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Received: 11 December 2014 / Accepted: 3 April 2015 / Published online: 28 April 2015

� The Japan Wood Research Society 2015

Abstract This article describes drying of wood cut into

parallelepiped shaped pieces. A one-dimensional numerical

solution of the diffusion equation with boundary condition

of the third kind was proposed to describe the process. The

lumber was cut into the following dimensions: thickness

T = 36 mm, height H = 100 mm and length L = 745 mm.

The convective drying experiment was carried out with

forced air at temperature of 40 �C, relative humidity of

40 % and velocity of 3 m s-1. An optimizer was coupled

with the proposed numerical solution to determine the

process parameters. Comparison of the results obtained in

this article (one-dimensional) with results from the lit-

erature (two- and three-dimensional) indicated good

agreement between the process parameters (and also

simulations). However, the optimization time for one-di-

mensional model is about 15 times less than the optimiza-

tion time for the two-dimensional case.

Keywords Numerical simulation � Variable diffusivity �
Finite volume � Optimization � Lumber

List of symbols

A, B, a, b Coefficients of the discretized diffusion

equation or fitting parameters

D Effective mass diffusivity (m2 s-1)

H Height of the lumber (m)

L Length of the lumber (m)

M Local moisture content at the instant t

(kgwater kg
�1
drymatter)

M Average moisture content at instant

t (kgwater kg
�1
drymatter)

Np Number of experimental points

(dimensionless)

N Number of control volumes (dimensionless)

R2 Coefficient of determination (dimensionless)

T Thickness of the lumber (m)

t Time (s)

Dx Thickness of a control volume (m)

ri Standard deviation of the experimental point

i (dimensionless)

v2 Chi square or objective function

(dimensionless)

Introduction

In several industrial sectors, several production processes

involve a stage in which water is transferred to or removed

from the products during their manufacture. Among these

production processes, it can be cited those referring to the

industry of ceramic materials, pharmaceutical products,

foodstuff and wood. For wood, the main operation of water

removal is the drying process and, nowadays, the main

technique is the use of hot air at given velocity. According

to Dincer [1], drying is one of the most important stages in

the processing of wood, having an important influence on

the quality of the final product. Thus, understanding this

process of water removal allows to obtain a dry product

with superior quality. In this sense, a mathematical model

is usually used to describe wood drying. The more accurate

information can be extracted from the model used to de-

scribe the process, the better model could be considered. In
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the literature, one of models used to describe drying of

products is that which describes the water migration by

diffusion. Diffusion models are used to describe many

types of processing such as cooling [2, 3], heating [4],

osmotic dehydration [5], and drying of porous materials

[6]. In particular, several works are available in the lit-

erature involving diffusion models in the description of

wood drying [1, 7–15]. According to Silva et al. [14], an

advantage of diffusion models when compared, for exam-

ple, with empirical models, is the possibility to determine

the moisture distribution within the wood at any instant

during drying. This information is essential to identify re-

gions prone to warping and cracking formation.

In the literature, several analytical solutions of the dif-

fusion equation are used to describe drying processes of

wood [1, 11, 13]. Dincer [1] used a one-dimensional ana-

lytical solution for the infinite slab to describe drying of

lumber cut in the radial direction all-heartwood specimen

of Douglas-fir (Pseudotsuga menziessi (Poir.) Britton).

According to the author, a practical experimental moisture

content and time data set for a slab wood dried with hot air

was used, and the results were reasonable when compared

with the results predicted by his model. Ricardez et al. [11]

used a two-dimensional analytical solution of the diffusion

equation to describe drying of red oak (Quercus spp.)

samples at vacuum pressure. The authors concluded that

their model was able to reproduce the drying kinetics of

wood that occurred in two stages: constant and falling

rates. Silva et al. [13] used several analytical models, in-

cluding a three-dimensional model to describe drying of

lumber (Pinus elliottii Engelm.). The authors concluded

that three-dimensional model with boundary condition of

the third kind reasonably described the process. However,

these authors commented that analytical models normally

presuppose restrictive assumptions such as constant vol-

ume and effective mass diffusivity. Thus, these authors

have suggested in their conclusions that numerical solu-

tions instead analytical solutions should be used to describe

wood drying, to avoid those restrictions.

Olek and Weres [12] used the finite element method to

solve the one-dimensional diffusion equation in Cartesian

coordinates. The authors proposed a variable effective

mass diffusivity as a function of the moisture content to use

their numerical solution for describing drying of Scots

pinewood (Pinus sylvestris L.). The authors concluded that

the best results were obtained for the effective mass dif-

fusivity given by an exponential expression in which the

exponent is a quadratic function of the moisture content.

On the other hand, Silva et al. [14] described convective

drying of lumber (Pinus elliottii Engelm.) at low air tem-

perature. Silva et al. [14] described the drying process

using a three-dimensional numerical solution of the diffu-

sion equation, in which was supposed variable effective

mass diffusivity. The model permitted a rigorous descrip-

tion of the drying process, and it can predict the moisture

content in any position within the parallelepiped that rep-

resents the lumber, at any time. However, Silva et al. [15]

observed that the determination of the process parameters

through optimization technique, using three-dimensional

model, takes a long time to perform. Because of that, these

last authors used a two-dimensional numerical solution of

the diffusion equation to describe same drying studied by

Silva et al. [14]. In this two-dimensional study, Silva et al.

[15] reported good results, and the optimization time for

their model was about 20 times less than the optimization

time with the typical three-dimensional solution. Naturally,

in this context, a question should be answered: is the one-

dimensional model a good option to describe same drying?

In this sense, the aim of this article is defined in the

following.

The objective of this article was to describe drying of

wood cut into parallelepiped shaped pieces, considering the

effective mass diffusivity as a variable property. For this

purpose, a numerical solution of the one-dimensional dif-

fusion equation was proposed and coupled with an opti-

mizer to determine the process parameters. In addition, a

second objective was to compare the results obtained

herein with other found in the literature supposing the

lumber with two- and three-dimensional geometry.

Materials and methods

The one-dimensional diffusion equation in Cartesian co-

ordinates, used to describe water migration during drying

of lumber can be written as [16]:

oM

ot
¼ o

ox
D
oM

ox

� �
; ð1Þ

where M is the local moisture content (kgwater kg
�1
drymatter);

t is the time (s); x is the position (m) within the infinite slab

with origin in the center; and D is the effective mass dif-

fusivity (m2 s-1). The following assumptions were as-

sumed to numerically solve Eq. (1): (a) liquid diffusion

was considered as the main mass transport mechanism

inside the product; (b) the boundary condition is of the

third kind; (c) the product was considered homogeneous

and isotropic; (d) the diffusion process presents symmetry

with respect to the midpoint of the slab.

Numerical solution

Equation (1) was numerically solved using the finite vol-

ume method [16], with a fully implicit formulation. To

discretize Eq. (1), an infinite slab with thickness T (m) is

presented in Fig. 1a. Figure 1b shows a uniform grid with
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N control volumes in a symmetrical piece of the infinite

slab, and each control volume has a thickness given by

Dx (m). Figure 1b also shows an internal control volume

‘‘i’’ with nodal point ‘‘P’’, and its neighbors to west ‘‘W’’

and east ‘‘E’’. The lowercases ‘‘w’’ and ‘‘e’’ refer to the

interfaces of the control volume ‘‘P’’ to west and east,

respectively.

The integration of Eq. (1) with respect to space (Dx) and
time (from t up to t ? Dt), for a control volume P, gives

the following result:

MP �M0
P

Dt
Dx ¼ Ce

oM

ox e

��� � Cw

oM

ox w

��� ð2Þ

in which the superscript ‘‘0’’ means ‘‘former time t’’ and its

absence means ‘‘current time t ? Dt’’.

Internal control volumes

For an internal control volume, the following algebraic

equation was obtained from the discretization of Eq. (1):

AwMW þ ApMP þ AeME ¼ B ð3Þ

and the coefficients Aw, Ap, Ae and B are given in Silva

et al. [5], where the diffusion equation was discretized for

the boundary condition of the first kind. Naturally, for an

internal control volume, Eq. (3) is independent of the

boundary condition.

Control volume 1

For the control volume 1, the boundary condition was

supposed to be of the second kind, with flux zero at west

side due to the symmetry. Thus, the following algebraic

equation was obtained:

ApMP þ AeME ¼ B: ð4Þ

Again, the coefficients Ap, Ae and B are given in Silva

et al. [5] and, for that, they were omitted herein.

Control volume N

For the control volume N, the derivatives of Eq. (2) were

approximated by:

oM

ox w

��� ffi MP �MW

Dx
ð5Þ

and

oM

ox e

��� ffi Mb �MP

Dx = 2
ð6Þ

where Mb is the value of M at the east boundary. Thus, for

the control volume N, the subscript ‘‘e’’ (east) is equivalent

to ‘‘b’’ (boundary). The boundary condition of the third

kind to east side is expressed by

�D
oM

ox e

��� ¼ hbðMb �MeqÞ; ð7Þ

in which hb is the convective mass transfer coefficient at

east boundary, and Meq is the equilibrium moisture content.

Combining Eqs. (6) and (7) to express Mb, and substituting

Mb into Eq. (6), this new equation and also Eq. (5) can be

used to rewrite Eq. (2). The following algebraic equation is

obtained:

AwMW þ ApMP ¼ B; ð8Þ

where

Aw ¼ � 1

Dx
Dw; ð9aÞ

AP ¼ Dx
Dt

þ Dw

Dx
þ Db

Db

hb
þ Dx

2

; ð9bÞ

B ¼ Dx
Dt

M0
P þ

Db

Db

hb
þ Dx

2

Meq: ð9cÞ

In Eq. (9c), M0
P is the moisture content in the control

volume P at the beginning of the time step.

Equations (3), (4) and (8) constitute a system of equa-

tions in each time step, and such system was solved by the

method ‘‘tri-diagonal matrix algorithm’’ [17], also called

TDMA. The average value of M at any instant, denoted by

M, was calculated by a arithmetic average of the moisture

contents obtained for the control volumes, once the

established grid is uniform.

Effective mass diffusivity

The expression used in this article for the effective mass

diffusivity as a function of local moisture content during

drying of wood at low temperature was proposed by Silva

et al. [14, 15], and is given by:

D ¼ b expða=MÞ; ð10Þ

Fig. 1 a Infinite slab; b uniform grid with N control volumes in a

symmetrical piece of the infinite slab
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where ‘‘a’’ and ‘‘b’’ are parameters that fit the numerical

solution to an experimental data set. For a uniform grid, on

the interfaces of the internal control volumes, for example,

‘‘e’’ (see Fig. 1), D is determined through harmonic mean

[16]:

De ¼
2DEDP

DE þ DP

; ð11Þ

where DP and DE at the nodal points ‘‘P’’ and ‘‘E’’ are

calculated through Eq. (10).

As the effective mass diffusivity D is variable, the co-

efficients A in Eqs. (3), (4) and (8), as well as the coeffi-

cients B, are calculated in each time step, due to the

nonlinearities caused by the variation of such parameter. If

the time refinement is adequate, the errors due to the

nonlinearities can be discarded.

Optimization

Establishing the function given by Eq. (10) to express the

effective mass diffusivity D at the nodal points, the pa-

rameters a and b, as well as the convective mass transfer

coefficient h, can be determined by optimization. The ex-

pression of the Chi square [18, 19] was chosen as objective

function:

v2 ¼
XNp

i¼1

M
exp

i �M
sim

i

h i2 1
r2i
; ð12Þ

in which M
exp

i is the average moisture content measured in

the experimental point i, M
sim

i is the correspondent

simulated moisture content, Np is the number of ex-

perimental points, 1=r2i is the statistical weight referring to

the point i. According to Silva et al. [20], if the statistical

weights are unknown, they can be made equal to a common

value, for instance 1. In Eq. (12), it is interesting to observe

that the v2 depends on M
sim

i , which depends on D and

h. Thus, if the convective mass transfer coefficient can be

considered constant and the effective mass diffusivity is

given by Eq. (10), the parameters ‘‘h’’, ‘‘a’’ and ‘‘b’’ can be

determined through the minimization of the objective

function, which is accomplished in cycles involving the

steps given in the following [3, 20].

1. Provide the initial values for the parameters ‘‘a’’,

‘‘b’’ and ‘‘h’’. Solve the diffusion equation and

determine the v2;
2. Provide the value for the correction of ‘‘h’’;

3. Correct the parameter ‘‘h’’, maintaining the pa-

rameters ‘‘a’’ and ‘‘b’’ with constant values. Solve

the diffusion equation and calculate the v2;
4. Compare the latest calculated value of the v2 with

the previous one. If the latest value is smaller, return

to the step 2; otherwise, decrease the last correction

of the value of ‘‘h’’ and proceed to step 5;

5. Provide the value for the correction of ‘‘a’’;

6. Correct the parameter ‘‘a’’, maintaining the pa-

rameters ‘‘b’’ and ‘‘h’’ with constant values. Solve

the diffusion equation and calculate the v2;
7. Compare the latest calculated value of the v2 with

the previous one. If the latest value is smaller, return

to the step 5; otherwise, decrease the last correction

of the value of ‘‘a’’ and proceed to step 8;

8. Provide the value for the correction of ‘‘b’’;

9. Correct the parameter ‘‘b’’, maintaining the pa-

rameters ‘‘a’’ and ‘‘h’’ with constant values. Solve

the diffusion equation and calculate the v2;
10. Compare the latest calculated value of the v2 with

the previous one. If the latest value is smaller, return

to the step 8; otherwise, decrease the last correction

of the value of ‘‘b’’ and proceed to step 11;

11. Begin a new cycle coming back to the step 2 until

the stipulated convergence for the parameters ‘‘a’’,

‘‘b’’ and ‘‘h’’ is reached.

According to Silva et al. [20], in each cycle, the value of

the correction of each parameter can be initially modest,

compatible with the tolerance of convergence imposed to

the problem. For a given cycle, in each return to the step 2,

5 or 8, the value of the new correction can be multiplied by

the factor 2. If the modest correction initially informed

does not minimize the objective function, in the next cycle,

its value can be multiplied by the factor -1.

A simplified flowchart for the optimization algorithm is

shown in Fig. 2, highlighting the parameter h, referring to

steps 1–4.

Da Silva et al. [3], studying the cooling kinetics of cu-

cumbers, have used this optimization algorithm, and they

estimated the uncertainty of theprocess parameters as follows.

The experimental measurements were disrupted with 50 dif-

ferent Gaussian error distributions with zero mean value and

standard deviation given byr = 2rU* (95 %) inwhichrU* is
the standard deviation of the original simulation. These au-

thors found that the optimization algorithmhas determined the

process parameters with an uncertainty less than 1 % of the

average value of the correspondent parameter.

Experimental data

To compare one-, two- and three-dimensional models, dry-

ing studied by Silva et al. [14] (three-dimensional) and Silva

et al. [15] (two-dimensional) was analyzed again using the

one-dimensional numerical solution proposed herein to de-

scribe the process. The experimental data set is referring to

drying of lumber (Pinus elliottii Engelm.), in which wood

with 20 years of age was used. Four lumber pieces were
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obtained through tangential cut, with a density of the dry

matter of 405 kg m-3. To dry the product, the lumber ini-

tially 23 �C was placed into a chamber with forced air at

temperature of 40 �C, relative humidity of 40 % and ve-

locity of 3 m s-1. The parallelepiped that represents the

lumber is shown in Fig. 3 and the dimensions of the product

were: thickness T = 36 mm; height H = 100 mm and

length L = 745 mm. Moisture content was determined by

gravimetric method, in which the four lumber pieces were

weighted together. The initial and equilibrium moisture

content were, respectively, 1.213 and 0.070, in dry basis,

kgwater kg
�1
drymatter. The experimental data set obtained during

the drying process of the lumber is shown through Fig. 4.

Results and discussion

An unreported study about the refinement of grid and time

indicated that a grid with 48 control volumes and 2000 time

steps are adequate to solve the diffusion equation using the

numerical solution proposed in this article. Thus, the re-

sults in the following were obtained.

Results

The process parameters ‘‘a’’, ‘‘b’’ and ‘‘h’’ were determined

by optimization, using the experimental data set presented

in Fig. 4, and the obtained results are presented in Table 1.

This table also presents the results available in the lit-

erature for two- and three-dimensional models (2D and

3D). The symbols v2 and R2 represents the statistical

indicators v2 and determination coefficient, respectively.

Since the process parameters have been determined, the

simulation of the drying kinetics for the one-dimensional

case (1D) can be presented together with the experimental

data set, as is shown in Fig. 5.

Figure 6 presents the effective mass diffusivities as a

function of the local moisture content for the cases one-

(present work), two- [15] and three-dimensional [14].

Figure 7 presents the moisture distributions for the one-

dimensional case at instants t = 19.8 h and t = 31.2 h.

Discussion

According to several authors, such as Silva et al. [13], due

to some heterogeneity and anisotropy, the diffusion process

in a given direction can be little different from the diffusion

in other directions. Thus, the values of the parameters

Fig. 2 Simplified flowchart for the optimization algorithm highlight-

ing the parameter h

Fig. 3 Parallelepiped representing a lumber with thickness T, height

H and length L, highlighting the three moisture fluxes at the three

visible surfaces during drying

Fig. 4 Experimental data set referring to drying of lumber

368 J Wood Sci (2015) 61:364–371
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determined by optimization should be interpreted as ef-

fective values referring to the proposed model. In addition,

Silva et al. [14] observe that the consideration of the liquid

diffusion as the only mechanism of water transport inside

the lumber is a simplification of the proposed model, jus-

tified by the low value of the initial moisture content and

drying temperature. Thus, the analyses in the following are

performed in this context, i.e., considering the assumptions

assumed for models 3D, 2D and 1D.

An inspection on the statistical indicators of Table 1

enables to conclude that the drying kinetics of lumber was

well described by three models used to represent the pro-

cess. However, as Silva et al. [13] observed, the results of

Table 1 indicates that the more the considered geometry is

close to the real geometry, the better the results. On the

other hand, an idea on the goodness-of-fit for the one-di-

mensional case is given by inspection of Fig. 5, in which

the experimental points and the one-dimensional simula-

tion are in good agreement. Similar result was obtained by

Dincer [1], which used with success an analytical solution

of the diffusion equation to describe drying of lumber with

the following dimensions: T = 40 mm, H = 100 mm and

L = 200 mm. Note that, in this case, H and L are 2.5 and 5

times the value of T, respectively. In the present study,

H and L are 2.8 and 20.7 times the value of T, and such

dimensions are more favorable to consider the lumber as an

infinite slab. In addition, Dincer [1] considered the effec-

tive mass diffusivity with a constant value and in the pre-

sent work, this property was considered variable. This

consideration is so significant that the statistical indicators

obtained by Silva et al. [13] describing this same drying

with an analytical three-dimensional solution (constant

effective mass diffusivity) are worse than the statistical

indicators obtained herein with a numerical one-dimen-

sional solution (variable effective mass diffusivity).

As can be realized in Fig. 6, the effective water diffu-

sivity increases with increasing of the local moisture con-

tent, and this result was also obtained by other researchers

such as Silva et al. [5] studying osmotic dehydration of

guava, and Olek and Weres [12] describing lumber drying.

In addition, Fig. 6 indicates that the effective mass diffu-

sivity for model 2D is moderately greater than this property

obtained with 3D model. On the other hand, the effective

mass diffusivity for model 1D is significantly greater than

this property for model 2D and, consequently, for model

3D. The interpretation of this result can be given with basis

in Fig. 3, which shows the dimensions of the lumber and

the moisture fluxes at the three visible surfaces of the

parallelepiped during drying. For the 3D case, the moisture

flux occurs in three pairs of surfaces, involving the total

area of 209840 mm2. For the 2D case, the pair of moisture

fluxes at direction z was disregarded. Thus, the area in-

volved in the moisture flux was 202640 mm2, representing

about 97 % of the total area for the 3D case. For the 1D

case, the pair of moisture fluxes at direction y was also

disregarded. Consequently, with these considerations, the

Table 1 Results of the

optimization using models
Model References D (m2 s-1) h (m s-1) R2 v2

1D Present work 1.87 9 10-8exp(-0.477/M) 1.56 9 10-7 0.9992 1.127 9 10-3

2D Silva et al. [15] 1.61 9 10-8exp(-0.442/M) 1.16 9 10-7 0.9993 1.071 9 10-3

3D Silva et al. [14] 1.57 9 10-8exp(-0.435/M) 1.13 9 10-7 0.9994 1.023 9 10-3

Fig. 5 Drying kinetics of lumber using one-dimensional numerical

simulation
Fig. 6 Effective mass diffusivity as a function of the local moisture

content for the following cases: one-, two- and three-dimensional

simulations
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moisture flux occurs in an area equal to 149000 mm2,

which represents only about 71 % of the area for the 3D

case. As it is observed, the great reduction in area when

models 3D or 2D are substituted by model 1D explains the

significant increasing in its effective mass diffusivity, as it

can be seen in Fig. 6. On the other hand, the small re-

duction in area when model 3D is substituted by model 2D

explains the little difference in their effective mass diffu-

sivities. An inspection of Table 1 enables to conclude that

similar results are also obtained for the convective mass

transfer coefficients for the cases one-, two- and three-

dimensional.

To determine the average value for the effective mass

diffusivity, the following expression was used:

D ¼
RM0

Meq
DðMÞdMRM0

Meq
dM

ð13Þ

in which M0 and Meq are, respectively, the initial and

equilibrium moisture content. For the one-dimensional

case, the average effective mass diffusivity was

8.7 9 10-9 m2 s-1. This average value is compatible with

the constant value obtained by several authors that use

diffusion models in wood drying considering some resis-

tance on the boundary, such as Dincer [1]

(h = 2.26 9 10-7 m s-1 and D = 3.24 9 10-9 m2 s-1).

An observation of Fig. 7 indicates that the information

on moisture distribution within the lumber is poor because

the moisture distribution at direction z and, mainly, at di-

rection y are not considered. Even so, if the main focus of

the study is the drying kinetics, model 1D presents good

results for lumber with the dimensions involved in this

work. As Silva et al. [21] observed, even whether the

proposed model is not completely acceptable in a given

study, the one-dimensional numerical solution presented in

this article is useful because, through this solution, the

obtained results serve as initial values for other optimiza-

tion processes involving a model 3D (or 2D).

Finally, as observed by Silva et al. [15], the drying ki-

netics of wood at low temperature was well described by

models with an effective water diffusivity expressed by an

exponential function, in which the exponent is proportional

to the inverse of the local moisture content. However, this

function was obtained for the specific dataset studied in this

article, and more tests should be performed to know whe-

ther good results are also obtained.

Conclusion

One-dimensional model considering variable effective

mass diffusivity well describes the drying kinetics of the

studied lumber. The obtained statistical indicators are

comparable with those obtained for two- and three-di-

mensional models.

The strong reduction in area of moisture flux of model

1D significantly overestimates the effective mass diffu-

sivity and the convective mass transfer coefficient when

compared with these properties obtained with model 3D

(and also 2D). In addition, the moisture distribution is

simplified to the one-dimensional case and, for that, such

distribution is not appropriate to provide information for a

subsequent study on stress and crack formation. However,

the process parameters obtained in this study by opti-

mization serve, at least, as initial values for other opti-

mization processes involving a model 3D.
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