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Abstract

In veneer-drying facilities, controllers face many challenges to maintain desired parameters in the final product based
on customer’s needs. The major challenge is setting process parameters to control the temperature and humidity
within the various sections in the drying machine to obtain the desired properties of the final product. The regression
tree approach can be used to simplify the complex relationship among process and product variables for identifying
critical factors for drying veneer and achieving the desired range of veneer temperature. In this study, we investigated
veneer-drying conditions and the short-term effect of climatic variables on veneer temperature. We have shown a
three-step process to develop an optimal regression tree for veneer temperature. From the developed optimal tree,
we are able to identify the most important threshold points of predictor space and adjustment for the climatic vari-
ables on the temperature of veneer sheets. The findings of this study were further investigated in an industrial setting
and the desired veneer temperatures were attained for the final product. This application shows that we can follow
the path of the optimal tree to pinpoint the most desired veneer temperature outcome. The developed optimal tree

is relatively easy to use and interpret to estimate the average response of veneer temperature.
Keywords: Decision tree, Regression tree, Veneer, Data mining, Climatic variables, ANOVA, Cross-validation

Introduction

Processing veneer sheets in a drying machine involves
many process parameters that need to be set by expert
personnel to control the temperature and humidity
within the various sections. Drying speed, amount of gas
flow, air flow, etc., are some of the process parameters,
while product parameters are thickness of veneer sheet,
types of wood and species [1]. In a veneer-drying facil-
ity, process parameters are adjusted to a certain level to
control the final average moisture content, the tempera-
ture of veneer sheets and the average ultrasonic propaga-
tion time (UPT), which is correlated with the modulus of
elasticity [2—4]. The final moisture content, temperature
and UPT level of veneers are very much dependent on
the type of wood and the thickness of veneer sheets [5, 6].
Climatic variables also influence the final product quality
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since, after peeling or slicing, the veneers are often stored
outdoors before being sent to a veneer-drying machine.
During that time, climatic variables may affect the mois-
ture content and temperature of veneer sheets, which can
degrade the final product if the process parameters are
not adjusted accordingly.

Veneer temperature is an important response factor
that can be used to evaluate the quality of the product.
While exiting the dryer, a veneer sheet having a tempera-
ture ranging from 77 to 93 °C meets the quality require-
ments. Otherwise, the higher-temperature veneer sheet
can indicate an over-dry problem and even increase
the risk of fire occurrences inside the drying machine,
whereas a low-temperature veneer sheet needs re-drying,
which increases the drying cost. To maintain the qual-
ity of veneer, we need to understand the process of dry-
ing veneer. We focused on the veneer temperature as
the outcome of the current study because it is related to
the veneer moisture content and UPT, which influence
chemical adhesion and plywood strength. The goal of this
study is to use a data mining approach to understand the
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process of veneer drying and to interpret the effects of
the predictor variables (see further details in the “Meth-
ods” section) on the veneer temperature. For that pur-
pose, we apply a decision tree approach; specifically, a
regression tree which is a commonly used data mining
method [7]. The basic idea of a regression tree approach
is to develop a flowchart to show the structure of data [8].
Compared to a regular regression model used popularly,
the regression tree approach has several advantages, e.g.,
allowing for linear or nonlinear relationships, can handle
complex relationship among predictors, overlook prior
knowledge of functional form [9, 10]. Given the complex
relationship of predictor variables on the outcome, we
want to be able to interpret the veneer-drying system in
such a way that would be accessible by a wider audience
and non-experts using graphical tools and outputs [11]
associated with these regression trees.

In this study, we have used a dataset from industrial
veneer dryers fitted with sensors. The goal was to iden-
tify a suitable range of potential predictor variables to dry
veneer and control outcomes to maximize the produc-
tion of high-quality products while reducing energy con-
sumption. Due to the lack of detail and uncertainty about
the combination of process parameters, a large percent-
age of the product fails to meet the quality requirements.
For drying veneer, one of the difficulties is to find an opti-
mal setting to dry at a certain level so that the resulting
moisture content of veneers is not more or less than what
is desired. Ideally, the industry would like to minimize
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the occurrence of fire due to extreme heat and/or relative
humidity, which causes loss of product.

Methods

Data description

The dataset was collected from a veneer dryer over a
period of 6 months (February—July, 2017). Because the
equipment is in operation every day for 24 h, data for
3,464,518 veneer sheets were recorded. For each veneer,
temperature, moisture content and UPT were recorded
as output variables. Additionally, veneer thickness levels
and wood types were recorded as input variables. There
were three veneer thickness levels (“Thik”) dried in the
facility (2.540 mm, 3.175 mm, and 3.632 mm) and three
wood types (“Prod”) categorized as (i) sap; (ii) light sap
(“Ls”); and (iii) heartwood (“Hrt”).

Information on the process variables, also considered
as input variables, were frequently collected. In particu-
lar, information regarding (i) gas usage (giga Joules at 11
Psi); (ii) drying time (drying speed) (minute); (iii) zone
temperatures (°C); and (iv) chain side temperatures (°C).
The dryer was divided into three zones (Zone 1, Zone
2 and Zone 3) with sub-divisions within the first two
zones. The first zone was sub-divided into three zones
(Zone 1a, Zone 1b and Zone 1c), while the second one
was sub-divided into two zones (Zone 2a and Zone 2b).
Temperature from each zone and chain side were col-
lected from sensors and drying time along with the tem-
perature of veneer sheet while exiting the dryer (Fig. 1).

Zone 1 (Z1) Zone 2 (Z2)

Zla Z1b Zlc Z2a Z2b

Zone 3 (Z3)

Dried Veneer

Chain side in the Zone 1 | Chain side in the Zone 2

(&) (C2)

Chain side in the Zone 3

Sheet

(C3)

Collected average temperature from each zone, sub-zone and chain side

[ East Position (Est) ] Exiting Dryer

[ Middle Position (Mid) ] Drying time collected Collected Sheet
information

( West Position (Wst) J

Fig. 1 Schematic diagram of the drying machine to show three zones (Z1, Z2 and Z3) and the chain sides (C1, C2 and C3) and dryer position
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Average chain side temperature was collected for each
zone and named as (i) C1 (average chain side tempera-
ture in the zone 1) (°C); (ii) C2 (average chain side tem-
perature in the zone 2) (°C); and (iii) C3 (average chain
side temperature in the zone 3) (°C). The drying machine
also had three drying positions (“DP”): (i) East (“Est”),
(ii) West (“Wst”), and (iii) Middle (“Mid”) and four deck
levels (“DL”) divided into two groups: (i) top (upper two
decks) and (ii) bottom (“Bot”: lower two decks).

The effect of climatic variables on output variables was
also investigated. Historical daily weather station data for
the 6-month (February—July, 2017) period were extracted
from the Environment and Natural Resources of Canada
database [12]. The Vancouver International Airport’s
weather station was selected because it is the closest
weather station from both the veneer peeling and drying
facilities. Mean daily temperature (MDT, °C) in a week
and total precipitation in a week (TWP, mm) were calcu-
lated from the daily weather station data.

All input and output variables were validated using
summary statistics and known operational ranges. It was
observed that some of the values recorded for the process
parameters were erroneous, so they were removed from
the database. For example, drying speed cannot be less
than 5 min or more than 15 min. Drying speed outside
this range was removed from the data.

Decision-based approach

In this study, we chose to focus on the output variable
“veneer temperature” Since it is a continuous variable, we
selected a regression tree approach to develop an optimal
decision tree. Regression tree is a very popular technique
used in remote sensing, ecology [13] and in various disci-
plines where relationships among response and predictor
variables are not certain and mathematical expression of
the relationship is difficult to identify [10]. A single tree-
based approach finds the mean response of all observa-
tions and then partitions the data into two groups by
selecting a predictor variable from the predictor space. In
this study, the analysis of variance method (ANOVA) was
used to partition the data into two homogeneous groups
based on a single predictor variable. Along the way, data
were partitioned into homogeneous groups based on the
previously used predictor variable (or another predictor
variable), and hence reducing the data. Data partitioning
or splitting was done to maximize the homogeneity of the
output variable “veneer temperature”. Each homogeneous
group shows the summary statistics of average tempera-
ture and the percentage of data belongs to that group.

A three-step process was used to determine the optimal
regression tree: (i) grow the first tree to understand its
underlying structure; (ii) grow a big tree-based to assess
the optimal tree size based on the complexity parameter
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(Cp) values and relative errors; and (iii) prune the big tree
by adding cross-validation and obtain an optimal tree
size. In this paper, the first two steps are discussed as they
directly lead to the third one. The ‘rpart’ package in the R
(R version 3.5.0) [14] was used to develop all regression
trees.

Results and discussion

Comprehending the basic structure of a regression tree
The first step in developing a regression tree to deter-
mine the impact of process variables on the continuous
dependent variable veneer temperature was to grow a
tree to understand its basic structure. The fitted first
regression tree, including splits along with root (top of
the tree), nodes (terminal and internal) and branches,
is presented in Fig. 2. In each node (inside the circle
in Fig. 2), the average value of the dependent variable
(veneer temperature) and the percentage of observa-
tions is shown (Fig. 2). For example, the root node has
the entire dataset, and the average of the continuous
response variable (veneer temperature) is 91 °C. The data
are then divided into two homogeneous groups based on
the C3 temperature which is called a sub-node. Using the

Fig. 2 Fitted first regression tree of temperature of veneer. The value
inside the circles indicates the veneer temperatures in °C and the
percentage of the observations
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ANOVA method, the regression tree procedure deter-
mined that a temperature (C3 temperature) of 148 °C
maximized between groups sum of squares among all
variables. It is possible to show a vector of summary sta-
tistics in each node, but the only average of veneer tem-
perature and percentage of observation were used to
reduce the complexity of Fig. 2.

The ANOVA splitting method was used to increase
the R-squared value at each step (or split), while reduc-
ing the C, values to improve the prediction ability of the
model. In this specific regression tree, a threshold C, of
0.01 was selected to enhance group homogeneity. The C,
values at each split of the fitted regression tree along with
their corresponding error values are presented in Table 1,
and indicate that six splits were necessary to reach the
threshold value of 0.01. Whenever a splitting occurred
in the regression tree method, it improved the resulting
fitted tree by reducing its C, value. C, value not reduc-
ing further indicates that there was no improvement, and
the tree was trimmed off at that particular split. Table 1
shows all splitting steps while developing the tree. At the
initial stage of the fitting, there were only the observed
data and summary statistics without any split. The height
of the tree was getting bigger by allowing more splits
until it reaches C, of 0.01. In Table 1, a cross-validation
error was generated from a tenfold cross-validation (used
as the default in the implementation of ‘rpart’ function)
to minimize the error and evaluate the fitted tree. In each
split, this validation approach was performed to quan-
tify the validation error. In this validation approach, the
entire dataset was divided into ten randomly selected
parts and fitted the regression tree onto the nine folds
and calculated validation error from the left-out fold. We
compared cross-validation error with C, value and num-
ber of splits. Cross-validation error and C, value both
reduced with the increase in split.

Page 4 of 8

Optimizing the size of the tree

A smaller C, value (0.0001), a minimum number of
splits (5), and a minimum of observations per node (5)
were used to develop a larger tree. Also, for fitting the
larger tree, the number of cross-validation was set at
10, which corresponds to a tenfold cross-validation. As
expected, increase in tree size improved the Cp value,
while reducing the relative error (Fig. 3). The rate of
improvement in the Cp value, evaluated using the cross-
validation relative error, is more substantial as tree size
increased from 1 to approximately 10 nodes. As the tree
became larger in size, less improvement was noticed,
which corresponded to a cross-validation relative error
of 0.70. The challenge in optimizing the size of the tree
consists in identifying the number of splits that mini-
mize overfitting. In other words, it is essential to deter-
mine where the decrease in relative error is negligible
in comparison to the increase in splits. To achieve this,
the cross-validation relative error was compared with
the sum of the relative error and the cross-validation
standard error. If the sum was less than the former, the
tree could be pruned at its corresponding split. In this
study, a tree having 30 nodes was selected as optimal
because the C, value was no longer improving, which

size of tree

17 14 22 30 39 48 57 65 73 81 89 97 107 120 131 141
TN LU T L

08 1.0
1

08

X-val Relative Error

©
o T T T
Inf 0.0036 0.0013 0.00056 0.00033 0.00025 0.00018 0.00014 0.00011

G
Fig. 3 Improvement of C,s with the reduction of relative errors and
increasing size of the tree

Table 1 Splitting criteria with validation statistics in the fitted regression tree of temperature of veneers

Complexity parameter (C;)  Split number Relative error Cross-validation error Standard error
of cross-validation
error

0.077 0 1.000 1.000 0.0012

0.057 1 0923 0.923 0.0011

0.015 2 0.865 0.866 0.0011

0.015 3 0.850 0.850 0.0011

0.011 4 0.836 0.836 0.0011

0011 5 0.825 0.825 0.0011

0.010 6 0.814 0.819 0.0010
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corresponds to a minimum cross-validation error of
0.75 and a relative error of 0.75.

The fitted optimal tree (Figs. 4, 5 and 6) simplifies the
complex relationship among temperature of veneers
and predictor variables by dividing data into nono-
verlapping homogeneous groups and sub-groups. The
advantage of this approach lies in the fact that to esti-
mate an average response of veneer temperature, one
merely has to follow the path. It also highlights the vari-
ables of importance. In the regression tree, variables
that were used in splitting into homogenous groups
were listed according to their importance to the fitted
tree (Table 2). The variable importance list was deter-
mined in a more complex way than fitting the regres-
sion tree while partitioning into a homogeneous group.
To obtain the importance of a variable in the regres-
sion tree, total goodness of split measures were used
and scaled up to 100 and rounded to omit decimals
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for all variables. For rounding issue, the total is a lit-
tle bit more than 100. Variable importance values less
than one are usually ignored. We found that the three
most important variables were C3, C1 and mean daily
temperature climatic variable (MDT). However, in the
variable importance list, we found C1 as an important
variable, but on the optimal tree, this variable did not
split any nodes because in our fitted regression tree,
C1 variable appeared as a surrogate variable. In the
absence of splitting variable in a node to predict the
actual split, surrogate variables are accounted in the
variable importance plot [15, 16]. As seen in the lit-
erature, it is possible that this surrogate variable may
contribute a larger portion in the variable importance
list, but in the optimal fitted regression tree, that sur-
rogate variable may not split any node [17]. As such,
the other two variables C3 and MDT were used as top
nodes in the fitted regression tree. The fact that MDT

percentage of the observations

C3<168\C32168
87
3.1%

Fig. 4 Fitted optimal regression tree of temperature of veneer. The value inside the circles indicates the veneer temperatures in °C and the
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Fig. 5 Part of Fig. 4. The value inside the circles indicates the veneer temperatures in °C and the percentage of the observations

is one of the top nodes indicates the process parame-
ters need to be adjusted based on the previous week’s
climate. Although this was expected, it was not fore-
seen that MDT would be the second most important
variable. From the optimal fitted tree, it was concluded
that the veneer temperature also depends on the dryer
position (Figs. 4, 5 and 6). Specifically, East and Mid-
dle positions provided similar outcomes, whereas the
West position yielded warmer veneer temperatures. In
similar weather conditions, the top deck levels resulted
in warmer veneers when compared to the bottom deck
levels (Figs. 4, 5 and 6). This finding implies that sort-
ing the raw material prior to drying could result in
a more uniform veneer temperature and potentially

product quality. This information is confirmed by the
fact that the heartwood and light sapwood types were
on average — 12.22 °C warmer than the sapwood wood
type (Figs. 4, 5 and 6). Interestingly, veneers processed
through the West position when C3 temperature was
kept greater than 165 °C seemed to minimize differ-
ences between the top and bottom dryer levels.

Based on the developed optimal tree, we can iden-
tify all important threshold points of predictor space
and evaluate the effects of process parameter settings,
dryer levels, positions and climatic variables on the
temperature of veneer sheets. Based on the findings
and threshold values of important predictor variables,
it is possible to get some idea of the final temperature
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Fig. 6 Part of Fig. 4. The value inside the circles indicates the veneer

temperatures in °C and the percentage of the observations

Table 2 Variable importance in the fitted regression tree
of temperature of veneers

Variable Importance

(out of 100)

a 19
@ 1
MDT

Temperature in Z1b

e}

Temperature in Z3
Temperaturein Z1a
Temperature in Z1c
TWP

DP

2

Temperature in Z2a
DL

Temperature in Z2b
Prod

Thik 1
Drying time 1

N W w w M M OV O O O O

of the veneer sheet while exiting the dryer. However,
regression trees do not have a similar predictive abil-
ity as the classical predictive models [11]. In the future
analysis, we aimed to use the knowledge gained from
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the regression tree approach in this study to develop a
predictive model using a tree-based approach.

In our work, the previous week’s climatic variables
played an important role in the drying process. In other
facilities, if a nearby weather station is not available,
then measurements of climatic variables can be inter-
polated using the inverse distance weighting (IDW) of
a few weather station data. Although this technique is
commonly used for predicting tree growth in remote
areas, it will provide an approximate estimation. Alter-
natively, the climatic variables (i.e., daily temperature,
humidity, etc.) could be measured at the facility to con-
trol veneer temperature in the drying process.

Conclusions

The developed optimum regression provided valu-
able insight into the drying process and allowed us to
deepen our knowledge and understanding of the sci-
ence governing veneer drying. The regression tree
model was validated using real industrial data as well
as the expertise from dryer operators. From the regres-
sion tree approach and findings, we found the most
important variables and their ranges to achieve the best
possible range of final temperature of veneer. From this
study, we found that the final temperature of veneer
was profoundly affected by the chain side temperatures
and climatic variables. To obtain the best temperatures
of veneer, we have to consider previous week’s climatic
variables. If a climatic variable is ignored, chain and
zone sides’ temperature should be adjusted accordingly.
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