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Effect of shear and rotatory inertia 
on the bending vibration method 
without weighing specimens
Yoshitaka Kubojima1*, Satomi Sonoda2, Hideo Kato1 and Masaki Harada1

Abstract 

This study examines the effect of shear and rotatory inertia on the accuracy of the vibration method with additional 
mass (VAM). Bending vibration tests were performed for rectangular bars with a width of 30 mm, thicknesses ranging 
from 5 to 60 mm, and a length of 300 mm, small round bars with diameters in the range of 6–36 mm, and lengths 
of 150–300 mm, and cross beams for timber guardrails with and without a concentrated mass under a free–free 
condition. The estimation accuracy of the VAM and the effect of shear and rotatory inertia increased and decreased, 
respectively, as the length/thickness ratio of the rectangular bar and length/diameter ratio of the round bar increased. 
The estimation accuracy of the VAM decreased with an increase in the effect of shear and rotatory inertia, and it could 
be corrected. The range of the effect of shear and rotatory inertia for the sufficient estimation accuracy of the VAM 
was obtained.
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Introduction
The vibration test is widely used because it enables 
Young’s modulus to be measured simply, quickly, and 
non-destructively. Density is a necessary input for calcu-
lating the Young’s modulus. Weighing specimens can be 
challenging for certain materials, such as each piled lum-
ber and each cross-beam of timber guardrails. Therefore, 
a measuring method that does not require specimens 
to be weighed when measuring Young’s modulus would 
represent a significant practical improvement.

A method for measuring mass, density, and Young’s 
modulus without needing to weigh the specimen was 
developed based on a frequency equation that incor-
porates the effect of an additional mass attached to a 
wooden bar [1–6]. This method is referred to as the 
vibration method with additional mass (VAM) in this 
study. This method utilizes decreases in the resonance 

frequency by attaching additional mass. The ratio of the 
resonance frequency with the additional mass to that 
without it is used for the frequency equation, incorpo-
rating the effect of the concentrated mass attached on a 
specimen and its position. The mass ratio (concentrated 
mass/specimen) is subsequently calculated from the fre-
quency equation.

To analyze the potential application of the VAM for 
practical purposes, a series of parameters were investi-
gated, including the suitable mass ratio (additional mass/
specimen) [7], the connection between the additional 
mass and specimen [7], the crossers’ position for the 
piled lumber [8], the specimen moisture content [9], and 
the bending vibration generation method [10]. The VAM 
could perhaps be used to assess the deterioration of the 
cross beams of timber guardrails [11].

Although the VAM in conjunction with the bend-
ing vibration may be effective for piled lumber [12] and 
the cross beams of timber guardrails [11], the apparent 
deflection in the bending vibration consists of deflections 
due to shear and rotatory inertia, as well as pure bending 
deflection. Hence, this study aims to investigate the effect 
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of shear and rotatory inertia on the estimation accuracy 
of the VAM.

Theory
Vibration testing method without weighing the specimen
Here, bending vibrations under free–free conditions are 
considered. In the case of a thin beam with constant cross 
section, the effect of deflections due to shear and rota-
tory inertia involved in the bending vibrational deflection 
(hereafter, SR effect) is negligible, and the Euler–Ber-
noulli elementary theory of bending can be applied to the 
bending vibration.

The resonance frequency, represented by fn0 (n: reso-
nance mode number, 0: value without the additional 
mass), is expressed as follows:

where l, E, ρ, I, and A are the specimen length, Young’s 
modulus, density, the second moment of area, and the 
cross-sectional area, respectively. mn0 is a constant 
that depends on the end conditions and is expressed as 
follows:

The resonance frequency is decreased experimentally 
by attaching the additional mass, while the dimensions, 
density, and Young’s modulus are not altered. Hence, it 
can be said that mn0 changes to mn. The resonance fre-
quency after attaching the additional mass is expressed as 
follows:

From Eqs. (1) and (3),

The frequency equation for the free–free vibration with 
the concentrated mass M placed at position x = al (x: dis-
tance along the bar, 0 ≤ a ≤ 1, a + b = 1) on a bar (Fig. 1) is 
expressed as follows:
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l
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,
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where μ is the ratio of the concentrated mass to the mass 
of the bar and is defined as

The measured resonance frequencies fn0 and fn are sub-
stituted into Eq. (4) to calculate mn, and the calculated mn 
is substituted into Eq. (5) to calculate μ. The specimen mass 
and density can be obtained by substituting the calculated 
μ, the concentrated mass, and the dimensions of a bar into 
Eq. (6). Young’s modulus can be calculated by substituting 
the estimated density, the resonance frequency without the 

concentrated mass, and the dimensions of a bar into Eq. (1) 
[1–6].

The above steps represent the calculation procedure for 
the VAM. Weighing the specimen is not required for the 
calculations.

Goens–Hearmon regression method based 
on the Timoshenko theory of bending (TGH method)
Young’s and shear moduli can be obtained simultaneously 
using only the bending vibration test without a torsional 
vibration test by the following the Goens–Hearmon regres-
sion method based on the Timoshenko theory of bending 
(TGH method) [13–15].

The apparent deflection in the bending vibration con-
sists of deflections due to shear and rotatory inertia, as well 
as pure bending deflection. Timoshenko added the terms 
deflections of shear and rotatory inertia to the Euler–Ber-
noulli elementary theory of bending and developed the fol-
lowing differential equation of bending [13]:

(6)µ =
M

ρAl
.

blal

a + b = 1, 0 = a, b = 1≤ ≤

l
M

0 al l
x

Fig. 1  Beam with additional mass
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where G is the shear modulus, y is the lateral deflection, 
and t is the time.

When Eq.  (7) is solved under the free–free condition, 
the resonance frequency corresponding to the nth mode 
fgn0 can be written as follows:

where Ean is Young’s modulus from the Euler–Bernoulli 
elementary theory of bending using the resonance fre-
quency of the nth mode.

kn0 in Eq.  (8) is obtained by transcendental equations 
represented as follows:

and

where

and
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Goens approximated Eqs.  (9) and (10) using a Taylor 
series into the following formula [14]:

where

Approximately,

Hearmon calculated E and G using the following proce-
dure after separating Eq. (13) as follows [15]:

and then from Eqs. (16)–(19):

Therefore, the linear regression between X and Y pro-
vides the E and G values. This is the Goens–Hearmon 
regression method based on the Timoshenko theory of 
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bending (TGH method). The value of s is 6/5 theoretically 
[16] and 1.18 experimentally [17] for the rectangular cross 
section and 10/9 [16] for the circular cross section.

Materials and methods
Specimens
Sitka spruce (Picea sitchensis Carr.) rectangular bars with 
a width of 30  mm (radial direction, R), thicknesses of 
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 mm (tan-
gential direction, T), and a length of 300  mm (longitu-
dinal direction, L) were used as the specimens. Japanese 
cedar (Cryptomeria japonica D. Don) small round bars 
without a pith with varying diameters of 6, 9, 20, 25, 30, 
and 36  mm and a length of 300  mm, and those with a 
diameter of 36 mm and varying lengths of 150, 200, and 
250  mm were used as the specimens. Three specimens 
were made for each dimension. Three Japanese cedar 
cross beams for timber guardrails with a pith having a 
diameter of 200 mm and a length of 1980 mm [11] were 
also used as the specimens. Considering the variation in 
the results of the vibration test, the number of specimens 
was three.

The specimens were conditioned at 20 °C and 65% rela-
tive humidity. All tests were conducted under the same 
conditions.

Vibration tests
Free–free bending vibration tests were conducted to 
measure the resonance frequencies of the first to fifth 
resonance modes using the following procedure: the test 
bar without a concentrated mass was suspended by two 
threads at the nodal positions of the free–free vibration, 
corresponding to each resonance mode. The bending 

vibration was subsequently generated by tapping the 
LR-plane of the rectangular bars and the small round 
bars in the T-direction and it was generated by tapping 
the LT-plane of the cross beams for timber guardrails in 
the R-direction, using a wooden hammer. The motion of 
the specimen was detected with a microphone. The sig-
nal was processed through a fast Fourier transform (FFT) 
digital signal analyzer (Multi-Purpose FFT Analyzer 
CF-5220, Ono-Sokki, Co., Ltd., Yokohama, Japan) to yield 
the high-resolution resonance frequencies. A diagram of 
the experimental setup is provided in Fig. 2.

The free–free bending vibration tests were also per-
formed on the specimens with the concentrated mass 
using the procedure described above and the resonance 
frequency of the first mode was measured. Iron plates, 
thumbtacks, and wood screws were used as the con-
centrated mass. The position of the concentrated mass 
was x = 0.5  l, considering the on-site quality evaluation 
of cross beams of wooden guardrails. The concentrated 
masses and specimens are shown in Tables 1 and 2.

Results and discussion
The mean (standard deviation) density and Young’s 
modulus of the specimens were 449 (14)  kg/m3, 14.23 
(0.45) GPa (sitka spruce rectangular bars; TGH method), 
and 351 (16)  kg/m3, 10.05 (1.04) GPa (Japanese cedar 
small round bars; TGH method), respectively.

The estimation accuracy of the VAM, which is expressed 
by the mass ratio (estimated specimen mass through the 
VAM/measured specimen mass), increased as the length/
thickness ratio of the rectangular bar and the length/diam-
eter ratio of the small round bar increased, as shown in 
Fig. 3. Conversely, the effect of deflections due to shear and 

Microphone

Specimen

Bandpass
filter

FFT
analyzer

Suspending thread

L

R or T

Concentrated mass

Hammer

L: Longitudinal direction
R: Radial direction
T: Tangential direction

Fig. 2  Schematic diagram of the experimental setup for the bending 
vibration tests

Table 1  Concentrated masses (iron plates) attached 
to rectangular bars

Unit of dimensions: mm, unit of mass: g

Concentrated mass Specimens Mass ratio μ

Dimensions Mass Dimensions

2 × 2 × 30 1.0 30 × 5 × 300 0.0453

4 × 2 × 30 2.0 30 × 10 × 300 0.0474

7 × 2 × 30 3.2 30 × 15 × 300 0.0504

9 × 2 × 30 4.1 30 × 20 × 300 0.0492

11 × 2 × 30 5.1 30 × 25 × 300 0.0524

13 × 2 × 30 6.0 30 × 30 × 300 0.0518

14 × 2 × 30 7.0 30 × 35 × 300 0.0512

17 × 2 × 30 7.9 30 × 40 × 300 0.0506

20 × 2 × 30 9.4 30 × 45 × 300 0.0515

21 × 2 × 30 10.3 30 × 50 × 300 0.0510

24 × 2 × 30 11.3 30 × 55 × 300 0.0506

26 × 2 × 30 12.2 30 × 60 × 300 0.0507
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rotatory inertia involved in the bending vibration deflec-
tion (SR effect) shown by T (Ean is calculated from the first 
resonance mode in this study) in Eq. (13) decreased as the 
length/thickness and length/diameter ratios increased, as 
shown in Fig. 3. Thus, the estimation accuracy of the VAM 
is discussed from the aspect of T.

When the SR effect is taken into consideration, the 
resonance frequency without the concentrated mass is 
expressed by Eq. (8), and the resonance frequency with the 
concentrated mass is expressed as follows:

From Eqs. (8) and (21),

(21)fgn =
1

2π

(

kn

l

)2
√

EI

ρA
.

When the SR effect can be ignored, the mn decreases 
monotonically with μ for the free–free vibration [5]. 
Hence, the specimen mass estimated by the VAM is 
low for a low mn from Eq. (6). Analogizing this, when kn 
decreases, μ increases, and the specimen mass decreases, 
which causes the estimation accuracy of the VAM to 
decrease. Equation  (22) shows that kn decreases with 
an increasing T. Therefore, when T increases with the 
decreases in the length/thickness and length/diameter 
ratios, kn decreases, causing the estimation accuracy of 
the VAM to decrease.

(22)kn =

√

fgn

fgn0
kn0 =

√

fgn

fgn0

mn0
4
√
T
.

Table 2  Concentrated masses (thumbtacks, wood screws) attached to small round bars

Units of diameter and length: mm, unit of mass: g

Concentrated mass Specimens Mass ratio μ

Type Head diameter Nominal diameter Length Mass Diameter, length

Thumbtack 11 1 8 0.6 6, 300
9, 300

0.214
0.0905

Wood screw 6 4 32 2.1 20, 300
25, 300
36, 150

0.0615
0.0437
0.0393

Wood screw 9 5 37 3.6 30, 300
36, 200
36, 250

0.0503
0.0485
0.0395

Wood screw 8 4 65 3.9 36, 300 0.0392
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Fig. 3  Estimation accuracy of the VAM and the effect of deflections due to shear and rotatory inertia involved in the bending vibrational deflection 
(SR effect) at various length/thickness and length/diameter ratios
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As the SR effect is not taken into consideration in 
Eq.  (5), kn cannot be directly substituted for Eq.  (5). 
In other words, fn/fn0 needed to be used instead of 
fgn/fgn0 for Eq.  (4). With the assumption that the SR 
effect changes fn/fn0 to fgn/fgn0, the relationship between 
(fgn/fgn0)/(fn/fn0) and T was investigated. For this pur-
pose, (fgn/fgn0)/(fn/fn0) was plotted against T. mn was 
calculated by substituting μ, which is the ratio of the 
measured concentrated mass to the specimen mass, for 
Eq.  (5), and fn/fn0 was then obtained from Eqs.  (2) and 
(4). Mathematica (version 10.4  J, Wolfram Research 
Co., Ltd.) was used for solving Eq.  (5). (fgn/fgn0)/(fn/fn0) 
(fgn and fgn0 are measured values) linearly decreased 
with an increasing T, as shown in Fig. 4 and the regres-
sion equations of Eqs. (23) and (24) were obtained:

The estimation accuracy of the VAM is corrected with 
the following method. fn/fn0 was estimated by substituting 
the measured T = E/Ean (TGH method/Euler–Bernoulli 
elementary theory) and measured fgn/fgn0 for Eqs.  (23) 
and (24). The estimated fn/fn0 was used for Eq.  (4), and 

(23)fgn/fgn0

fn/fn0
= −0.0084T + 1.01

(

r = 0.972∗∗, n = 1
)

for the rectangular bar,

(24)fgn/fgn0

fn/fn0
= −0.030T + 1.03

(

r = 0.956∗∗, n = 1
)

for the small round bar.

mn was subsequently obtained. The specimen mass was 
estimated by substituting the obtained mn for Eq. (5). The 
results showed that the estimation accuracy of the VAM 
was improved, as shown in Fig. 5. The estimation accu-
racy of the VAM could not be improved in several cases. 
In such cases, (fgn/fgn0)/(fn/fn0) was out of lines that are 
shown by Fig. 4 and Eqs. (23) and (24).

As mentioned above, T = E/Ean is necessary to esti-
mate fn/fn0 from fgn/fgn0. In other words, the bending 
Young’s modulus based on the Euler–Bernoulli elemen-
tary theory, which can be calculated by measuring one 
resonance mode, and the “true” Young’s modulus with-
out the SR effect are required. The true Young’s modu-
lus can be measured through the TGH method or the 
longitudinal vibration test. As the resonance frequen-

cies of plural vibration modes are required, obtaining 
T = E/Ean on-site, where simplicity and speed are needed, 
is challenging.

Since the estimation accuracy of the VAM was high 
when T was small, as shown in Fig. 3, T that provides a 
sufficiently high estimation accuracy of VAM is discussed 
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here. Based on the coefficient of regression of the TGH 
method in our previous study, the SR effect was experi-
mentally low in the range of T ≤ 1.2 [18]. In the range of 
T ≤ 1.2, the estimation accuracy of the VAM for 11 out 
of 11 specimens (100%) for rectangular bars and that for 
15 out of 17 specimens (88%) for small round bars were 
from 0.9 to 1.1. Hence, it can be said that the estimation 
accuracy of the VAM is sufficiently high in the range of 
T ≤ 1.2. The estimation accuracies of the VAM for cross 
beams of wooden guardrails were 0.89, 0.91, and 1.06 
[11] for T = 1.13, 1.11, and 1.17, respectively. The dimen-
sions of a specimen that give T ≤ 1.2 can be calculated by 
substituting T = 1.2, Young’s modulus and shear modulus 
published in the literature for Eq. (15).

Conclusions
Bending vibrations were undertaken for rectangular bars 
and round bars with various dimensions with and with-
out the concentrated mass, and the following results were 
obtained:

1.	 The estimation accuracy of the VAM and the SR 
effect increased and decreased, respectively, as the 
length/thickness ratio of the rectangular bar and the 
length/diameter ratio of the round bar increased.

2.	 The estimation accuracy of the VAM decreased as 
the SR effect increased.

3.	 The SR effect on the estimation accuracy of the VAM 
could be corrected.

4.	 The range of T for obtaining a sufficiently high accu-
racy of VAM was T ≤ 1.2.
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