ 2a2 þ l3b
2

� �
b2 cl1 � cl2
� �

� 4a4 k1cl1 � k2cl2
� �

8
>>><

>>>:

9
>>>=

>>>;

;

A�
1 a; bð Þ � �a

2 t1 � t2ð Þa2 2a2 þ 1þ k2ð Þl3b2
� 

þ 2 2a2 � l3 1þ k2ð Þb2
� 

cl2 t2ct1 � t1ct2ð Þ

� 4l3 1þ k2ð Þa2cl2 ct1 � ct2ð Þ

8
>>><

>>>:

9
>>>=

>>>;

;

C�
1 a; bð Þ � �

4 k1 � k2ð Þl3a2cl1cl2ct2
þ 2a2 þ l3b

2
� �

cl1 � cl2
� �

2a2 t2 � l3ð Þ � l23 1þ k1ð Þ 1þ k2ð Þb2
� 

� 2l3 k1 � k2ð Þt2a2b2 cl1 þ cl2
� �

� 4a4l3 k1cl1 � k2cl2
� �

8
>>><

>>>:

9
>>>=

>>>;

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð52Þ

c11 ¼ 830:84 MPa½ �; c33 ¼ 12:276 GPa½ �; c12 ¼ 294:47 MPa½ �;
c13 ¼ 472:07 MPa½ �; c44 ¼ 742:50 MPa½ �;

g11 ¼ 16:823� 10�12 C2

N �m2


 �

; g33 ¼ 22:490� 10�12 C2

N �m2


 �

; e14 ¼ �0:14850� 10�3 C

m2


 �

9
>>>=

>>>;

; ð55Þ
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speaking, decrease toward zero with y
_
and that, on the

other hand, the electric field E
_

y and the resulting shear

stress r_zx are zero at the origin (because they are an-

tisymmetric with respect to y
_
), reach their maxima around

the periphery of the surface electric potential (namely,

y
_ � 1), and decrease toward zero with y

_
.

Concluding remarks

In this study, we constructed an analytical technique for

obtaining general solutions to electroelastic problems of

piezoelectric bodies belonging to point group D1. We

found that the electroelastic field quantities can be ex-

pressed in terms of four functions, namely, two elastic

displacement potential functions and two piezoelastic dis-

placement potential functions, each of which satisfies a

Laplace equation with respect to the appropriately trans-

formed spatial coordinates. Moreover, as an application of

the technique, we analyzed the problem of a semi-infinite

body subjected to a prescribed electric potential on its

surface and illustrated the results graphically. Thus, this

novel technique was found to serve to investigate the

electroelastic field inside wooden materials.

Appendix 1: constitutive equations for body with D?

symmetry

As stated in the Introduction, many microcrystalline struc-

tures called micelles, each of which belongs to point group

C2, aggregate into fibers in a manner that makes the twofold

rotation axes of C2 randomly parallel or antiparallel to the

fiber direction and orients the axes perpendicular to the

twofold rotation axes in random directions. In this Appendix,

the constitutive equations are derived for wood species which

are viewed appropriately from such a standpoint.

The constitutive equations for a body with C2 symmetry,

with its twofold rotation axis parallel to the third of the

principal axes of anisotropy ðx1; x2; x3Þ, are given as [37]

r1
r2
r3
r4
r5
r6

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

c11 c12 c13 0 0 c16
c22 c23 0 0 c26

c33 0 0 c36
c44 c45 0

c55 0

sym. c66

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

e1
e2
e3
e4
e5
e6

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

�

0 0 e31
0 0 e32
0 0 e33
e14 e24 0

e15 e25 0

0 0 e36

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

E1

E2

E3

8
<

:

9
=

;
�

b1
b2
b3
0

0

b6

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

T;

ð57Þ

D1

D2

D3

8
<

:

9
=

;
¼

0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

2

4

3

5

e1
e2
e3
e4
e5
e6

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

þ
g11 g12 0

g22 0

sym: g33

2

4

3

5
E1

E2

E3

8
<

:

9
=

;
þ

0

0

p3

8
<

:

9
=

;
T:

ð58Þ

Then, we consider the reference coordinate system

ðx10 ; x20 ; x30 Þ, as shown in Fig. 4. By employing the

(a)

(b)

Fig. 3 Distributions of electric fields and resulting stresses: a on x
_

axis ðy_ ¼ 0; z
_ ¼ 0Þ, b on y

_
axis ðx_ ¼ 0; z

_ ¼ 0Þ

Fig. 4 Arbitrary rotation around the third axis
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transformation laws for tensors [37], the elastic stiffness

constant, dielectric constant, piezoelectric constant, stress–

temperature coefficient, and pyroelectric constant in the

system ðx10 ; x20 ; x30 Þ are obtained, respectively, as

ci0j0 ¼ fþci0j0 hð Þ; gk0l0 ¼ fþgk0l0 hð Þ; ek0j0 ¼ fþek0j0 hð Þ; bi0 ¼ fþbi0 hð Þ; pk0 ¼ fþpk0 hð Þ
i0; j0 ¼ 1; 2; 3; 4; 5; 6; k0; l0 ¼ 1; 2; 3ð Þ

)

; ð59Þ

where

fþc1010 hð Þ ¼ cos4 h � c11 þ sin4 h � c22 þ 2 cos2 h sin2 h � c12 þ 4 cos2 h sin2 h � c66
� 4 cos3 h sin h � c16 � 4 cos h sin3 h � c26;

fþc1020 hð Þ ¼ cos2 h sin2 h � c11 þ cos2 h sin2 h � c22 þ cos4 hþ sin4 h
� �

� c12
� 4 cos2 h sin2 h � c66
þ 2 cos h sin h cos2 h� sin2 h

� �
� c16 � 2 cos h sin h cos2 h� sin2 h

� �
� c26;

fþc1030 hð Þ ¼ cos2 h � c13 þ sin2 h � c23 � 2 cos h sin h � c36;
fþc1040 hð Þ ¼ 0; fþc1050 hð Þ ¼ 0;

fþc1060 hð Þ ¼ cos3 h sin h � c11 � cos h sin3 h � c22 � cos h sin h cos2 h� sin2 h
� �

� c12
� 2 cos h sin h cos2 h� sin2 h

� �
� c66

þ cos2 h cos2 h� 3 sin2 h
� �

� c16 þ sin2 h 3 cos2 h� sin2 h
� �

� c26;
fþc2020 hð Þ ¼ sin4 h � c11 þ cos4 h � c22 þ 2 cos2 h sin2 h � c12 þ 4 cos2 h sin2 h � c66

þ 4 cos h sin3 h � c16 þ 4 cos3 h sin h � c26;
fþc2030 hð Þ ¼ sin2 h � c13 þ cos2 h � c23 þ 2 cos h sin h � c36;
fþc2040 hð Þ ¼ 0; fþc2050 hð Þ ¼ 0;

fþc2060 hð Þ ¼ cos h sin3 h � c11 � cos3 h sin h � c22 þ cos h sin h cos2 h� sin2 h
� �

� c12
þ 2 cos h sin h cos2 h� sin2 h

� �
� c66

þ sin2 h 3 cos2 h� sin2 h
� �

� c16 þ cos2 h cos2 h� 3 sin2 h
� �

� c26;
fþc3030 hð Þ ¼ c33;

fþc3040 hð Þ ¼ 0; fþc3050 hð Þ ¼ 0;

fþc3060 hð Þ ¼ cos h sin h � c13 � cos h sin h � c23 þ cos2 h� sin2 h
� �

� c36;
fþc4040 hð Þ ¼ cos2 h � c44 þ sin2 h � c55 þ 2 cos h sin h � c45;
fþc4050 hð Þ ¼ � cos h sin h � c44 þ cos h sin h � c55 þ cos2 h� sin2 h

� �
� c45;

fþc4060 hð Þ ¼ 0;

fþc5050 hð Þ ¼ sin2 h � c44 þ cos2 h � c55 � 2 cos h sin h � c45;
fþc5060 hð Þ ¼ 0;

fþc6060 hð Þ ¼ cos2 h sin2 h � c11 þ cos2 h sin2 h � c22 � 2 cos2 h sin2 h � c12
þ cos4 h� 2 cos2 h sin2 hþ sin4 h
� �

� c66
þ 2 cos h sin h cos2 h� sin2 h

� �
� c16 � 2 cos h sin h cos2 h� sin2 h

� �
� c26;

fþcj0i0 hð Þ ¼ fþci0j0 hð Þ i0; j0 ¼ 1; 2; 3; 4; 5; 6ð Þ

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð60Þ
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fþb10 hð Þ ¼ cos2 h � b1 þ sin2 h � b2 � 2 cos h sin h � b6;
fþb20 hð Þ ¼ sin2 h � b1 þ cos2 h � b2 þ 2 cos h sin h � b6;
fþb30 hð Þ ¼ b3; fþb40 hð Þ ¼ 0; fþb50 hð Þ ¼ 0;

fþb60 hð Þ ¼ cos h sin h � b1 � cos h sin h � b2 þ cos2 h� sin2 h
� �

b6

9
>>>>>=

>>>>>;

;

ð63Þ

fþp10 hð Þ ¼ 0; fþp20 hð Þ ¼ 0; fþp30 hð Þ ¼ p3: ð64Þ

Next, we consider the reference coordinate system

ðx10 ; x20 ; x30 Þ, as shown in Fig. 5. In the manner described

above, the material properties in the system ðx10 ; x20 ; x30 Þ
are obtained as

ci0j0 ¼ f�ci0j0 hð Þ; gk0l0 ¼ f�gk0l0 hð Þ; ek0j0 ¼ f�ek0j0 hð Þ; bi0 ¼ f�bi0 hð Þ;
pk0 ¼ f�pk0 hð Þ
i0; j0 ¼ 1; 2; 3; 4; 5; 6; k0; l0 ¼ 1; 2; 3ð Þ

9
>=

>;
:

ð65Þ

By comparing Fig. 5 with Fig. 4, it is found that the

transformation in Fig. 5 consists of the transformation in

Fig. 4 and the 180	-rotation about x1-axis. Therefore,

f�ci0j0 hð Þ, f�gk0l0 hð Þ, f�ek0j0 hð Þ, f�bi0 hð Þ, and f�pk0 hð Þ are obtained by

replacing

Fig. 5 Arbitrary rotation around the third axis and half-rotation

around the first axis

fþg1010 hð Þ ¼ cos2 h � g11 þ sin2 h � g22 � 2 cos h sin h � g12;
fþg1020 hð Þ ¼ cos h sin h � g11 � cos h sin h � g22 þ cos2 h� sin2 h

� �
g12;

fþg1030 hð Þ ¼ 0;

fþg2020 hð Þ ¼ sin2 h � g11 þ cos2 h � g22 þ 2 cos h sin h � g12;
fþg2030 hð Þ ¼ 0;

fþg3030 hð Þ ¼ g33;

fþgl0k0 hð Þ ¼ fþgk0l0 hð Þ k0; l0 ¼ 1; 2; 3ð Þ

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

; ð61Þ

fþe1010 hð Þ ¼ 0; fþe1020 hð Þ ¼ 0; fþe1030 hð Þ ¼ 0;

fþe1040 hð Þ ¼ cos2 h � e14 þ cos h sin h � e15 � cos h sin h � e24 � sin2 h � e25;
fþe1050 hð Þ ¼ � cos h sin h � e14 þ cos2 h � e15 þ sin2 h � e24 � cos h sin h � e25;
fþe1060 hð Þ ¼ 0;

fþe2010 hð Þ ¼ 0; fþe2020 hð Þ ¼ 0; fþe2030 hð Þ ¼ 0;

fþe2040 hð Þ ¼ cos h sin h � e14 þ sin2 h � e15 þ cos2 h � e24 þ cos h sin h � e25;
fþe2050 hð Þ ¼ � sin2 h � e14 þ cos h sin h � e15 � cos h sin h � e24 þ cos2 h � e25;
fþe2060 hð Þ ¼ 0;

fþe3010 hð Þ ¼ cos2 h � e31 þ sin2 h � e32 � 2 cos h � sin h � e36;
fþe3020 hð Þ ¼ sin2 h � e31 þ cos2 h � e32 þ 2 cos h � sin h � e36;
fþe3030 hð Þ ¼ e33;

fþe3040 hð Þ ¼ 0; fþe3050 hð Þ ¼ 0;

fþe3060 hð Þ ¼ cos h sin h � e31 � cos h sin h � e32 þ cos2 h� sin2 h
� �

� e36

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð62Þ

J Wood Sci (2015) 61:270–284 281

123



c16; c26; c36; c45; g12; e15; e24; e31; e32; e33; b16; p3ð Þ with

� c16; c26; c36; c45; g12; e15; e24; e31; e32; e33; b16; p3ð Þ in

fþci0j0 hð Þ, fþgk0l0 hð Þ, fþek0j0 hð Þ, fþbi0 hð Þ, and fþpk0 hð Þ, respectively.
Because wood is considered to be composed of micelles

belonging to point group C2, as described above, it is con-

sidered that their material properties are obtained in terms of

the uniform composition given by Eqs. (59) and (65) and a

uniform distribution for �p\h\p. Thus, we have

ci0j0 ¼
1

2

1

2p

Z p

�p
fþci0j0 hð Þdhþ 1

2p

Z p

�p
f�ci0j0 hð Þdh


 �

;

gk0l0 ¼
1

2

1

2p

Z p

�p
fþgk0l0 hð Þdhþ 1

2p

Z p

�p
f�gk0l0 hð Þdh


 �

;

ek0j0 ¼
1

2

1

2p

Z p

�p
fþek0j0 hð Þdhþ 1

2p

Z p

�p
f�ek0j0 hð Þdh


 �

;

bi0 ¼
1

2

1

2p

Z p

�p
fþbi0 hð Þdhþ 1

2p

Z p

�p
f�bi0 hð Þdh


 �

;

pk0 ¼
1

2

1

2p

Z p

�p
fþpk0 hð Þdhþ 1

2p

Z p

�p
f�pk0 hð Þdh


 �

i0; j0 ¼ 1; 2; 3; 4; 5; 6; k0; l0 ¼ 1; 2; 3ð Þ

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

:

ð66Þ

By substituting Eqs. (60)–(64) and f�ci0j0 hð Þ, f�gk0l0 hð Þ,
f�ek0j0 hð Þ, f�bi0 hð Þ, and f�pk0 hð Þ into Eq. (66), the elastic stiffness

constant, dielectric constant, piezoelectric constant, stress–

temperature coefficient, and pyroelectric constant in the

reference coordinate system x10 ; x20 ; x30ð Þ are obtained,

respectively, as

c1010 c1020 c1030 c1040 c1050 c1060

c2020 c2030 c2040 c2050 c2060

c3030 c3040 c3050 c3060

c4040 c4050 c4060

c5050 c5060

sym: c6060

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

fc1010 fc1020 fc1030 0 0 0

fc1010 fc1030 0 0 0

fc3030 0 0 0

fc4040 0 0

fc4040 0

sym:
fc1010 � fc1020

2

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

ð67Þ

g1010 g1020 g1030
g2020 g2030

sym: g3030

2

4

3

5 ¼
fg1010 0 0

fg1010 0

sym: fg3030

2

4

3

5; ð68Þ

e1010 e1020 e1030 e1040 e1050 e1060

e2010 e2020 e2030 e2040 e2050 e2060

e3010 e3020 e3030 e3040 e3050 e3060

2

4

3

5

¼
0 0 0 fe1040 0 0

0 0 0 0 �fe1040 0

0 0 0 0 0 0

2

4

3

5; ð69Þ

b10 b20 b30 b40 b50 b60f gT

¼ fb10 fb10 fb30 0 0 0f gT; ð70Þ

p10 p20 p30f gT¼ 0 0 0f gT; ð71Þ

where

fc1010 ¼
3c11 þ 3c22 þ 2c12 þ 4c66

8
;

fc1020 ¼
c11 þ c22 þ 6c12 � 4c66

8
; fc1030 ¼

c13 þ c23

2
;

fc3030 ¼ c33; fc4040 ¼
c44 þ c55

2
; fg1010 ¼

g11 þ g22
2

;

fg3030 ¼ g33; fe1040 ¼
1

2
e14 � e25ð Þ;

fb10 ¼
b1 þ b2

2
; fb30 ¼ b3

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

:

ð72Þ

Appendix 2: construction of material constants

In this Appendix, the material constants in Eqs. (2) and

(3) are presented for Sitka spruce (Picea sitchensis).

Unfortunately, a complete set of its material constants

is not found under a common condition or in the form

of Eqs. (2) and (3). Therefore, it is constructed using

data from several sources in the literature [34–36] as

follows.

The constitutive equations whose independent vari-

ables are the components of stress and electric field are

given as

282 J Wood Sci (2015) 61:270–284
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Dx

Dy

Dz

8
<

:

9
=

;
¼

0 0 0 d14 0 0

0 0 0 0 �d14 0

0 0 0 0 0 0

2

4

3

5

rxx
ryy
rzz
ryz
rzx
rxy

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

þ
gr11 0 0

gr11 0

sym: gr33

2

4

3

5
Ex

Ey

Ez

8
<

:

9
=

;
; ð74Þ

where E and l denote the Young’s modulus and Poisson’s

ratio in the isotropic plane, namely the plane perpendicular

to the1-fold rotation axis; lL the ratio of the normal strain

in the isotropic plane to that along the1-fold rotation axis;

GL the shear modulus in the plane perpendicular to the

isotropic plane; grkl the dielectric constant; d14 the piezo-

electric constant.

By denoting the longitudinal, radial, and tangential di-

rections of Sitka spruce for an orthotropic material as L, R,

and T, respectively, elastic constants are given for ap-

proximate 12 % moisture content as [34]

EL ¼ 11:880 GPa½ �;
ER ¼ 926:64 MPa½ �; ET ¼ 510:84 MPa½ �;
GLR ¼ 760:32 MPa½ �; GLT ¼ 724:68 MPa½ �;
lRT ¼ 0:435; lTR ¼ 0:245; lLR ¼ 0:372; lLT ¼ 0:467

9
>>>=

>>>;

:

ð75Þ

To confirm the properties given by Eq. (75) to those by

Eq. (73), the material constants in the isotropic plane are

assumed to be the average of those in the radial and tan-

gential directions as

E ¼ ER þ ETð Þ=2 ¼ 718:74 MPa½ �;
l ¼ lRT þ lTRð Þ=2 ¼ 0:340;

GL ¼ GLR þ GLTð Þ=2 ¼ 742:50 MPa½ �;
lL ¼ lLR þ lLTð Þ=2 ¼ 0:4195

9
>>>=

>>>;

: ð76Þ

The static specific dielectric constants for the longitu-

dinal and tangential directions are given as

eL ¼ 2:54; eT ¼ 1:90; ð77Þ

respectively, for an absolutely dried condition [35]. By

assuming the dielectric constant in the isotropic plane is

represented by the value for the tangential direction, the

dielectric constants in Eq. (74) are given as

gr11 ¼ eTe0 ¼ 16:823� 10�12 C2

N �m2


 �

; gr33 ¼ eLe0

¼ 22:490� 10�12 C2

N �m2


 �

; ð78Þ

where e0 denotes the permittivity of vacuum.

Because the piezoelectric constant d25ð¼ �d14Þ for

10 Hz½ � takes on values around 0:2 pC/N½ � under a repeated
heat treatment between 100 	C½ � and 220 	C½ � [36], we make

a rough estimate of the value as

d14 ¼ �0:2
pC

N


 �

: ð79Þ

Finally, by converting Eqs. (73) and (74) into the forms

of Eqs. (2) and (3), cij, gkl, and ekj are formulated as

c11 ¼ E
1� l2LE=EL

1þ lð Þ 1� lð Þ � 2l2LE=EL½ � ;

c33 ¼ EL

1� l

1� lð Þ � 2l2LE=EL

;

c12 ¼ E
lþ l2LE=EL

1þ lð Þ 1� lð Þ � 2l2LE=EL½ � ;

c13 ¼ E
lL

1� lð Þ � 2l2LE=EL

; c44 ¼ GL;

g11 ¼ gr11 � GLd
2
14; g33 ¼ gr33; e14 ¼ GLd14

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

: ð80Þ

By substituting Eqs. (75), (76), (78), (79) into Eq. (80),

the material constants are obtained as shown in Eq. (55).
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