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Abstract
Until now we developed an estimation method for strength distributions of laminated veneer lumber (LVL) element by 
nonlinear least-squares method (NLM). Estimated strengths by this method were modulus of elasticity (MOE) and modulus 
of rupture (MOR) in the horizontal use direction and the vertical use direction, tensile strength and compression strength. 
But to use LVL for structural members, shear strength was also needed. Therefore, we tried to estimate the shear strength 
distribution of LVL element by NLM same as MOE and MOR in the horizontal use direction and the vertical use direction, 
the tensile strength of LVL and the compression strength of LVL in the previous reports. We conducted shear strength test 
for LVL and estimated element shear strength distribution by LVL strength data in the horizontal and vertical use direction. 
Next, we simulated LVL shear strength distribution using element shear strength distribution and compared with experimental 
ones in each use direction. They were overlapped in both use direction. Therefore, we could validate NLM for estimating 
element shear strength distribution.

Keywords  Laminated veneer lumber (LVL) · Monte Carlo simulation · Nonlinear least-squares method · Element of LVL · 
Shear strength distribution

Introduction

Many researches [1–3] for estimating the glulam strength 
have been reported. In these reports, the element of glulam 
is considered as lamina and adhesive layers are ignored. If 
we can get the strength distribution of lamina, it is possible 
to estimate the glulam strength distribution based on some 
failure criterion, for example, the equation including bending 
and tensile stress or tensile stress only is supposed.

On the other hand, there was no research for estimating 
laminated veneer lumber (LVL) strength. Therefore, we 

developed the method [4–6] for estimating LVL strength 
by nonlinear least-squares method (NLM). In this method, 
we supposed the element as veneer with adhesive. Because 
adhesive enters into lathe checks and we cannot use veneer 
strengths before gluing. And we could estimate modu-
lus of elasticity (MOE) and modulus of rupture (MOR) 
in horizontal and vertical use direction, tensile and com-
pression strength. But to use LVL for structural members, 
shear strength of LVL is also needed. Therefore, we tried 
to estimate the shear strength distribution of LVL element 
by NLM. First, we supposed the criterion of LVL shear 
strength in horizontal and vertical use direction. Second, 
we conducted shear strength test for LVL and estimated the 
element shear strength distributions. Third, we simulated 
LVL shear strength distribution using element shear strength 
distribution and compared simulated one with experimental 
one in each use direction. Finally, we made sure that they 
were overlapped in both use direction. Therefore, we could 
validate NLM for estimating the element shear strength 
distribution.

From the view point of actual use, the necessity of NLM 
estimation of the element strength distribution is shown as 
follows. MOE classifications of normally produced LVL are 
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60E in sugi, 80E in cypress, 100E in radiata pine, 120E in 
larch and 140E in Dahurian larch [7] in Japan. On the other 
hand, average MOEs of small clear specimens are 7.5 kN/mm2 
in sugi, 9.0 kN/mm2 in cypress, 8.5 kN/mm2 in radiata pine, 
10.0 kN/mm2 in larch and 12.0 kN/mm2 in Dahurian larch [8]. 
Therefore, we can see MOEs of normally produced LVL are 
higher than average MOEs of small clear specimens except 
for sugi. In LVL production companies, veneers are classified 
by the supersonic propagation velocity from which Young’s 
modulus can be calculated by supposing average density. From 
these facts, it is the present situation that veneers with higher 
propagation velocity, higher classified veneer in other words, 
are used to manufacture LVL in JAS (Japanese Agricultural 
Standard for laminated veneer lumber) [9]. In these cases, 
lower classified veneer are not necessarily used. In the end, 
the yield rate is low. For using lower classified veneer, LVL 
is necessarily composed of different classified veneers. When 
the element strength distributions can be estimated by NLM, 
LVL production companies can use lower classified veneer. 
And one LVL production company is now trying to do so.

Estimation of element shear strength 
distribution by NLM

Shear strength in the vertical use direction

The schematic diagram of shear force in cross section A–A′ 
caused by the moment M in the vertical use direction for n 
layers LVL is shown in Fig. 1. Mi (i = 1,...,n) is supposed as 
the bending moment in the ith element, veneer with adhesive 
in other words, composing LVL. The sum of Mi makes M 
loaded to LVL. Suppose the shear force caused to ith element 
and LVL are Qi and QV, respectively, we can get the following 
equation:

(1)Qi =
EiIi

(EI)V
QV (i = 1,… , n)

where Ei is MOE of ith element, Ii is the moment of inertia 
of ith element, (EI)V is the stiffness of LVL in the verti-
cal use direction. Suppose the width and thickness of ith 
element are b and t, respectively, Eq. (1) is transformed to 
Eq. (2).

The maximum shear stress of ith element and LVL are 
shown as 3Qi

2tb
 and 3QV

2ntb
 , respectively. Suppose ith element and 

LVL fails at these stresses, we can get the following equation:

where �i is the shear strength of ith element and �V is the 
shear strength of LVL. Equation (3) is transformed to the 
following equation:

Then suppose the failure criterion of LVL is that one ele-
ment fails first by shear stress, we can show shear strength of 
LVL by the following equation from Eq. (4).

where Ev(LVL) is MOE of LVL in the vertical use direction, 
min{*} is the smallest value in the braces.

(2)
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Fig. 1   The schematic diagram of shear force caused by the moment 
M in the vertical use direction. Notes: Ei: MOE in ith layer
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Fig. 2   The schematic diagram of shear force caused by the moment 
M in the horizontal use direction. Notes: Ei: MOE in ith layer, λ: the 
distance of neutral axis from the upper side
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Shear strength in the horizontal use direction

The schematic diagram of shear force in cross section A–A′ 
caused by the moment M in the horizontal use direction for n 
layers LVL is shown in Fig. 2. By the elementary theory of 
beam, the shear stress τ(s) of ith element at the arbitrary posi-
tion s ((i − 1)t ≦ s ≦ it) from the upper side of LVL is shown by 
the following equation:

where s ((i − 1)t ≦ s ≦ it) is located in the ith element, Ei is 
MOE of ith element, (EI)H is stiffness of LVL in the hori-
zontal use direction and λ is the distance of neutral axis of 
LVL from the upper side of LVL. Suppose the average shear 
stress of ith element is 𝜏i , we can get the following equation:

Then the first integral term in the right side of Eq. (6) is 
calculated into the following equation:

And then the second integral term in the right side of 
Eq. (6) is calculated into the following equation:

Finally, Eq. (6) is terminated to the following equation 
from Eqs. (7) and (8).
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QH
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⎪⎨⎪⎩
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Then suppose the shear strength of LVL is �H and �H is 
calculated by the equation �H =

3QH

2ntb
 when the ith element 

is failed by the shear stress 𝜏i , we can get the following 
equation:

Now suppose the failure criterion of LVL is that one 
element fails first by shear stress, we can get the following 
equation from Eq. (10).

Algorithm to estimate parameters 
for element strength distribution

Element MOE distribution in the vertical use 
direction

For example, if the element MOE distribution is supposed 
as normal distribution, parameters are shown by the two-
dimensional vector (EVavg, EVstd). EVavg and EVstd are mean 
value and standard deviation of element MOE in the verti-
cal use direction. The algorithm to calculate this vector is 
shown as follows.

(1)	 The initial values (P1, P2) are given to (EVavg, EVstd).
(2)	 The number of layers for LVL is set as n and the num-

ber of test sample is also set as N. MOE of rth test sam-
ple is Ee,r and the simulated MOE is Ec,r corresponding 
to Ee,r.

(3)	 Normal random variable Er,i according to (EVavg, EVstd) 
of ith element in rth test sample is produced by generat-
ing uniform random variables Ur,i (0 ≦ Ur,I < 1).

(4)	 Repeat (3) n times and calculate MOE of LVL, EVc,r, 
by the following equation:

	   From now on, Ur,i are fixed.
(5)	 Make Se, the residual square sum expressed by the fol-

lowing equation, minimum by changing P1 and P2. The 
convergent value is (EVavg, EVstd).
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(6)	 Confirm the convergence of (EVavg, EVstd) as the solu-
tion of the normal equation by the following partial 
differentiation coefficients.

Element shear strength distribution in the vertical 
use direction

For example, if the element shear strength distribution, FV, 
is supposed as normal distribution, parameters are shown 
by the three-dimensional vector (FVavg, FVstd, REV−FV). 
FVavg and FVstd are mean value and standard deviation 
of element shear strength in the vertical use direction. 
REV−FV is the correlation coefficient between MOE and 
shear strength. Therefore, the algorithm to calculate (FVavg, 
FVstd, REV−FV) is shown as follows.

(1)	 The initial values (P1, P2, P3) are given to (FVavg, FVstd, 
REV−FV).

(2)	 The number of layers for LVL is set as n and the num-
ber of test sample is set as N. Shear strength of rth test 
sample is FVe,r and the simulated shear strength is FVc,r 
corresponding to FVe,r.

(3)	 Generate uniform random variables Ue,r,i (0 ≦ Ue,r,i < 1) 
for Er,i and Uf,r,i (0 ≦ Uf,r,i < 1) for FV. Ue,r,i and Uf,r,i are 
mutually independent.

(4)	 Normal random variable Er,i according to (EVavg, EVstd) 
is produced using Ue,r,i shown in the previous section. 
And then correlated normal random variable Fs,i with 
Es,i according to (FVavg, FVstd, REV−FV) is produced 
using Ue,r,i, Uf,r,i and (P1, P2, P3).

(5)	 Repeat from (3) to (4) n times and calculate shear 
strength, FVc,r, by the following equation:

	   From now on, Ue,r,i and Uf,r,i are fixed.
(6)	 Make Sf, the residual square sum expressed by the fol-

lowing equation, minimum by changing P1, P2 and P3. 
The convergent value is (FVavg, FVstd, REV−FV).

Se =

N∑
r=1

(Ee,r − Ec,r)
2

�Se

�EVavg

≅ 0,
�Se

�EVstd

≅ 0

(13)FVc,r = min

{
Fs,i

Es,i

EVc,r

}

Sf =

N∑
r=1

(FVe,r − FVc,r)
2

(7)	 Confirm the convergence of (FVavg, FVstd, REV−FV) as the 
solution of the normal equation by the following partial 
differentiation coefficients.

Element MOE distribution in the horizontal use 
direction

For example, if the element MOE distribution is supposed as 
normal distribution, parameters are shown by the two-dimen-
sional vector (EHavg, EHstd). EHavg and EHstd are mean value 
and standard deviation of element MOE in the horizontal use 
direction. The algorithm to calculate this vector is same as 
that for calculating element MOE distribution in vertical use 
direction, however, EVavg and EVstd are changed to EHavg and 
EHstd, respectively, and the Eq. (12) is changed by the follow-
ing equation:

where

where λ is the distance of neutral axis of LVL from the upper 
side of LVL, gi is the distance of ith layer neutral axis from 
λ, b is width of element. t is thickness of element, I is the 
moment of inertia of LVL, Ii is the moment of inertia of ith 
layer and (EI)e,r is the bending stiffness of LVL.

Element shear strength distribution 
in the horizontal use direction

For example, if the element shear strength distribution is sup-
posed as normal distribution, parameters are shown by the 
three-dimensional vector (FHavg, FHstd, REV−FV). FHavg and 
FHstd are mean value and standard deviation of element shear 
strength in the horizontal use direction. REV−FV is the correla-
tion coefficient between MOE and shear strength. The algo-
rithm to calculate parameters in the three-dimensional vector is 
same as that for calculating element shear strength distribution 
in vertical use direction, however, EVavg and EVstd are changed 
to EHavg and EHstd, respectively and Eq. (13) is changed by the 
following equation:
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⎫⎪⎪⎬⎪⎪⎭
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Material and experiment

We adopted the antisymmetric 4 points bending test as 
shown in Fig. 3. The reason is that specimens are more likely 
broken in shear mode than by the centralized loading test 
in JAS [9].

We had 47 groups of test specimen. They include 3 spe-
cies, 8 MOE classifications of LVL JAS [9], a lot of cross 
sections and various veneer compositions. 8 MOE classi-
fications were 60E, 70E, 80E, 90E, 110E, 120E, 140E and 
160E. Some veneers have scarf joint and others do not have 
scarf joint. Composition of veneer, shear test use direction 
and cross section of LVL specimen for each test number are 
shown in Table 1. Species and JAS classification of LVL of 
all test number are radiata pine (Pinus radiata) and 110E [9], 
respectively. All veneers of LVL did not include scarf joint.

In many groups, main failure mode was bending. In such 
case, we cannot precisely estimate element shear strength 
distribution. Therefore, we used only groups where failure 
mode was shear.

FHc,r = min

⎡
⎢⎢⎢⎢⎣

3𝜏i

2nt2b

(EI)e,r

Er,i

�
it

2
−

t

6
−

𝜆

2

�
+

n∑
j=i+1

Er,j

�
jt − 𝜆 −

t

2

�

⎤
⎥⎥⎥⎥⎦

(i = 1,… , n)

Result and discussion

The results of shear test are shown in Table 2. From the 
data, we estimated element MOE distribution and element 
shear strength distribution by NLM. For each distribution, 
we supposed normal distribution, log-normal distribution 
and 2-P Weibull distribution [10]. Using these distribution, 
we calculated the residual of sum of squares. Finally, we 
chose the distribution whose residual sum of squares was 
the smallest. We considered the parameters as the solution 
of the normal equation, because the partial differentiation 
coefficients above mentioned were almost zero. Parameters 
of them are shown in Table 3. Next, we validated these 
parameters as follows.

(1)	 Using estimated parameters we generated n element 
MOEs and shear strengths for n layers LVL.

(2)	 We calculated MOE and shear strength by Eqs. (5) and 
(11).

(3)	 Repeating from (1) to (2) 500 times, we generated 500 
MOEs and shear strengths for n layers LVL.

(4)	 We sorted 500 MOEs and shear strengths in ascend-
ing order and calculated the cumulative probability by 
median rank method. And for the experimental data, 
we also sorted in ascending order and calculated the 
cumulative probability by median rank method.

(5)	 Finally, we compared them.

The cumulative probability of shear strength in No. 3 is 
shown as an example in Fig. 4. They are almost same. We 

h

a

a b

a=h, b=3h

b

P

Fig. 3   Antisymmetric 4 point bending for shear test

Table 1   Outline of laminated 
veneer lumber test sample

T thickness, W width

Test no. Direction of use Composition of veneer Cross section of the specimen

1 Horizontal 4.3 mm × 5 ply T21 mm × W90 mm
2 Ditto 4.3 mm × 8 ply T33 mm × W90 mm
3 Ditto 4.3 mm × 11 ply T46 mm × W90 mm
4 Vertical 4.3 mm × 8 ply T33 mm × W33 mm
5 Ditto 4.3 mm × 11 ply T46 mm × W46 mm

Table 2   Results of laminated veneer lumber shear test

Test no. Number of 
specimens

Modulus of elasticity 
(kN/mm2)

Shear strength  
(N/mm2)

Average Standard 
deviation

Average Standard 
deviation

1 21 12.03 1.36 7.37 0.92
2 12 9.54 1.23 6.32 1.07
3 18 11.73 1.05 5.67 0.70
4 21 11.44 0.77 6.09 0.71
5 18 11.18 0.68 5.99 0.45
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confirm they are also almost same in case of Nos. 1 and 
2. The cumulative probability of shear strength in No. 4 is 
shown as an example in Fig. 5. We can see they are almost 
same. We confirm they are also almost same in case No. 
5. Next, we show relationships between MOE and shear 

strength in case Nos. 3 and 4 in Figs. 6 and 7, respectively. 
Simulated data overlap experiment data. We confirm they 
also overlap in case Nos. 1, 2 and 5.

Table 3   The values of parameter for the element estimated strengths by nonlinear least-squares method

N normal distribution, LN log-normal distribution, 2PW 2-parameter Weibull distribution, Parameter 1 average in case of N and LN, scale 
parameter in case of 2PW, Parameter 2 standard deviation in case of N and LN, shape parameter in case of 2PW

Test no. Distribution Modulus of elasticity Shear strength Correlation 
coefficient

Residual 
sum of 
squaresModulus of 

elasticity
Shear strength Parameter 1 Parameter 2 Parameter 1 Parameter 2

1 2PW LN 13.05 (kN/mm2) 6.04 2.08 0.20 − 0.98 0.07
2 LN N 2.25 0.22 7.61 (N/mm2) 1.68 (N/mm2) − 0.95 0.04
3 LN 2PW 2.44 0.22 6.42 (N/mm2) 11.91 0.77 0.04
4 2PW N 12.16 (kN/mm2) 6.39 8.20 (N/mm2) 0.98 (N/mm2) − 0.01 0.08
5 LN LN 2.39 0.21 2.04 0.07 0.64 0.03
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Fig. 4   Cumulative probability of simulated and experimental strength 
in case No. 3
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Fig. 5   Cumulative probability of simulated and experimental strength 
in case No. 4
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Fig. 6   Relationship between modulus of elasticity and shear strength 
in case No. 3
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In the previous reports [5, 6], we extracted specimens 
of 1 ply, 2 ply and 3 ply with an adhesion layer from the 
remainders of LVL and carried out the same static tests as 
the experiments for LVL. But it is almost impossible to con-
duct the shear test of 1 ply specimen in horizontal and verti-
cal use direction. If it is possible to conduct the shear test 
of 1 ply specimen and we find laminating effect exists, we 
can do the same analysis by comparing 1 ply shear strength 
distribution including laminating effect with element shear 
strength distribution as shown in previous reports [5, 6]. 
Consequently, we can think NLM is valid for estimating 
element shear strength distribution.

Conclusion

We conducted the shear strength test for LVL and estimated 
the shear strength distribution of LVL element by NLM 
same as MOR in the horizontal and vertical use direction, 
tensile strength and compression strength published in the 
previous reports [4–6]. Next, we simulated the shear strength 
distribution of LVL using the estimated shear strength distri-
bution of LVL element and compared the simulated strength 
distribution with experimental strength distribution in the 
horizontal and vertical use direction. As a result, they over-
lapped in each use direction. Therefore, we could validate 
NLM for estimating element shear strength distribution.
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