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Abstract To elucidate the electroelastic field in bodies

with D? symmetry such as wooden materials, we con-

structed a general solution technique for electroelastic

problems in such bodies in a cylindrical coordinate system.

We introduced the displacement and electric potential

functions to express the displacement and electric field in

cylindrical coordinates; their governing equations were

obtained using the fundamental equations for the elec-

troelastic field. The electroelastic field quantities could be

expressed in terms of two elastic displacement potential

functions and two piezoelastic displacement potential

functions, each of which satisfies a Laplace equation with

respect to the appropriately transformed cylindrical coor-

dinates. As an application of the technique, we analyzed

the problem of an infinitely long cylinder subjected to a

non-axisymmetrically distributed electric surface potential.

Using numerical calculations, we elucidated the electroe-

lastic field quantities within the cylinder and found unique

electroelastic coupling behaviors, which clearly demon-

strate the necessity for the analytical technique presented.

Moreover, we confirmed the possibility of the nonde-

structive evaluation (NDE) techniques by use of the

piezoelectric effects.

Keywords Piezoelectric body � D? symmetry �
Electroelasticity � General solution technique � Cylindrical
scheme

Introduction

Green materials have attracted considerable attention

recently due to increasing demands for reduction in envi-

ronmental loads. Two of the more desired properties of

green materials are biodegradability and carbon-neutrality.

From an engineering viewpoint, wood is one of the most

promising materials to achieve these properties. Wood

exhibits piezoelectricity [1], and has been the subject of

electroelastic problems aimed at developing nondestructive

evaluation (NDE) techniques to ensure the quality of

wooden materials [2–9].

Because wood is composed of complicated microstruc-

tures, investigations from a microscopic approach were

made [10–14]. In the design procedures of engineering

applications, however, a macroscopic approach is required

in order to avoid a considerably high computational cost

associated with a microscopic approach. From such a

viewpoint, wood is considered to have a D1 macrosym-

metry, characterized by an 1-fold rotation axis with a

perpendicular two-fold rotation axis [15], although it is

generally recognized as an orthotropic material when

considering the effects of annual rings [14, 16]. Briefly

speaking, D1 symmetry develops as a result of uniaxial

and random aggregation of constituent molecular chains [1,

9]. Bodies with D1 symmetry exhibit a unique electroe-

lastic coupling behavior: coupling only occurs between the

electric poling perpendicular to the 1-fold rotation axis

and the shear motion in the plane perpendicular to the

poling, as shown in Fig. 1.

Safe use of wood in engineering applications requires

analytical solutions of the relevant electroelastic problems

because few tools can reveal the field quantities within

bodies. Motivated by this idea, we obtained analytical

solutions for semi-infinite bodies with D1 symmetry
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subjected to electric [17] or mechanical loading [18].

Successfully solving these electroelastic problems in semi-

infinite bodies [17, 18] relied on using the Cartesian

coordinate system framework. In many engineering appli-

cations, however, the problems must be handled in terms of

cylindrical coordinates. For example, cylindrical columns

of wood are common, and material defects—such as

cracks, voids, knots, and pith—are often cylindrical. Con-

sequently, it is absolutely essential not only to solve a

specific problem but also to construct a general solution

scheme that can handle various problems in cylindrical

coordinates.

In this paper, therefore, we construct a general solution

technique for electroelastic problems in bodies with D1
symmetry under the framework of a cylindrical coordinate

system. First, the cylindrical components of displacement

and electric field are expressed in terms of two types of

displacement potential functions and the electric potential

function. Then, the governing equations for these potential

functions are obtained by applying the equilibrium of

stresses and Gauss’s law. As a result, the electric potential

function and the cylindrical components of the displace-

ment, strain, stress, electric field, and electric displacement

are expressed in terms of four functions: two elastic dis-

placement potential functions and two piezoelastic dis-

placement potential functions, each of which satisfies a

Laplace equation with respect to the cylindrical coordinates

transformed by the material properties. We apply the

technique to one of the most elementary models of an NDE

by use of the piezoelectric effects, in which a cylindrical

body is exposed to the electric field across the longitudinal

axis of the body, and illustrate the results graphically.

General solution technique

Fundamental equations

We consider a body with D1 symmetry. A cylindrical

coordinate system r; h; zð Þ is defined such that the z-axis is

parallel to the 1-fold rotation axis of the body. The con-

stitutive equations in the isothermal case are [17]
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where err; ehh; ezz; ehz; ezr; erhð Þ, rrr; rhh; rzz;rhz; rzr; rrhð Þ,
Er;Eh;Ezð Þ, and Dr;Dh;Dzð Þ denote the components of the

strain, stress, electric field, and electric displacement,

respectively, in the cylindrical coordinate system; cij, gkl,
and ekj denote the elastic stiffness constant, dielectric

constant, and piezoelectric constant, respectively. Only the

piezoelectric constant e14 couples the electric field or the

electric displacement perpendicular to the 1-fold rotation

axis (z-axis) with the strain or stress in the plane perpen-

dicular to the electric field or electric displacement.

The displacement–strain relations, stress equilibrium

equations, and Gauss’s law are:
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respectively, where ur; uh; uzð Þ denotes the displacement in

cylindrical coordinates.
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Fig. 1 Electroelastic coupling in a body with D1 symmetry
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Governing equations for the potential functions

We introduce the displacement potential functions u and #

as:
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ou
or

þ 1

r
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oh
; uh ¼
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r

ou
oh

� o#

or
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ou
oz

; ð6Þ

where k is an as-yet unknown constant. The components of

the electric field are expressed in terms of the electric

potential function U as:
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r
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: ð7Þ

Substituting Eqs. (3), (6), and (7) into Eqs. (1) and (2),

which are then substituted into Eqs. (4) and (5), we have
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Since the governing equations for u, Eqs. (8) and (9),

should be identical,
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c11
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Solving Eq. (12) for k gives
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which leads to a quadratic equation for l:
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For l satisfying Eq. (14), Eqs. (8) and (9) both become
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From Eqs. (10), (11), and (15), the governing equa-

tion of u is not coupled with the electric potential

function U, whereas the displacement potential function

# is coupled with U through the piezoelectric constant

e14. Associated with these characteristics, we hereafter

refer to u as an elastic displacement potential function

and # as a piezoelastic displacement potential function,

respectively.

Governing equation for the elastic displacement potential

function

We denote the two roots of the quadratic Eq. (14) as l1 and
l2, the corresponding u as u1 and u2, and the corre-

sponding k as k1 and k2, respectively. Then, from Eq. (15),

the governing equations for u1 and u2 are
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Hereafter, we consider the case that l1 and l2 are dif-

ferent positive numbers.

Governing equation for the piezoelastic displacement

potential function

Eliminating U from Eqs. (10) and (11) results in

o2

or2
þ 1

r

o

or
þ 1

r2
o2

oh2

� �2

þ l3 1þ k2couple

� 	
þ g

h i
(

o2

or2
þ 1

r

o

or
þ 1

r2
o2

oh2

� �
o2

oz2
þl3g

o4

oz4

�

#¼ 0;

ð18Þ

where
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Furthermore, the differential operator in Eq. (18) can be

factorized as
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where t1 and t2 denote two roots of a quadratic equation

for t:

t2 � l3 1þ k2couple
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Since t1 and t2 are different positive numbers [17], a

general solution to Eq. (20) is

# ¼ #1 þ #2; ð22Þ

where #1 and #2 denote the general solutions to
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By substituting # of Eqs. (21)–(23) into Eq. (10) and

integrating with respect to z, we can solve for U.

General solution of the electroelastic field

The governing equations for ui and #i, Eqs. (16) and (23),

are the Laplace equations in coordinates r; h; z
� ffiffiffiffi

li
p� 

and

r; h; z
� ffiffiffiffi

ti
p� 

, respectively, for which general solutions are

well established. By substituting the general solutions for

ui and #i (i =1, 2), and the electric potential function U as

solved in the previous subsection into Eqs. (6) and (7), and

then substituting the results into Eq. (3), we arrive at

general solutions for the components of the displacement,

electric field, and strain in cylindrical coordinates,
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respectively. We can also obtain the components of stress

by substituting Eqs. (25) and (26) into Eq. (1) and the

electric displacement components by substituting Eqs. (25)

and (26) into Eq. (2).

Application to infinitely long cylinder subjected
to electric field

We apply the general solution technique presented in the

previous section to a concrete boundary-value problem to

verify the validity of the proposed technique. As an

analytical model, we consider an infinitely long cylinder

of radius R with D1 symmetry, oriented such that the z-

axis parallels the 1-fold rotation axis of the body, as

shown in Fig. 2. The surface of the cylinder experiences

no stresses and is subjected to the electric potential

distribution

Uð Þr¼R¼ U0 sin h� exp � z2

d2
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; ð27Þ

where U0 and d denote the characteristic value of the

electric potential and the effective width of the distribution

along the z-axis, respectively. Equation (27) is periodic

with fundamental period 2p with respect to h, symmetric

with respect to x ¼ 0 and z ¼ 0, and anti-symmetric with

respect to y ¼ 0. The stresses and electric fields are

assumed to vanish at infinity.

This is one of the most fundamental models of an NDE

by use of the piezoelectric effects. When a body undergoes

such an evaluation, a local electric field is applied to the

body through electrodes. The distribution defined by

Eq. (27) is intended to model electric potentials of �U0

around the points h; zð Þ ¼ �p=2; 0ð Þ, respectively. Strictly
speaking, the electric potentials should be defined to be

uniform on certain bounded regions around those points.

Equation (27), which prescribes the nonuniform distribu-

tion over the entire surface, is introduced as a first step to

treat the problem analytically, and simplifies the following

mathematical procedures. Moreover, the model free from

material defects is chosen because its behavior is required

as a reference state in NDE techniques.
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Analysis

We apply boundary conditions,

r ¼ R : rrr ¼ 0; rrh ¼ 0; rzr ¼ 0;

U ¼ U0 sin h� exp � z2

d2

� � ð28Þ

to our infinite cylinder.

Considering the periodicity, symmetry, and finiteness of

the electroelastic field, as discussed above, the general

solutions to Eqs. (16) and (23) become [19]
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where InðÞ denotes the modified Bessel function of the first

kind of order n and AiðaÞ and CiðaÞ, (i =1, 2) are unknown
constants to be determined from the boundary conditions

described by Eq. (28). The single-term expressions with

respect to h in Eqs. (29) and (30) are conceived from the

nature of distribution described by the last equation in

Eq. (28). For a practical distribution with h such as par-

tially uniform one, the single-term expression in Eq. (28) is

replaced with the Fourier series with respect to h, and

therefore the solutions for ui and #i are obtained by

replacing the single-term expressions in Eqs. (29) and (30)

with the corresponding series expressions, which suggests

the versatility of our methodology.

Furthermore, we substitute Eq. (30) into Eqs. (10) and

(22) and integrate the result with respect to z, arriving at the

general solution of the electric potential function
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Substituting Eqs. (29)–(31) into Eqs. (24)–(26) gives

the components of displacement, electric field, and strain in

cylindrical coordinates, written as
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Fig. 2 Analytical model
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The components of the stress and electric displacement can

be obtained by substituting Eqs. (33) and (34) into Eqs. (1)

and (2), respectively, but are not written explicitly, here.

The electric potential distribution on the surface,

Uð Þr¼R, can be expressed in the Fourier integral form [20],
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Equation (36) denotes the Fourier-cosine transform of the

function exp �z2
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� 
in the last equation of Eq. (28). For a

practical distribution with respect to z such as partially uni-

form one, the solution procedures are still valid by replacing

Eq. (36) with the corresponding Fourier-cosine transform,

which also suggests the versatility of our methodology. By

substituting Eqs. (33) and (34) into Eq. (1) and the resulting
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1

2
I0

ffiffiffiffi
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p
arð Þ þ I2

ffiffiffiffi
ti

p
arð Þ½ �

8
>><

>>:

9
>>=

>>;

cosðazÞda� sin h;

2ezr ¼
X2

i¼1

Z 1

0

1þ kið Þ ffiffiffiffi
li

p
a2AiðaÞ

1

2
I0

ffiffiffiffi
li

p
ar

� 
þ I2

ffiffiffiffi
li

p
ar

� � �

þ ffiffiffiffi
ti

p
a2CiðaÞ

1

2
I0

ffiffiffiffi
ti

p
arð Þ � I2

ffiffiffiffi
ti

p
arð Þ½ �

8
>><

>>:

9
>>=

>>;

cosðazÞda� cos h;

2erh ¼ �2
X2

i¼1

Z 1

0

lia
2AiðaÞ

1

4
I1

ffiffiffiffi
li

p
ar

� 
� I3

ffiffiffiffi
li

p
ar

� � �

þtia
2CiðaÞ

1

4
I1

ffiffiffiffi
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p
arð Þ þ I3

ffiffiffiffi
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p
arð Þ½ �

8
>><

>>:

9
>>=

>>;

sin azð Þda� sin h

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð34Þ
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Equation (37) is solved as

a2 A1ðaÞ A2ðaÞ C1ðaÞ C2ðaÞf g

¼ � e14l3U0

c44

f �ðaÞ
DðaÞ A�

1ðaÞ A�
2ðaÞ C�

1ðaÞ C�
2ðaÞf g;

ð38Þ

where

X2

i¼1

a2AiðaÞ l3 1þ kið Þ � li½ �I1
ffiffiffiffi
li

p
aR

� 
þ 2li

1

4
I1

ffiffiffiffi
li

p
aR

� 
þ I3

ffiffiffiffi
li

p
aR

� � �
� �

þ2tia
2CiðaÞ

1

4
I1

ffiffiffiffi
ti

p
aRð Þ � I3

ffiffiffiffi
ti

p
aRð Þ½ �

* +

¼ 0;

X2

i¼1

2lia
2AiðaÞ

1

4
I1

ffiffiffiffi
li

p
aR

� 
� I3

ffiffiffiffi
li

p
aR

� � �

þ2tia
2CiðaÞ

1

4
I1

ffiffiffiffi
ti

p
aRð Þ þ I3

ffiffiffiffi
ti

p
aRð Þ½ �

8
>><

>>:

9
>>=

>>;

¼ 0;

X2

i¼1

1þ kið Þ ffiffiffiffi
li

p
a2AiðaÞ

1

2
I0

ffiffiffiffi
li

p
aR

� 
þ I2

ffiffiffiffi
li

p
aR

� � �

þ 1

l3
ti

ffiffiffiffi
ti

p
a2CiðaÞ

1

2
I0

ffiffiffiffi
ti

p
aRð Þ � I2

ffiffiffiffi
ti

p
aRð Þ½ �

8
>><

>>:

9
>>=

>>;

¼ 0;

X2

i¼1

ti � l3ð Þa2CðaÞ
I1

ffiffiffiffi
ti

p
aR

� 

a
¼ � e14l3U0

c44
f �ðaÞ

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð37Þ
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A�
2ðaÞ and C�

2ðaÞ are defined identically to A�
1ðaÞ and

C�
1ðaÞ, respectively, but with subscripts ‘‘1’’ and ‘‘2’’

interchanged for ki, li, and ti. By substituting Eqs. (38)

and (39) into Eqs. (1), (2), and (31)–(34), we formulate

the electroelastic field quantities in cylindrical

coordinates.

Resultant forces and moments in cylindrical cross

section

Whenwe assume anNDE, not only the detail distributions of

electroelastic field quantities but also the overall behavior of

the quantities needs to be elucidated because it is related to

supporting conditions for a specimen.Motivated by this idea,

we investigate the resultant effects of stresses in the cross

section perpendicular to the z-axis by the resultant forces in

the x, y, and z directions and the resultant moments around

the x-, y-, and z-axes, respectively, defined as

Nx;Ny;Nz

� 
¼

Z

Sz

rzx; ryz; rzz
� 

dSz;

Mx;My;Mz

� 
¼

Z

Sz

yrzz;�xrzz; rrhzð ÞdSz;
ð40Þ

where rzx and ryz denote the components of stress in the

Cartesian coordinate system x; y; zð Þ and dSz denotes a

small elemental area of the cylindrical cross section Sz. By

D að Þ ¼ D12 að Þ þ D21 að Þ;
Dij að Þ ¼ 1þ kið ÞI1

ffiffiffiffi
li

p
aR

� 
l3 1þ kj
� 

� lj
� �

I1
ffiffiffiffi
lj

p
aR

� 
þ ljI3

ffiffiffiffi
lj

p
aR

� � �

�
ti � l3ð Þtj

ffiffiffiffi
tj

p I1
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ti

p
aR

� 

a
I0
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tj

p
aR

� 
� I2
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tj

p
aR

� � �

� tj � l3
� 

ti
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p I1
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tj
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aR

� 

a
I0

ffiffiffiffi
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p
aRð Þ � I2

ffiffiffiffi
ti
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aRð Þ½ �
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>><

>>:
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>>;
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� 1
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9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð39Þ
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substituting Eqs. (33) and (34) into Eq. (1), and applying

the coordinate transformation

rzx ¼ rzr cos h� rhz sin h; ryz ¼ rzr sin hþ rhz cos h;

ð41Þ

we arrived at expressions for Cartesian stresses. In light of

the symmetry of stresses with respect to x ¼ 0 and y ¼ 0,

integrating these stresses in Eq. (40) resulted in

However, by the first and second equations in Eq. (37),

Nx ¼ 0 ð43Þ

for any value of z. My

� 

z¼0
¼ 0 from Eq. (42) and the

cylindrical surface was free from stresses, as prescribed in

Eq. (28). Therefore, by considering an equilibrium of the

resultant forces and moments in the free body between

z ¼ 0 and Sz, the resultant moment around the y-axis is

My ¼ 0 ð44Þ

for any value of z. Thus, from Eqs. (42)–(44), the cylin-

drical cross section, Sz, is free from the resultant forces and

moments for any value of z, including z ! 1, although

boundary conditions in the cylindrical cross section were

not explicitly prescribed in Eq. (28). Meanwhile, from the

viewpoint of mechanical design, these results imply that

considering the resultant effects only leads to an oversight

of the stresses which may cause the undesired failures, and

again evoke the necessity for the detail analysis of elec-

troelastic field quantities, which is presented in the fol-

lowing subsection.

Numerical calculations

As the piezoelectric body, Sitka spruce (Picea sitchensis) is

chosen. The material properties are given by

for which l1 and l2 are different positive numbers. The con-

struction of Eq. (45) is described in detail in our previous work

[17], in which the set of material constants was constructed

using data under various conditions because a complete set was

not found under a common condition. The material constants

generally depend on conditions such as moisture content,

temperature and frequencies of mechanical and electrical

loadings, which suggests the potential necessity for the cou-

pling analysis with hygrothermal field and the dynamic

Nx ¼ c44
X2

i¼1

Z 1

0

paR 1þ kið ÞAiðaÞI1
ffiffiffiffi
li

p
aR

� 
þ 1

l3
tiCiðaÞI1

ffiffiffiffi
ti

p
aRð Þ

� �

cosðazÞda
� �

;

My ¼ c44
X2

i¼1

Z 1

0

p 1þ kið ÞAiðaÞ
ffiffiffiffi
li

p
aR2I0

ffiffiffiffi
li

p
aR

� 
� 2RI1

ffiffiffiffi
li

p
aR

� � �
sinðazÞda

� �

;

Ny ¼ Nz ¼ 0; Mx ¼ Mz ¼ 0

9
>>>>>>>=

>>>>>>>;

: ð42Þ

c11 ¼ 830:84 MPa½ �; c33 ¼ 12:276 GPa½ �; c12 ¼ 294:47 MPa½ �;
c13 ¼ 472:07 MPa½ �; c44 ¼ 742:50 MPa½ �;

g11 ¼ 16:823� 10�12 C2

N �m2

� �

; g33 ¼ 22:490� 10�12 C2

N �m2

� �

; e14 ¼ �0:14850� 10�3 C

m2

� �

9
>>>=

>>>;

; ð45Þ
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analysis. In this paper, however, the values in Eq. (45) are

chosen as a first step to solve the problems in cylindrical bodies

with D1 symmetry. To illustrate the numerical results, the

following nondimensional quantities were introduced:

The effective width of the distribution along the z-axis

was assumed to be

d
_

¼ 1: ð47Þ

For brevity, we hereafter omit the signs for nondimen-

sional quantities in Eq. (46), _.

Figures 3, 4 and 5 show the distributions of electric field

vectors, vector expressions of the maximum shear strain,

and shear stress vectors, respectively, in the cylindrical

cross section at z ¼ 0, where Ez, ezz, and rzz vanish from

Eqs. (1), (33), and (34). In Figs. 3, 4 and 5, the x- and y-

axes are oriented for comparison with the right panel of

Fig. 2. The directions and relative vector magnitudes are

indicated by the directions and lengths of arrows, and the

absolute magnitudes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Erð Þ2þ Ehð Þ2
q

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ezrð Þ2þ 2ehzð Þ2
q

,

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rzrð Þ2þ rhzð Þ2
q

are indicated by contours in the upper

left quadrants.

In Fig. 3, the electric field is directed mainly in the �y

direction, so as to reflect the nature of electric boundary

condition illustrated in Fig. 2 and prescribed by Eq. (28).

The magnitude of the electric field is greater near the

electrically-loaded surfaces, h ffi �p=2 and r ffi 1, than in

the core, r ffi 0. Figure 4 shows the shear deformation is

primarily in �x direction, reflecting the nature of D1

symmetry illustrated in Fig. 1 in conjunction with the

negative piezoelectric coefficient of Eq. (45). As shown in

Figs. 3 and 4, the magnitude of the maximum shear strain

exhibits a distribution similar to that of the electric field.
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Unlike the electric field and shear strain shown in

Figs. 3 and 4, the shear stress exhibits a somewhat com-

plicated distribution, as shown in Fig. 5. Due to the

antisymmetry of the surface electric potential described by

Eq. (27), the shear stresses in the y and h directions cancel

each other out around y ¼ 0; therefore, the resultant shear

force in y direction, Ny, and the resultant twisting moment

around z-axis, Mz, are absent, as predicted by Eq. (42). On

the other hand, because the shear stress in the x direction is

symmetric to either side of x ¼ 0, as shown in Fig. 5, the

resultant shear force in the x direction, Nx, is likely non-

zero. However, as shown in Fig. 5, because the direction of

the shear stress rzx is inverted in the core and skin regions,

the shear stresses in both regions cancel each other out, so

the resultant shear force in the x direction, Nx, vanishes, as

in Eq. (43). An important aspect obtained from Fig. 5 is

that considering the resultant forces and moments only

leads to an oversight of the stresses which may break

constituent molecular chains and that the detail analysis of

electroelastic field quantities is absolutely essential.

We investigated the effects of the axial stress in the

cylindrical cross section, rzz, on the resultant axial force,

Nz, and the resultant bending moments, Mx and My defined

by Eq. (40). For z ¼ 0, the value of rzz vanishes, as found
from Eqs. (1) and (34), making this case trivial. Therefore,

we investigated the effects at z ¼ 1. As shown in Fig. 6,

because the direction of the axial stress rzz is antisym-

metric around x ¼ 0, the resultant axial force in the z

direction, Nz, is absent, as predicted in Eq. (42). Similarly,

because the distribution of stress rzz is symmetric around

y ¼ 0, the resultant bending moment around the x-axis, Mx,

is absent, as predicted in Eq. (42). On the other hand,

because the stress rzz is distributed anti-symmetrically

around x ¼ 0, the resultant bending moment around the y-

axis, My, is likely nonzero. However, because the direction

of stress rzz is inverted in the core and skin regions, as seen

in the upper semicircle in Fig. 6, the resultant bending

moment around the y-axis, My, vanishes, as predicted in

Eq. (44). An important aspect obtained from Fig. 6 is that,

although the cylinder are curved by the electric field as will

be explained later (Fig. 7), the behaviors cannot be inves-

tigated by the bending moment, which also demonstrates

the necessity for the detail analysis of electroelastic field

quantities.

Then, we investigated the overall deformation behavior.

Figure 8 shows the variations of the main component of

electric field, �Ey, and that of shear strain, �2ezx, with
axial position. From Fig. 8, the magnitude of �Ey is

maximum at z ¼ 0 and decreases towards zero with

increasing z, mirroring the surface electric potential dis-

tribution described by Eq. (27). The variation of �2ezx with

the axial position is similar to that of �Ey, reflecting the

D1 symmetry illustrated in Fig. 1 along with the negative

piezoelectric coefficient in Eq. (45). Figure 7 shows the

variation of the displacement in the �x direction, �ux,

resulting from the shear strain �2ezx with axial position.

From Fig. 7, the magnitude of the displacement is zero at

z ¼ 0, increases with z, and converges to a constant value

after a subtle overshoot. Figure 7 also shows the variation

of the average gradient of the axial displacement with

respect to the radial coordinate, namely

uzð Þr¼1; h¼0� uzð Þr¼0; h¼0. From Fig. 7, the gradient

uzð Þr¼1; h¼0� uzð Þr¼0; h¼0 is negligible compared with the

gradient oux=ozð Þr¼0. In other words, the cylindrical cross

section perpendicular to the undeformed axis of the

cylinder remains almost planar and perpendicular to the

undeformed axis after deformation, quite unlike the bend-

ing of a Bernoulli–Euler beam [21]. This finding clearly

demonstrates that the electrically driven deformation of a

beam-like body with D1 symmetry cannot be analyzed as
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a Bernoulli–Euler beam and requires the three-dimensional

analytical technique presented in this paper.

Finally, we examined the detection of information

within the body. Figures 9, 10 and 11 show the distribu-

tions of in-plane stress components rrr, rhh, and rrh,
respectively, in the cylindrical cross section at z ¼ 1. These

components are the possible causes of debonding between

adjacent molecular chains, which in turn causes material

defects such as cracks and voids. Conversely, these com-

ponents are affected by such defects. These statements hold

true also for rzr, rhz, and rzz, treated above: they are the

possible causes of breakage of molecular chains in the

cylindrical section, and are affected by the defects due to

such breakage. In other words, the changes in stress com-

ponents are closely related to the existence of defects. In an

NDE, the changes in these quantities must be detected as

measurable signals. From this viewpoint, the distribution of

electric displacement in the radial direction, Dr, on the

surface r ¼ 1 is investigated. As shown in Fig. 12, the

electric displacement is developed not only in the effective

region of the surface electric potential, e.g. z\1:2, but also

in the remaining region, e.g. z[ 1:2. Such a subsidiary

electric displacement, which can be detected by a charge

amplifier, is a candidate for the signal that reflects the

information within the body, which should be examined in

future research.

Concluding remarks

We constructed a general solution technique for electroe-

lastic problems in bodies with D1 symmetry in the

framework of a cylindrical coordinate system. The elec-

troelastic field quantities could be expressed in terms of

four functions, namely, two elastic displacement potential

functions and two piezoelastic displacement potential

functions, each of which satisfies a Laplace equation with

respect to the appropriately transformed cylindrical coor-

dinates. Moreover, as an application of the technique, we

analyzed the problem of an infinitely long cylinder sub-

jected to a non-axisymmetrical electric potential on its

surface and illustrated the results graphically. We eluci-

dated the behaviors of the electroelastic field quantities

within the body, which cannot be measured
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experimentally, and illustrated the necessity for the three-

dimensional analytical technique presented in this paper.

Moreover, we confirmed the possibility of the NDE tech-

niques by use of the piezoelectric effects.
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