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Abstract 

Taiwania (Taiwania cryptomerioides Hayata) has long been regarded as a living fossil from the Tertiary period of 
Mesozoic Era for its distinguished yellowish-red color with purplish-pink streaks presented in its heartwood. With this 
elegant appearance that matches the color “red” for good fortune in the Taiwanese culture, Taiwania is supposed to be 
a popular wood in Taiwan where it is a native species of. Extractives contribute to the properties of wood. It is a fasci‑
nating subject to investigate extractives biosynthesis in the process of heartwood formation. Up to date, there is no 
phytochemistry study of Taiwania sapwood. In this study, three new sesquiterpenoids, Taiwania A (1), Taiwania B (2), 
and Taiwania C (3), together with 75 known compounds in the Taiwania sapwood. The structures of extractives were 
determined by analysis of spectroscopic data and comparison with the literatures. This study supported secondary 
reaction lignans could be found in sapwood that confirmed our previous research on the Taiwania-type of heartwood 
formation.
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Introduction
Heartwood is the large part of the wood, and the extrac-
tives contained in it are closely related to the properties 
of the wood, such as strength, durability, color, and odor. 
The formation mechanism of heartwood has always been 
of interest and an important research topic for research-
ers. The heartwood formation could be classified into 
three types based on distribution patterns of extrac-
tives in stem wood of various trees species [1, 2]. Type I 
heartwood formation, i.e., Robinia-type heartwood for-
mation, where the accumulation of phenolic extractives 
starts in the transition zone (TZ). In this case, no phe-
nolic precursors were found in the aging sapwood. Type 
II (Juglans-type) heartwood formation, where the phe-
nolic precursors gradual accumulated centripetally with 
progressive aging of the sapwood tissues. The extractives 
that characterize the Type II heartwood were formed 
in the TZ either by de novo biosynthesis or secondary 

reactions (oxidation or hydrolysis) of precursor sub-
stances. Type III (Taiwania-type) heartwood formation, 
which most of phenolic compounds are synthesized in 
sapwood [2].

Taiwania (Taiwania cryptomerioides Hayata) is a 
native tree species growth in Taiwan. Taiwania also is 
the highest conifer in East Asia, it can reach 80 m. From 
1960s to date, Taiwania is the important plantation spe-
cies in Taiwan. Due to its excellent durability and pro-
cessing property, Taiwania is the popular wood material 
for building and furniture. With regard to phytochemical 
study of Taiwania, more than 300 compounds, including 
terpenoids, lignans, isoflavones, and other compounds 
have been isolated from Taiwania during the past 
90  years [3–23]. The putative bioactivities compounds 
of Taiwania, and evaluated the potential usages of the 
phytochemicals isolated from Taiwania for pharma-
cological applications were carried on by our research 
group. We demonstrated that sesquiterpenoids isolated 
from the heartwood of Taiwania against bacteria, fungi, 
mite, and termite [24–28]. The diterpenoids also exhib-
ited the antioxidant and anti-inflammatory activities [29, 
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30]. In the meantime, the lignans of Taiwania presented 
the potent anti-inflammatory, antiviral, and anticancer 
activities [26, 31–37].

The mechanism of heartwood formation in Taiwania 
is very unique. We found that most of the skeletons 
of the compounds are already synthesized in the sap-
wood. Although there have been numerous research 
reports on the chemical composition of Taiwan cedar, 
so far, no discussion has been made on its sapwood 
composition. For understanding the heartwood for-
mation in Taiwania, it is important to clarify the dif-
ference of composition between the heartwood and 
sapwood. This study accurately distinguished sapwood 
from heartwood in Taiwania, focusing the composi-
tion investigation of Taiwania sapwood. Totally, 78 
compounds from sapwood of Taiwania, including 3 
new skeleton sesquiterpenoids. The results obtained 
in this study provide a valuable reference for further 
heartwood formation and metabolites biosynthesis 
investments.

Materials and methods
General experimental procedures
1H, 13C, and 2D NMR spectra were recorded on a Bruker 
AVANCE III NMR spectrometer (Bruker, Billerica, Mas-
sachusetts, US), acquiring 1H data at 400  MHz and 13C 
data at 100  MHz, using standard experiments from 
Bruker pulse programs library. High-resolution mass 
spectrometry (HR-MS) was determined using an LTQ 
Orbitrap XL (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, U.S.). The compositions of the essential oil 
were analyzed by an ITQ 900 mass spectrometer cou-
pled to a TRACE GC Ultra gas chromatography (Thermo 
Fisher Scientific, Waltham, Massachusetts, U.S.). Metha-
nol (MeOH) extracts were fractionated on silica gel 60 
(230–400 mesh ASTM, Merck) and then purified with 
semi-preparative normal-phase column (luna silica (2), 
250 × 10  mm, 5  μm, Phenomenex) on an Agilent 1100 
HPLC (Agilent Technologies, Santa Clara, California, 
U.S.).

Plant materials
A 30-year-old Taiwania used in this study was col-
lected from the Huisun Experimental Forest Station 
of National Chung-Hsing University in August 2014; 
and was identified by Prof Yen- Hsueh Tseng, Depart-
ment of Forestry, National Chung Hsing University. The 
voucher specimen was deposited in the herbarium of 
the same university. The sapwood chips (excluding the 
heartwood and knots) were prepared from a green cut 
tree and stored in room temperature with avoiding light 
irradition.

Extraction and isolation
Air-dried sapwood chips (ca. 10  kg) were extracted 
with MeOH (80 L) for 7  days at ambient temperature 
three times and concentrated under vacuum to yield 
the MeOH extract (46 g). The MeOH extract was par-
titioned between H2O and ethyl acetate (EtOAc) (1:1 
for volume) three times to provide EtOAc soluble frac-
tion (18.7 g). The EtOAc soluble fraction was subjected 
to chromatography using a silica gel (90  g) column 
eluted with n-hexane–EtOAc which gradient elution by 
changing 100:0, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 
60:40, 50:50, 40:60, 30:70, 20:80, 10:90, and 0:100 for 
1 L, respectively. The elution was collected by 500 mL 
to get 1 to 28 fractions. After thin layer chromatogra-
phy tracing, 1 to 6 fractions were combined to fraction 
A (1.8 g), 7 to 8 fractions were combined to fraction B 
(0.5  g), 9 to 11 fractions were combined to fraction C 
(1.0 g), 12 to 14 fractions were combined to fraction D 
(0.6 g), 15 to 17 fractions were combined to fraction E 
(0.7 g), 18 to 20 fractions were combined to fraction F 
(0.7 g), 21 to 22 fractions were combined to fraction G 
(0.4 g), 23 to 25 fractions were combined to fraction H 
(0.6 g), 26 to 27 fractions were combined to fraction I 
(0.2 g), 28 fraction was fraction J (0.5 g). The fractions 
were further purified by repeating HPLC using the 
n-hexane–EtOAc mixture as solvent system through 
a semi-preparative normal-phase column to give 55 
known compounds and 3 new compounds.

Essential oil analysis
The air-dried sapwood chips (350 g) were subjected to 
hydrodistillation for 8  h using a Clevenger type appa-
ratus. The moisture-free oil which yield 0.01% was 
obtained by treating with anhydrous Na2SO4. The 
compositions of the essential oils were analyzed by an 
ITQ Series GC mass system, equipped with a DB-5MS 
capillary column (30 m length × 0.25 mm inside diam-
eter × 0.25  μm film thickness, J & W Scientific) and 
helium as a carrier gas with a flow rate of 1 ml min−1. 
The injector temperature was 240 ℃ and spilt ratio was 
1:200. The oven temperature was start at 40  ℃, and 
increased by 5 ℃ min−1 to 130 ℃, then rose to 160 ℃ at 
a rate of 2 ℃ min−1, finally increased to 280 ℃ by 10 ℃ 
min−1 and held for 10  min. The EI source was 70  eV 
and 250 ℃. Quantification was obtained from percent-
age peak areas from the gas chromatogram. A Wiley/
NBS Registry of Mass Spectral Data search and authen-
tic reference compounds were used for substance iden-
tification. The Kovats retention index (KI), which is a 
parameter calculated in reference to n-alkanes that 
converts retention times into system-independent 
constants, was also confirmed [38]. Chromatography 
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results expressed as area percentages were calculated 
with a response factor of 1.0.

Results and discussion
Volatile organic compounds analysis of sapwood
Table  1 presents the analysis result of essential com-
position of Taiwania sapwood. Totally, 25 compounds 
were identified in sapwood essential oil, including one 
monoterpenoid, α-terpineol (4); 23 sesquiterpenoids, 
namely α-copaene (5), α-cedrene (6), β-cedrene (7), 
β-copaene (8), γ-muurolene (9), α-muurolene (10), 
γ-cadinene (11), δ-cadinene (12), calamenene (13), 
α-cadinene (14), α-calacorene (15), elemol (16), globulol 
(17), cedrol (18), 1,10-di-epi-cubenol (19), epi-cubenol 
(20), γ-eudesmol (21), δ-cadinol (22), T-muurolol (23), 
α-eudesmol (24), α-cadinol (25), 8-cedren-13-ol (26), 
and cadalene (27); and one diterpenoid, ferruginol (28). 
Among them, α-cadinol (16.74%) was the most abundant 
compound.

Identification of sapwood non‑volatile organic compounds
Three new compounds (1–3) (Fig. 1) and 55 known com-
pounds were identified from sapwood of Taiwania. The 
known compounds were identified by spectra data and 
comparing with literature data. The identified known 
compounds were one fatty acid, i.e., 4,6,6-trimethylhepta-
noic acid (29) [39]; 6 benzenoids, which were ficusol (30) 
[40], vanillin (31) [41], trans-p-hydroxycinnamaldehyde 
(32) [42], 4-(3-hydroxypropyl)-2-methoxyphenol (33) 
[43], β-hydroxypropiovanillone (34) [44], and 3-methoxy-
4-hydroxybenzoic acid (35) [44]; 12 sesquiterpenoids, 
including (2β,3α)-α-corocalene-2,3-diol (36) [17], epi-
cubenol (20) [45], cryptomeridiol (37) [46], cedrol (18) 
[47], T-cadinol (38) [47], T-muurolol (23) [47], α-cadinol 
(25) [48], β-eudesmol (39) [49], (4R)-4-hydroxy-1,10-seco-
muurol-5-ene-1,10-dione (40) [50], dysodensiol D (41) 
[51], 1α-hydroxy-4αH-1,2,3,4-tetrahydrocadalen-15-oic 
acid (42) [52], and 1-hydroxy-1,2,3,4-tetrahydrocadalen-
15-oic acid (43) [53]; 6 diterpenoids, i.e., 3β-hydroxysugiol 
(44) [54], ferruginol (28) [55], hinokiol (45) [56], hinokione 

Table 1  Chemical composition of the essential oil of sapwood of Taiwania

a  Kovats index on a DB-5MS column in reference to n-alkanes
b  MS, NIST and Wiley libraries spectra and the literature; KI, Kovats index; ST, authentic standard compounds

RT (min) Constituent KIa Contents (%) Identificationb

13.82 α-Terpineol 1196 0.38 MS, KI, ST

18.83 α-Copaene 1376 0.13 MS, KI, ST

20.04 α-Cedrene 1417 2.46 MS, KI, ST

20.28 β-Cedrene 1425 0.41 MS, KI, ST

20.60 β-Copaene 1436 0.16 MS, KI, ST

21.81 γ-Muurolene 1475 1.32 MS, KI, ST

22.54 α-Muurolene 1498 3.51 MS, KI

23.02 γ-Cadinene 1512 5.67 MS, KI

23.17 δ-Cadinene 1516 9.35 MS, KI, ST

23.27 Calamenene 1519 2.37 MS, KI, ST

23.76 α-Cadinene 1534 1.02 MS, KI, ST

23.91 α-Calacorene 1538 7.27 MS, KI

24.15 Elemol 1545 0.24 MS, KI, ST

25.57 Globulol 1583 0.21 MS, KI

26.43 Cedrol 1608 8.74 MS, KI, ST

26.68 1,10-di-epi-Cubenol 1616 1.43 MS, KI, ST

27.13 1-epi-Cubenol 1630 1.08 MS, KI, ST

27.29 γ-Eudesmol 1635 1.18 MS, KI, ST

27.66 δ-Cadinol 1647 7.07 MS, KI, ST

27.72 T-Muurolol 1648 8.36 MS, KI, ST

27.82 α-Eudesmol 1651 3.48 MS, KI, ST

28.14 α-Cadinol 1661 16.74 MS, KI, ST

28.44 8-Cedren-13-ol 1670 0.47 MS, KI

28.66 Cadalene 1677 3.17 MS, KI, ST

36.66 Ferruginol 2345 4.34 MS, KI, ST

Total identified (%) 90.56
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(46) [57], sugiol (47) [58], and sandaracopimarinol (48) 
[59]; 9 steroids, 3-epi-6-deoxocathasterone (49) [60], 
7α-hydroxysitosterol (50) [61], 7β-hydroxysitosterol (51) 
[62], 7-ketositosterol (52) [63], 6β-hydroxystigmast-4-
en-3-one (53) [63], ergone (54) [64], stigmast-4-en-3-one 
(55) [65], stigmastan-3-one (56) [66], and β-sitosterol 
(57) [67]; 21 lignans and norlignans (Fig.  2), which were 
(-)-pluviatolide (58) [68], ( +)-pluviatolide (59) [68], 
( +)-7-methoxymatairesinol (60) [69], 7′-hydroxymataires-
inol (61) [70], arctigenin (62) [71], diphyllin (63) [72], 
egonol (64) [73], helioxanthin (65) [74], justicidin B (66) 
[75], (2S,3R)-2-[(1S)-1-hydroxy-1-(3,4-methylenedioxy-
phen)methyl]-3-(3,4-methylenedioxybenzyl)-4-butanolide 
(67) [76], lariciresinol (68) [77], matairesinol (69) [78], 
pinoresinol (70) [79], 9,9′-dihydroxy-3,4-methylenedioxy-
3′-methoxy(7-O-4′,8–5′)neolignan (71) [6], 4-[2-(1,3-ben-
zodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]butanoic 
acid (72) [80], methyl 2-(1,3-benzodioxol-5-yl)-7-meth-
oxy-1-benzofuran-5-carboxylate (73) [81], salicifoliol (74) 
[82], savinin (75) [83], Taiwanin C (76) [75], Taiwanin E 
(77) [84], and hinokinin (78) [85].

It is worthy to note, Taiwanin A was not found in sap-
wood of Taiwania (Fig. 2). According to the record, Tai-
wanin A is the unique lignan found in the heartwood of 
Taiwania; it only has been identified in Taiwania, not in 
other plants. Kampe and Magel classified the heartwood 
formation into two types based on distribution patterns 
of extractives in stem wood of various trees species [1]. 
(1) Type I (Robinia-type) heartwood formation, where 
the accumulation of phenolic extractives starts in the 
transition zoon, while no phenolic precursors were found 
in the aging sapwood. (2) Type II (Juglans-type) heart-
wood formation, where the phenolic precursors gradual 
accumulated centripetally with progressive aging of the 
sapwood tissues. Our previously study proposed the 
type III, Taiwania-type of heartwood formation, which 
was found the secondary reaction for lignans in sapwood 
[2]. This study further confirms that secondary reaction 

lignans occurred in sapwood of Taiwania. The biosyn-
thesis of lignans, e.g., matairesinol, hinokinin, savinin, 
helioxanthin, and Taiwanin E has been synthesized in the 
sapwood.

New sesquiterpenoids identification
Three new sesquiterpenoids were identified in this study, 
the structure’s elucidation was reported in the follow-
ing. Compound 1 was obtained as a colorless oil. The 
1H NMR spectrum of 1 (Table  2) displayed resonances 
for one doublet methyl [δH 1.18 (3H, d, J = 6.0 Hz)], and 
two oxymethines [δH 3.80 (1H, dd, J = 6.0, 10.3 Hz) and 
4.95 (1H, dt, J = 2.2, 10.3 Hz)], an olefinic proton [δH 5.82 
(1H, d, J = 6.0 Hz)], an isopropyl group [δH 0.86 (3H, d, 
J = 6.6 Hz), 0.97 (3H, d, J = 6.6 Hz), and 1.61 (1H, m)]. The 
13C NMR and distortionless enhancement by polarization 
transfer (DEPT) experiments revealed 15 carbon signals, 
consisting of three methyl, two aliphatic methylene, three 
aliphatic methine, two oxygenated methine, one olefinic 
methine, three quaternary olefinic, and one carboxyl car-
bons. Its high-resolution atmospheric pressure chemi-
cal ionization mass spectrometry (HR-APCI-MS) gave a 
[M + H]+ ion at m/z 267.2663, establishing the molecular 
formula of 1 as C15H22O4 with five degrees of unsatura-
tion. Ascribing to cnjugated double bond, H-5 exhibited 
very low field at δH 4.95, and the carbon signals at δC 
122.6 (CH), δC 132.8 (C), δC 134.0 (C), δC 157.8 (C), and 
δC 173.2 (C) indicated the existence of a C = CH, a C = C, 
and a O = C–OH systems. The remaining two degrees 
of unsaturation identified 1 as a bicyclic compound. The 
HMBC (Fig. 3) data showed correlations H-12/C-1, C-11, 
C-13; H-13/C-1, C-11, C-12, and the COSY (Fig. 4) sig-
nals showed coupling between the H-1/H-11; H-11/H-12; 
H-11/H-13. That confirmed the isopropyl group attached 
to C-1. From the COSY spectrum showed coupling 
between the H-1/H2; H-2/H-3; H-5/H-6; H-6/H-7; H-7/
H-8; H-7/H-14, and the HMBC signal showed correla-
tions H-5/C-10; H-6/C-14; H-7/C-9; H-8/C-1, C-6, C10; 

Fig. 1  The chemical structures of Taiwania A (1), Taiwania B (2), and Taiwania C (3)
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H-14/C-8. Taking the above evidences together, 1 iden-
tified as a 5–7 ring compound and pinpointed the loca-
tion of 4-carboxyl group, OH-5, OH-6, and methyl group 
(Me)-7. The NOESY (Fig. 5) signals showed correlations 
of H-5/H-14; H-6/H-14; H-7/H-11 as well as the cou-
pling constant confirmed that H-5, H-6, and Me-7 were 
β and isopropyl-1 and H-7 were α configuration. Based 
on these data confirmed the proposed structure of 1 and 

named Taiwania A, and it is a new skeleton sesquiterpene 
to the best of our understanding.

Compound 2, a colorless oil, was assigned a molecu-
lar formula of C15H22O5 on the basis of HR-APCI-MS 
and 13C NMR. The 1H NMR and 13C NMR data of 2 
(Table 2) were similar to those of 1, indicated that com-
pound 2 was also the same type sesquiterpenoid deriv-
ative. Analysis of NMR data revealed that OH-7 of 2 
replaced H-7 of 1. This supported by the COSY (Fig. 4) 

Fig. 2  Lignans and norlignans identified in sapwood. Taiwanin A was only found in heartwood
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Table 2  1H NMR data for compound 1, 2, and 3 (CDCl3, δ in ppm)

a  Coupling constants are presented in Hz

No. 1 2 3

δC δH δC δH δC δH

1 44.8 2.06 m 44.6 2.06 br s 43.8 2.02 m

2 26.3 1.61 m, 2.06 m 26.0 1.66 br s, 2.06 br s 23.6 1.79 m, 1.21 dd (4.0, 13.4)

3 16.8 2.27 m 16.9 2.29 br s 35.0 1.98 m, 1.65 dt (4.0, 7.2)

4 122.6 – 124.1 – 73.6 –

5 79.9 4.95 dt (2.2, 10.3) 80.8 4.80 br d (10.4) 79.1 4.66 d (9.1)

6 74.2 3.80 dd (6.0, 10.3) 80.4 3.70 d (10.4) 76.4 3.76 d (9.1)

7 37.0 2.78 sext (6.0) 74.9 - 71.3 -

8 134.0 5.82 d (6.0)a 135.6 5.75 s 132.8 5.75 d (1.6)

9 132.8 – 132.5 – 134.1 –

10 157.8 – 157.1 – 85.7 –

11 27.9 1.61 m 27.9 1.66 m 27.2 1.93 m

12 20.3 0.97 d (6.6) 20.3 0.97 d (6.6) 18.7 0.92 (6.6)

13 21.5 0.86 d (6.6) 21.5 0.86 d (6.6) 21.9 0.97 (6.6)

14 13.6 1.18 d (6.0) 22.9 1.41 s 22.2 1.31 s

15 173.2 – 172.6 – 22.6 1.27 s

1’ – – – – 153.5 –

Fig. 3  Key HMBC correlations of Taiwania A (1), Taiwania B (2), and Taiwania C (3)

Fig. 4  The COSY correlations of Taiwania A (1), Taiwania B (2), and Taiwania C (3)
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correlations showed H-1/H2; H-2/H-3; H-1/H-11; H-5/
H-6; H-11/H-12, H-13, and HMBC (Fig. 3) correlation 
signals H-8/C-1, C-6, C-10; H-6/C-5, C-7; H-14/C-6, 
C-7, C-8. The NOESY (Fig.  5) correlations observed 
H-5/H-14; H-6/H-14. Hence, the structure of 2 is con-
firmed and named Taiwania B.

The molecular formula of compound 3 was C16H24O6 
by electrospray ionization mass spectrometry (ESI-
MS) and NMR data, indicated five degree of unsatura-
tion. Sixteen carbon signals were observed in the 13C 
NMR spectrum of 3 and were assigned by the DEPT 
experiments displayed four aliphatic methyl, two ali-
phatic methylene, two aliphatic methine, two oxy-
genated methine, three oxygenated quaternary, one 
olefinic methine, one olefinic quaternary, and one car-
bonyl carbons. The carbon signals at δC 132.8 (CH), δC 
134.1 (C), and δC 153.5 (C) indicated the existence of a 
C=CH and a C=O systems. The carbonyl carbon (C-1′) 
exhibited very high field at δC 153.5 supported that was 
carbonate group [–O–C(= O)–O–] [86]. The remain-
ing three degrees of unsaturation identified 3 as a tri-
cyclic compound. Its 1H NMR spectrum of 3 (Table 2) 
showed the presence of four methyl protons [δH 0.92 
(3H, d, J = 6.6 Hz), 0.97 (3H, d, J = 6.6 Hz), 1.27 (3H, s), 
1.31 (3H, s)], two oxymethines protons [δH 3.76 (1H, d, 
J = 9.1 Hz) and 4.66 (1H, d, J = 9.1 Hz)], and an olefinic 
proton [δH 5.75 (1H, d, J = 1.6 Hz)]. The HMBC (Fig. 3) 
correlations showed H-12/C-1, C-11, C-13; H-13/C-1, 
C-11, C-12, and the COSY (Fig. 4) correlations showed 
H-1/H-11; H-11/H-12 and H-13 confirmed that the 
isopropyl group attached to C-1. The carbonyl carbon 
(C-1′) was attached on C-4 and C-5 by the HMBC cor-
relations showed H-5/C-4, C-6, C-2′; H-15/C-3, C-4, 
C-10. The double bond was assigned to located C-8 and 
C-9, basing on the HMBC correlation showed H-8/C-1, 
C-6, C-10. The three hydroxyl groups were located at 
C-6, C-7, and C-10, respectively, which were assured 
by the HMBC correlations showed H-6/C-5, C-7, C-14; 
H-14/C-6, C-7, C-8; H-15/C-3, C-4, C-10. The NOESY 

(Fig.  5) signals showed the correlations of H-5/H-14, 
H-15; H-6/H-11, H-12, H-13, H-14, H-15 indicated 
that isopropyl-1, Me-4, H-5, H-6, and Me-7 were in β 
orientation. On the basis of these data, compound 3 is 
assigned the proposed structure and named Taiwania 
C, and it is as a new natural product.

Conclusion
The biosynthesis and accumulation of the extractives is an 
important process for the formation of heartwood, and 
the content and types of the extractives in the heartwood 
also influence the special properties of wood. Previously, 
we proposed a new type of Taiwania-type heartwood for-
mation mechanism, i.e., phenolic compounds have com-
pleted the secondary reaction in the sapwood, forming a 
complete structure (Tsao et al. [2]). Although the current 
research on the phytochemistry of Taiwania is quite com-
plete, there is no research on the sapwood extractives. 
This study isolated and identified 78 compounds from 
sapwood of Taiwania, including 1 fatty acid, 6 monoaro-
matics, 1 monoterpenoid, 34 sesquiterpenoids, 6 diterpe-
noids, 9 steroids, and 21 lignans and norlignans. Among 
these, 3 new skeleton sesquiterpenoids, which were Tai-
wania A, Taiwana B, and Taiwania C were first time iden-
tified. During the past decades, a number of studies have 
reported the metabolites of Taiwania’s wood. However, 
to our best of knowledge, this is the only study focusing 
on the elucidation of sapwood compounds. Interestingly, 
besides 3 new skeleton compounds, all of the 75 known 
compounds had been reported previously. This study 
confirmed again that the secondary reaction of lignans 
occurred in the sapwood of Taiwania. It provided the 
evidence for type III, Taiwania-type of heartwood forma-
tion (Tsao et al. [2]). However, the unique and dominant 
lignan, Taiwanin A, was not found in the sapwood. The 
result once again confirmed that all lignans of Taiwania 
are synthesized in sapwood, except Taiwanin A.

Fig. 5  Key NOESY correlations of Taiwania A (1), Taiwania B (2), and Taiwania C (3)
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