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Abstract This article summarizes current utilizations of

wood cell wall components in relation to biorefinery of

woody biomass as a separation method of its constituents.

Especially, utilization of isolated lignins, involving trans-

formation and molding, are demonstrated with respect to

productions of carbon fibers and their further functional-

ization, such as developments of activated carbon fibers

and electrodes for second battery and electric double-layer

capacitor.
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Significance of utilization of wood cell wall
components

Wood cell wall consists of about 45 % of cellulose and

20–30 % of hemicelluloses and lignin. The ratio of hemi-

celluloses to lignin varies depending on the wood species,

softwood or hardwood. In 1975, I. S. Goldstein demon-

strated ‘‘potential for converting wood into plastics’’ in

Science [1], where 95 % of plastics or synthetic fibers in

the USA at that time could be produced from wood com-

ponents, lignin and cellulose. Especially, lignin was a

promising feedstock for thermosetting resins and aromatic

polymers. Thereby, he claimed that woody biomass and its

components were alternative feedstock to petroleum for

polymer production. As a social background of the paper,

the price of petroleum was increased due to its expanded

consumption and shortage. In this century, the fear of

shortage of fossil resources was slightly relieved because of

the development of shale gas and oil. However, environ-

mental impacts of consumption of fossil resources, such as

exhausting greenhouse gases and reducing them from the

Earth, are still of great concern. Therefore, utilization of

woody biomass as a renewable alternative resource to

fossil resources provides one of the solutions to such an

environmental problem.

Fossil resources have two aspects: one, as a source of

energy for fuel and electricity; and the other, as a source of

raw material for organic chemicals and plastics. Electricity

may be produced from some renewable resources, such as

solar, wind and geothermal powers, but liquid fuel, such as

bioethanol and biodiesel, and organic chemicals cannot be

produced from such renewable resources. These organic

materials can be prepared from another renewable resource

such as wood and its constituents, instead. From this

viewpoint, woody biomass and its components, the most

abundant biomass on Earth, can be an alternative organic

feedstock to fossil resources.

In this article, we introduce the recent progress in

research for utilization of woody biomass components, in

particular lignin. Now, lignin is merely used as an energy

source for the pulp and paper industry. However, lignin is

rarely used as a material source, except for utilization of

lignosulfonate as a cement dispersant (including concrete)

[2] and as an electrode of the second battery [3]. In the

woody biomass utilization, lignin utilization is a key sub-

ject, as pointed out by Goldstein [1].
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Cellulose utilization

b-(1 ? 4) glucan, cellulose, has been used widely as a raw

material for fabrics and paper since the dawn of time, and

also as a first feedstock for man-made plastics (cellulose

nitrate) and man-made fiber (rayon). Even now, it is a very

important feedstock in the paper-making industry and in

the production of cellulose derivatives, such as cellulose

esters and ethers. Recently, cellulose derived from low-

quality wood and annual herbaceous biomass has also been

focused on as a feedstock of glucose for the production of

bioethanol and other fermentation compounds. However,

since there are piles of published articles on these appli-

cations of cellulose, very recent topics are briefly intro-

duced in this section.

In the twenty-first century, nanotechnology has been

focused on as an innovative technology. In the cellulose

chemistry, cellulose nanofiber (CNF) also draws much

attention worldwide as a novel type of reinforced fiber for

plastics. As CNF consists of single or several microfibrils,

its aspect ratio (length to diameter) is very large and its

diameter ranges from 3 to 20 nm. Therefore, CNFs, when

dispersed in resin matrix, are invisible because of little

scattering of visible light [4, 5], resulting in transparent

resin or film. In addition, CNF-reinforced resin has very

high mechanical strength due to the high elasticity of cel-

lulose. Therefore, CNFs are considered to be a very unique

reinforcing material as compared to conventional glass

fibers in glass fiber-reinforced plastics.

Preparation of CNFs is classified mainly on two

methods: one is the mechanical refining of delignified

wood and pulp [5, 6], and the other is TEMPO-oxidation

followed by gentle refining [7, 8]. The former method

seems to be simpler and easier than the latter, but the

diameter of the obtained fibers by mechanical refining is

relatively large (15–20 nm). By contrast, TEMPO-oxida-

tion gives thin fibers with a similar diameter to

microfibrils (ca. 3 9 3 nm) of native cellulose. This

phenomenon can be explained by the change in osmotic

pressure and/or the occurrence of electrostatic repulsion

between microfibrils, caused by the introduced carboxy-

late on the surface of microfibril by TEMPO-oxidation,

which renders the following refinery and separation of

fibers much easier. Development of CNF preparation

method expands its application study in relation to pro-

duction of composite materials. However, there is an

obstacle: CNFs show low compatibility with hydrophobic

compounds, synthetic polymers and their monomers. If

we are to overcome the problem, it seems necessary that

CNF-reinforced plastics should be developed like a con-

ventional composite material, such as carbon fiber-rein-

forced plastics.

Hemicellulose utilization

Utilization of hemicelluloses, non-cellulosic

heteropolysaccharides, as a feedstock for value-added

material is another issue to achieve for the full utilization

of woody biomass for chemicals. At present, however,

most of the hemicelluloses, together with lignin, are

removed during the pulping process, only to be burned to

recover energy. The use of the current material, xylan, for

conversion into furfural or xylitol is an exception [9].

There has recently been a lot of research work on

functionalization of hemicelluloses that has been summa-

rized in some excellent review articles [10, 11]. Extensive

studies on carboxylic esters of hemicelluloses, for example,

from wheat straw [12, 13] and sugarcane bagasse [14, 15],

have been published. Development of films of arabinoxy-

lan esters and their blends was also reported [16].

Of hemicelluloses, modification of xylan draws most

attention, due to its abundance compared to the other

hemicellulose components. Iwata and his research group

have made efforts to develop xylan-based synthetic poly-

mers. Xylan extracted from hardwood kraft pulp was

acylated and characterized to observe the effect of their

carbon chain length of the introduced acyl groups on the

properties of the esters, and they successfully fabricated

transparent film from those xylan esters [17, 18]. Based on

their findings, Iwata and his coworkers developed poly-

lactic acid blends with xylan esters [19, 20]. They further

tried to develop xylan-based graft copolymers [21], and

xylan butyrate-based triblock polymers [22]. They have

also made attempts to fabricate glucomannan-based esters

[23, 24].

Song and his coworkers have done extensive research on

modified hemicellulose-related compounds. Corncob

holocellulose was oxidized with hydrogen peroxide to

develop dry-strength additive for paper making [25]. Car-

boxymethylated glucomannan was also modified to a

paper-strengthening agent [26]. A prebiotic food additive

was developed by producing xylooligosaccharides from

xylan of triploid Populus tomentosa by xylanase treatment

[27]. Application of a cereal-derived hemicellulose-rich

by-product, namely b-D-glucan (a glucan fraction com-

posed of b-1,4-D- and b-1,3-D-linkages) from oat process-

ing, was also exploited. For example, b-D-glucan can be

utilized as a paper-strengthening agent after being deriva-

tized by TEMPO-mediated oxidation [28] and by car-

boxymethylation [29].

Galactglucomannan is another target to develop hemi-

cellulose-based hydrogels [30], film laminates for oxygen

barriers [31], cationized material [32], and multifunctional

macroinitiator for single-electron transfer-mediated living

radical polymerization [33].
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Lignin utilization

The chemical and physical properties of lignin isolated from

woods significantly vary depending on wood species, hard-

wood or softwood, and separation methods of wood cell wall

components. Thereby, utilization of isolated lignins should be

considered in relation to the separation processes. Chemical

pulpings, such as kraft pulping and sulfite pulping, are con-

sidered to be representative separation processes of wood

components. Sulfite lignin, or lignosulfonate, comprises a

hydrophobic lignin backbone (phenylpropane unit) and

anionic sulfonate groups. Accordingly, it has amphipathic

nature in addition to water solubility [34, 35]. Based on such

unique nature, lignosulfonate is widely utilized as a cement

(and concrete) dispersant and electrode admixture for lead

secondary battery as mentioned above. On the other hand,

kraft lignin is insoluble in water, but soluble in aqueous

alkaline solution. Accordingly, kraft lignin cannot be utilized

in the application fields of lignosulfonate. Thus, even though

both lignins are isolated from aqueous phase, the character-

istics of the isolated lignins are quite different. In this section,

current studies on lignin utilizations are introduced in relation

to the chemical nature of various types of isolated lignins.

Fusibility of organosolv lignins

Organosolv pulping, using organic solvents as a cooking

solvent, is often called solvolysis pulping. In organosolv

pulping, the solvent used reacts with pulping feedstock,

resulting in the introduction of the solvent molecule to pulp

and lignin. Consequently, such an introduced moiety adds

very unique characteristics to the resultant lignin, such as

thermal fusibility and high reactivity. In synthetic poly-

mers, they can be molded into various shapes on the basis

of the fusible characteristics. Thereby, fusible property is

very important in terms of moldability.

Atmospheric acetic acid pulping was carried out with

90–95 % aqueous acetic acid containing 0.1–0.32 % min-

eral acid, such as HCl and H2SO4. Since the pulping con-

dition was similar to an acetylation condition, the separated

components, pulp and lignin, was partially acetylated. As a

result, the resultant lignin derived from its hardwood pulp-

ing (hardwood acetic acid lignin; HAL) showed fusibility

[36], although susceptibility of the resultant pulp toward

cellulolytic enzyme, cellulase, was very low. The fusibility

of HAL was found to be attributed to the existence of the

acetyl group and the polydispersity of its molecular mass.

The acetylation of the hydroxyl group in lignin inhibited the

formation of the hydrogen bond, giving rise to thermal

mobility so that the acetyl group can act as an internal

plasticizer. Low-molecular-mass fraction of HAL had

higher thermal mobility than its high-molecular-mass frac-

tion and, therefore, acted as an external plasticizer. This

synergy effect contributed to the fusibility of HAL. After-

ward, thermal fusibility was found in most organosolv lig-

nins, such as alcell lignin [37] and cresol lignin [38]. To

these organosolv lignins, solvent molecules were also

introduced; the molecules were found to bind at the Ca and

Cc positions under acidic conditions in organosolv pulpings.
Hydroxy groups Ca and Cc positions were first protonated

and then subjected to nucleophilic substitution reaction

accompanied by elimination of water, as shown in Fig. 1.

Fig. 1 The proposed chemical reactions of lignin during isolation processes, organosolv pulping and alkaline pulping from wood
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The bound solvent moieties acted as the internal plasticizer

[39]. In addition, such fusible lignins were isolated from

hardwood.

Softwood acetic acid lignin (SAL), however, did not

show fusibility. The reason was attributed to the structure

of the lignin, which was richer in condensed structure, such

as b-5 and 5–5 linkages, than HAL. Such carbon–carbon

bonds would suppress rotational motion of aromatic rings

in lignin, leading to low thermal mobility. SAL was able to

be converted to fusible material by elimination of high-

molecular-mass fraction or by re-cooking SAL with

aqueous acetic acid to encourage the cleavage of residual

aryl-ether bond [40]. Polyethylene glycol (PEG)-lignin

from cedar is an exceptionally fusible softwood lignin [41].

It had a low glass transition temperature and a thermal-flow

temperature. This fusibility was also derived from PEG

moiety, the content of which accounted for more than 40 %

of the lignin.

Based on the relationship between lignin fusibility and

thermal motion of the aromatic ring, infusible lignin from

steam explosion of hardwood was successfully able to be

converted to fusible lignin by phenolation [42]. Similarly,

the fusibility of cresol lignin and lignophenol [43] should

also be brought about by the introduced aromatic moiety in

the pulping or separation process of wood components.

Thermal molding of lignins

Fusible polymers are easily transformed into fiber, film,

and other moldings by thermal processing. Also, fusible

lignins can be transformed into fibers by melt spinning [44,

45]. However, the resultant fibers are very weak and cannot

be utilized like synthetic fibers or man-made fibers. To

overcome the problem and to add functionality, the lignin

fibers are further converted to carbon fibers (CFs). The

typical process is shown in Fig. 2.

In this CF production process, thermostabilization,

which converts fusible lignin fibers into infusible ones, is a

necessary but very tedious and time-consuming step.

Without such a conversion step, fusible lignin fibers melt

and lose their fibrous morphology in the following car-

bonization step. In general, this conversion is carried out by

heating the fibers slowly up to 250–300 �C under an air or

an oxygen atmosphere, where oxygen molecule incorpo-

rated in lignin acts as a cross-linker. Thermostabilization of

HAL fibers was completed by heating them up to 250 �C at

a heating rate of 0.5 �C/min and keeping this temperature

for 1 h (total time[8 h). Thus, saving time needed for this

thermostabilization step is a key subject to produce CFs

from isolated lignins.

In the case of PEG–lignin fibers, very slow heating rate

was required for thermostabilization, namely, at less than

0.1 �C/min (almost 2 days). As-spun fibers from a mixture

of PEG–lignin and hexamethylene tetramine as a curing

agent for phenol–formaldehyde resin were successfully

thermostabilized at a heating rate of 2 �C/min (ca. 2 h). On

the other hand, SAL fibers could be directly subjected to

the following carbonization without thermostabilization

[46]. Although infusible SAL could be converted to fusible

material by re-cooking as mentioned above, the resulting

SAL could barely be spun, and its spinnability was much

lower than that of HAL. The low thermal mobility of SAL

helped to skip a thermostabilization step.

The thermostabilized fibers were, in turn, converted to

CFs by carbonization, which was conducted by heating up

to 1000 �C under an inert gas atmosphere. The mechanical

properties of the resultant lignin CFs are listed in Table 1,

where polyacrylonitrile (PAN) is a major feedstock for CF.

Fig. 2 Production scheme of

carbon fibers and activated

carbon fibers from isolated

lignins
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The lignin-based CFs are much weaker than the PAN-

based counterparts. The reason would be attributed to the

existence of non-graphitized carbon derived from lignin

and cellulose. Therefore, the lignin CFs are utilized only in

a limited area [47]. To expand the application, lignin

should be converted to a graphitable carbon-rich compound

like mesophase pitch [48].

To use such weak CFs from lignin, further functional-

ization was attempted. Production of activated carbon

fibers (ACFs) was one of the representative examples. The

ACFs with large surface area are a promising electrode

material for second battery and electric double-layer

capacitor, which is described later, in addition to the

environmental purification agent [49–51].

CF from kraft lignin

We considered about 20 years ago that softwood and

hardwood kraft lignins (SKL and HKL, respectively)

would not show fusibility, because no thermally active

compound was introduced to lignin in the kraft pulping

process. However, melt spinning of HKL was developed by

Kadla and his coworkers in 2002 [52]. Although there still

is no report on melt spinning of SKL alone, its spinning

was achieved by the addition of low-molecular-mass

fraction of hardwood kraft lignin in 2013 [53]. The SKL-

based fibers could be thermostabilized at a heating rate of

3 �C/min. In addition, this research group successfully

spun fibers from SKL alone, which was a low-molecular-

mass fraction of SKL prepared by ultrafiltration, and the

thermostabilization of the resulting fibers was achieved at a

heating rate of 15 �C/min [54]. Last year, CF with a tensile

strength of more than 1 GPa, was first prepared from par-

tially acetylated SKL through dry spinning [55]. Thus,

most of the isolated lignins can be a feedstock for CF.

Fusibility of polymeric lignin model compounds

Here, we prompt a question: if lignin does not have con-

densed structure or lignin is comprised exclusively of b-O-
4 linkage, which is the major linkage in lignin, then does

such lignin show thermal fusibility? To clarify this point,

our research group investigated the fusibility of polymeric

lignin models, namely C6–C2 [56] and C6–C3 models [57]

(Fig. 3).

C6–C2 type of polymeric model compound showed

fusibility, but C6–C3 type did not. When the hydroxy

group at the Cc position of the C6–C3 type model was

modified to ester or carboxylate, the modified model

underwent thermal flow. Fourier-transfer infrared spectro-

scopic (FT–IR) analysis demonstrated that the Cc hydroxy

group formed intermolecular hydrogen bond, resulting in

low thermal mobility of the C6–C3 type model [58]. From

this finding, fusibility and thermal mobility of kraft lignins

would probably be caused by the elimination of the Cc
hydroxy (methylol) group in the pulping process [59].

Electrospun fibers of lignin and their applications

Electrospinning developed in 1930s [60] is one of tradi-

tional spinning methods, but it draws much attention as a

fascinating method to produce nanofibers. In this method,

there are three types of procedures, wet, dry and melt

electrospinnings. Most of the isolated lignins can dissolve

in general solvents, such as aqueous alkaline solution and

organic solvents. Therefore, those lignins can be easily

transformed into nanofiber mat by wet electrospinning and

dry electrospinning [61, 62]. Their applications have also

been proposed, such as in carbonaceous materials, filter

and electrode [63–65]. Therefore, fabrication of lignin-

derived fibers has been a hot topic for this decade.

Table 1 Mechanical properties of lignin-based carbon fibers

Diameter (lm) Tensile strength (MPa) MOEc (GPa) Elongation (%) References

Hardwood kraft lignin 46.0 ± 8.0 422 ± 80 40.0 ± 11.0 1.12 ± 0.22 [52]

Alcell lignin 31.0 ± 3.0 388 ± 123 40.0 ± 14.0 1.00 ± 0.23 [52]

Exploded lignina 7.6 ± 2.7 660 ± 230 40.7 ± 6.3 1.63 ± 0.29 [44]

Hardwood acetic acid lignin 14.0 ± 1.0 355 ± 53 39.1 ± 13.3 0.98 ± 0.25 [45]

Softwood acetic acid lignin 35.3 ± 6.3 108 ± 65 – – [46]

Softwood PEG–lignin 8.2 ± 1.0 695 ± 124 47.3 ± 11.5 1.51 ± 0.25 [41]

Acetylated softwood 6–8 1040 ± 100 52 ± 2 2 ± 0.2 [55]

Kraft lignin

HWKL-PEOb 44.0 ± 4.0 392 ± 89 44.0 ± 12.0 0.91 ± 0.16 [37]

Polyacrylonitrile 5–10 3500–6300 200–500 0.8–2.2 –

a Exploded lignin was converted into spinning raw material by hydrogenolysis followed by thermal condensation
b Blend of hardwood kraft lignin and polyethylene oxide
c Modulus of elasticity
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However, wet electrospinning of isolated lignins has not

been reported so far.

Lignin resin

The production of phenol–formaldehyde resin from lignin

has been a very traditional research subject, and it has still

been one of the current research subjects for lignin uti-

lization [66, 67]. Polyurethane resin from lignin has been a

well-studied polymer. Since hydroxy groups of general

isolated lignins have low reactivity, hydroxypropylation of

the lignins with propylene oxide [68] was conducted to

convert them into modified lignin preparations for poly-

merization [69, 70]. There are also some reports on the

preparations of lignin-based polyesters [71] and epoxy

resins [72]. However, these lignin-based polymers or resins

have not been effectively used yet. Only lignin poly-

urethane has been utilized as an insulate material in

domestic houses in Japan [73]. Recently, Kubota et al.

developed porous lignin-based polyester from softwood

PEG–lignin, which had have opened new application as a

separator for electric double-layer capacitor (EDLC) [74].

Future outlook

Nowadays, drilling technologies for shale gas and oil have

been developed and established. It looks, then, probable

that fossil resources will be supplied stably during this

century. Consequently, a steep rise in price of petroleum,

which I. S. Goldstein [1] feared, seems not likely to occur

in the near future. In this situation, wood components

should be converted not only to conventional resins or

plastics from a viewpoint of reduced environmental impact,

but also to value-added, highly functional materials with

respect to reduced production cost. Recently stimuli-re-

sponsive and unique functional polymers have been

developed from lignin by graft polymerization of atomic

transfer radical polymerization (ATRP) [75–77]. This is

one of the examples of highly functional material. Based

on the fact that isolated lignins have the largest carbon

content among wood components, new types of carbona-

ceous material including carbon fibers have been fabricated

from lignin, especially for electrodes of second battery [78]

and EDLC [79, 80]. These products seem to be promising,

value-added, lignin-based materials developed in this

century.

Furthermore, pulp consumption is decreased these days,

while pulp production is excessive worldwide. Some pulp

and paper mills in the USA quit pulp production. Bioe-

thanol production from excess cellulose can be a solution

to this problem. However, since cellulose can be a feed-

stock for vinyl polymer [1], the research and development

of smart functional polymers from cellulose and pulp as

sensor, intelligent materials, and medical goods will/must

also be accelerated by their modification with living radical

polymerization including atom transfer radical polymer-

ization [81, 82]. Similarly, hemicelluloses will draw

attention as a feedstock not only as fuel and aforemen-

tioned resins, but also as dietary fibers [83].

To achieve comprehensive utilization of wood compo-

nents, it is expected to establish effective and efficient

biorefinery processes of lignocellulose.
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