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Comparison of colors, microstructure, 
chemical composition and thermal properties 
of bamboo fibers and parenchyma cells 
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Abstract 

The effects of heat treatment at various temperatures on mechanically separated bamboo fibers and parenchyma 
cells were examined in terms of color, microstructure, chemical composition, crystallinity, and thermal properties. The 
heat-treated parenchyma cells and fibers were characterized by scanning electron microscopy (SEM), Fourier-trans-
form infrared spectroscopy (FTIR), chemical composition analysis, and thermogravimetric analysis (TGA). The results 
revealed that the colors of bamboo fibers and parenchyma cells were darkened as treatment temperature increased. 
The microstructure of the treated fibers and parenchyma cells slightly changed, yet the shape of starch granules in 
parenchyma cells markedly altered at a temperature of above 160 °C. The chemical compositions varied depending 
on the heat treatment temperature. When treated at 220 °C, the cellulose content was almost unchanged in fibers 
but increased by 15% in parenchyma cells; the hemicellulose content decreased and the lignin content increased 
regardless of fibers and parenchyma cells. The cellulose crystal structure was nearly unaffected by heat treatment, but 
the cellulose crystallinity of fibers changed more pronouncedly than that of parenchyma cells. The thermal stability of 
parenchyma cells after heat treatment was affected more substantially compared to fibers.
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Introduction
Bamboo powder has been considered as one of the most 
suitable fillers for plastic composite because of their 
impressive features, for example, renewable, cost-effec-
tive, environmentally benign, and high modulus yet low 
density [1]. Bamboo plastic composites have been widely 
used for flooring, furniture and so on [2, 3]. To further 
reduce water absorption and improve mechanical prop-
erties, bamboo powder is usually pretreated with acid, 
alkali, coupling agent, carbonize, etc. [3–6]. However, 

the above pretreatments often involve chemical usage, 
probably leading to environmental pollution. Therefore, 
a cost-effective and environmentally friendly heat treat-
ment is widely adopted by the bamboo industry to obtain 
high-performance bamboo [7–10].

Bamboo powder for bamboo plastic composite is usu-
ally ground from the whole bamboo directly. However, 
bamboo is made up of approximately 50% parenchyma 
cells, 40% fibers, and 10% vascular bundles (vessels, 
sieve tubes with companion cells) [11]. Bamboo fibers 
and parenchyma cells have an apparent discrepancy in 
microstructure, chemical composition, and performance 
[12, 13]. Bamboo fibers had higher cellulose and lignin 
contents, but lower hemicellulose content when com-
pared with parenchyma cells [14]. The cellulose crystal-
linity in fibers was higher than that of parenchyma cells 
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[12, 15]. Bamboo fibers had a straight shape with a thick 
cell wall and small lumen, while the parenchyma cells 
had an oval shape with a thin cell wall and large, hollow 
cell cavities which usually stored starch [16]. The varia-
tion in structures and chemical compositions often result 
in property discrepancies between bamboo fibers and 
parenchyma cells [15]. For example, the thermal stabil-
ity of fibers was higher than that of parenchyma cells in 
bamboo [17]. Therefore, the property variation of fibers 
and parenchyma cells after pretreatment may affect their 
filled composites to different extents. To date, there was 
little research reporting on the direct comparison of the 
heat treatment effects between sole fibers and sole paren-
chyma cells in terms of color, microstructure, and chemi-
cal compositions. In this regard, getting more insight 
into the heat-induced difference between bamboo fibers 
and parenchyma cells may help elucidate which one was 
influenced pronouncedly when melt-blending with plas-
tics at high temperatures.

In this study, bamboo fibers and parenchyma cells 
mechanically isolated from each other were treated at 
various heating temperatures in an oven. The heating-
induced discrepancy between fibers and parenchyma 
cells in terms of morphology, microstructure, chemi-
cal composition, and thermal stability was examined by 
scanning electron microscopy (SEM), Fourier-transform 
infrared spectroscopy (FT-IR), X-ray diffraction (XRD), 
and thermogravimetric analysis (TGA).

Materials and methods
Materials
Three-year-old Moso bamboos (Phyllostachys hetero-
cycla) were harvested from Zhejiang Province, China. 
The parenchyma cells and fibers were prepared, as 
schematically depicted in Fig.  1. The bamboo culms 
were chopped into bamboo rings and ground into pow-
der. The size of bamboo powder is shown in Table1. The 
bamboo powder was placed in water and stirred for 
5 min. Due to the difference in density, the parenchyma 
cells floated on the water and the fibers precipitated 
at the bottom. The fibers and parenchyma cells were 
collected separately followed by oven drying at 50  °C 
for 5  h. Finally, the fibers and parenchyma cells were 
treated at 100, 120, 140, 160, 180, 200, and 220  °C for 
6 h in the oven.

Fig. 1  The separation of parenchyma cells and fibers from bamboo

Table 1  The proportion of different mesh number of bamboo 
powder

Mesh number Proportion (%)

60–100 31.11

100–140 34.07

140–180 24.19

≥ 180 10.64
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Characterizations
Color and microstructure
Color parameters were measured with a SEGT-J portable 
colorimeter. Three replicates were measured for each 
sample. The CIE lab system was characterized by three 
parameters, L*, a*, and b*. The lightness (L*) ranged from 
0 to 100, and the greater the value of L, the brighter the 
surface of the material. a* was defined as the red/green 
coordinate, + a* was the red direction, and − a* was the 
green direction. b* defined as the yellow/blue coordi-
nate, + b* was the yellow direction, and − b* was the blue 
direction [18, 19]. The lightness difference (ΔL*), red/
green difference (Δa*), yellow/blue difference (Δb*) and 
the color difference (ΔE*) were calculated according to 
the following Eqs. (1–4):

The microstructure of the untreated- and heat-treated 
parenchyma cells and fibers was observed with an emis-
sion scanning electron microscopy (ESEM, Quanta 200, 
FEI Company, USA). The morphology of starch was 
observed by a cold field scanning electron microscopy 
(Regulus 8100, Hitachi Company, Japan).

Chemical composition and thermogravimetric analysis (TGA)
The FTIR spectra of the heat-treated parenchyma cells 
and fibers were recorded by a spectrometer (VER-
TEX 80 V, Bruker, Germany) within the range of 4000–
500  cm−1 at a resolution of 4  cm−1 and 64 scans. Three 
replicates were measured for each sample. The chemical 
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composition of the untreated- and heat-treated paren-
chyma cells and fibers was determined according to the 
National Renewable Energy Laboratory (NREL) proce-
dures [20]. The sugars hydrolyzed from cellulose and 
hemicellulose were analyzed by high-performance liquid 
chromatography (HPLC) 1260 system equipped with an 
Aminex HPX-87H column (300 × 7.8 mm) and a refrac-
tive index (RI) detector. Acid-soluble lignin content 
was analyzed with a UV–visible spectrophotometer at 
205 nm. The content of insoluble lignin was determined 
by drying the solid at 105 ± 3  °C to constant weight and 
burning in a muffle furnace at 575 ± 25 °C.

The crystallinity of the untreated and heat-treated 
parenchyma cells and fibers was examined by an X-ray 
diffractometer with a CuKα radiation source (XRD, 
Ultima IV, Rigaku, Japan). The crystallinity index (CrI) 
was the relative crystallinity, I200 was the maximum 
intensity of the (200) diffraction peak, and Iam was the 
amorphous diffraction intensity. The crystallinity index 
was calculated by the following Formula (5):

The thermal stability and degradation behavior of the 
untreated- and heat-treated parenchyma cells and fibers 
were examined by a thermogravimetric analyzer (TGA, 
STA409PC, Netzsch, Germany).

Results and discussion
Color changes
The color of the heat-treated parenchyma cells and fib-
ers is exhibited in Fig.  2. Both fibers and parenchyma 
cells were increasingly darkened when treated with 
increasing heat temperature. Heat temperature above 
160  °C rendered an apparent impact on the color of 
both parenchyma cells and fibers. Besides, the rougher 
surface of parenchyma cells was observed compared to 

(5)CrI =
I200 − Iam

I200
× 100%.

Fig. 2  The color of the heat-treated a fibers and b parenchyma cells
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fibers, this might be largely attributed to the rupture 
of parenchyma cells and the breakdown of cell cavities 
during the sample preparation [15].

Figure 3 shows the color parameters of the untreated 
and heat-treated fibers and parenchyma cells. ΔL* in 
both treated fibers and parenchyma cells increased 
abruptly when treated at above 160  °C, the ΔL* for 
parenchyma cells changed more pronouncedly when 
compared with fibers. It indicated that the lightness 
of heat-treated parenchyma cells and fibers declined 
as temperature increased. The ΔE* values in both fib-
ers and parenchyma cells increased slightly below the 
temperature of 160  °C, but increased sharply for fib-
ers and parenchyma cells when temperature increased 
beyond the point at 160 and 140  °C, respectively. The 
trend of the Δa* and Δb* values for fibers and paren-
chyma cells changed similarly. The Δa* and Δb* values 
decreased firstly and then increased, the turning point 
in fibers and parenchyma cells was 160 and 120  °C, 
respectively, but finally decreased at 220 °C. The fibers 
were greenish and bluish when heated below 160  °C, 
but became reddish and yellowish at above 160  °C. 
However, the marked change in color for parenchyma 
cells occurred at 120 °C. In addition, the color of fibers 
and parenchyma cells became bluish and a little reddish 
when treated at 220  °C. The trend in the color change 
induced by heat for separate parenchyma cells and fib-
ers was consistent with the reported phenomenon for 

bulk bamboo strips and bamboo fiber bundles in previ-
ous work [7, 10, 21, 22].

Microstructure
The microstructure of the parenchyma cells and fibers 
after the heat treatment is exhibited in Fig. 4. The paren-
chyma cells were broken during the sample preparation 
process, the starch existing in the parenchyma cells’ cav-
ity was exposed (Fig.  4f ). The microstructure of fibers 
and parenchyma cells was not remarkably altered by heat 
treatments.

Starch granules in the untreated- and treated paren-
chyma cells are presented in Fig.  5. The morphology of 
starch granules was altered significantly by heat. The 
untreated starch granule in the parenchyma cell was 
round or oval and the surface was smooth. The surface 
rendered a spike-like shape when treated at 160  °C or 
higher (Additional file 1: Figs. S1 and S2), and the num-
ber of starch granules with such shapes and morphology 
went up with increasing temperature.

The morphology of starch granules in the paren-
chyma cells treated by heat was different from that of 
the heat-treated glutinous rice starches but similar 
to that of corn starch granules treated by high pres-
sure [23–25]. The surface of glutinous rice starch was 
rough and appeared with aggregations, irregular sizes, 
uneven shapes, and tight connections. Corn starch 
granules collapsed and became doughnut-shaped after 

Fig. 3  Changes in color parameters of a fibers and b parenchyma cells

Fig. 4  SEM images of the microstructure of a the untreated fiber, b the120 ℃-treated fiber, c the160 ℃-treated fiber, d the 180 ℃-treated fiber, e 
the 220 ℃-treated fiber, f the untreated parenchyma cell, g the 120 ℃-treated parenchyma cell, h the 160 ℃-treated parenchyma cell, i the 180 ℃ 
treated parenchyma cell, j the 220 ℃-treated parenchyma cell

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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high-pressure treatment. The varieties in the mor-
phology and shape might be due to the differences in 
chemical composition and structure between starch in 
parenchyma cells and the starch granules in glutinous 
rice and corn, which need to be further investigated in 
the future. Moreover, the changes in starch granules 
may partly account for the improvement in the mold 
and decay resistance of bamboo treated by heat [26, 
27].

Chemical composition
FTIR spectra of fibers and parenchyma cells after heat 
treatments are displayed in Fig.  6. The band at around 
1735  cm−1 was attributed to C=O stretching from 
hemicellulose [28, 29]. Moreover, the bands at about 
1608  cm−1, 1509  cm−1, and 1462  cm−1 were due to the 
aromatic skeleton vibration in lignin [21, 30, 31]. The 
band around 1735  cm−1 in both untreated and treated 
fibers and parenchyma cells, but the intensity was 

Fig. 5  SEM images of starch granules in the untreated- and treated parenchyma cells
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different, suggesting the different content of hemicel-
lulose. Besides, the intensity of the bands at 1608  cm−1 
increased especially in the parenchyma cells after heat 
treatment suggesting that the content of lignin may 
increase. To get more insight into the change in chemi-
cal composition for heat-treated fibers and parenchyma 
cells, the contents of cellulose, hemicellulose, and lignin 
were quantitatively determined.

Figure  7 shows the chemical compositions of the 
untreated- and treated fibers and parenchyma cells. Bam-
boo fibers had higher cellulose content and lower hemi-
cellulose content compared to parenchyma cells, which 
is in good agreement with previous research [15]. When 
treated by heat below 220  °C, the content of cellulose, 
hemicellulose, and lignin in both fibers and parenchyma 
cells almost did not change. However, when treated at 

220 °C, the hemicellulose content decreased by 23% and 
19% for fibers and parenchyma cells, respectively, while 
the content of lignin increased by 15% and 18%, respec-
tively. The cellulose content of the 220  °C-treated fibers 
was similar to that of the untreated ones, but the cellu-
lose content in the treated parenchyma cells increased 
by 15%. It indicated that 220  °C was a watershed of the 
change in chemical compositions of fibers and paren-
chyma cells, which was different from that in bamboo 
fibers treated with steam treatment. When bamboo fibers 
were treated with the 180 ℃ steam, the hemicellulose and 
cellulose content decreased substantially [32], indicat-
ing that water was another important factor affecting the 
chemical composition of bamboo when treated by the 
combination of heat and water.

Fig. 6  FTIR spectra of a fibers and b parenchyma cells with heat treatments

Fig. 7  Chemical compositions in a fibers and b parenchyma cells
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The color changes of fibers and parenchyma cells are 
often associated with the content and chemical structure 
of lignin. The darkening color may be largely linked to 
the structural change of the lignin chromophore group 
as the temperature of heat treatment increased [33]. It 
was reported that the lignin structural monomer guaiac 
was demethylated to produce quinone compounds and 
the ether bond was broken, resulting in the darker color 
of fibers and parenchyma cells [18, 19, 34–36]. This was 
consistent with the color changes in fibers and paren-
chyma cells shown in Fig. 2 and Fig. 3.

X‑ray diffraction
X-ray diffraction patterns of fibers and parenchyma cells 
treated at various heat temperatures are displayed in 
Fig.  8. The distinct peaks at 15.9°, 21.8°, and 34.7° cor-
responded to (1–10) and (110), (200), and (040) lattice 
planes, respectively [33], which is a characteristic for 
the typical cellulose I [37]. The patterns of the fibers and 
parenchyma cells treated by heat were the same as the 
cellulose I profile of the untreated one, suggesting that 
the heat treatment did not affect cellulose crystalline 
structure in both fibers and parenchyma cells.

Figure 9 shows the CrI values of fibers and parenchyma 
cells. The CrI of the untreated fibers was much higher 
than that of parenchyma cells, which was consistent with 
previous research [12, 15]. The CrI of fibers and paren-
chyma cells decreased when treated by heat regard-
less of the temperature used in this study. But among 
all the temperatures, the CrI of fibers and parenchyma 
cells treated at 100 °C decreased the most, and the fiber 
decreased more than parenchyma cell. It might be related 
to the water and the cellulose crystal form of bamboo 
fibers and parenchyma cell, which need be further stud-
ied in the future. It was reported that the crystallinity of 

Moso bamboo decreased after treated at 180 and 200 °C 
for 8 h [28], because of the partial degradation of the cel-
lulose crystalline region. However, Yang et  al. reported 
that the crystallinity of heat-treated Makino bamboo 
with 2 h remained unchanged at 180 °C but increased at 
220 °C, which was in contrast with our results and it was 
probably due to the longer heat-treatment time used in 
our study [33]. A long time of heat treatment may have a 
negative influence on crystallinity [38].

Thermal stability
Typical TGA and DTG curves of the untreated and 
treated fibers and parenchyma cells are displayed in 
Fig.  10. Three distinct weight-loss stages observed 
at 30–100  °C, 200–350  °C, 315–400  °C were mainly 

Fig. 8  XRD patterns of cellulose in a fibers and b parenchyma cells with heat treatments

Fig. 9  The crystallinity index of cellulose in parenchyma cells and 
fibers
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attributed to the evaporation of water, the decomposi-
tion of hemicellulose, lignin, and cellulose, respectively. 
The shoulder peak observed at about 300 °C was caused 
by the thermal decomposition of hemicellulose. There 
was no significant change in the shoulder when the heat-
treatment temperature was below 220  °C, but it was 
reduced obviously in fibers as well as parenchyma cells 
at 220  °C. It indicated that the content of hemicellulose 
decreased, which is consistent with the result of chemical 
composition analysis discussed previously.

The Tmax value referred to the decomposition tem-
perature corresponding to the maximum weight loss 
and related to maximum decomposition. The main 
peak at about 360  °C was caused by the thermal 
decomposition of cellulose in fibers and parenchyma 
cells (Fig.  10c, d). The cellulose chains in bamboo 
fibers were more closely packed and had smaller 
d-spacing than that of parenchyma cell cellulose [39]. 
It was the possible reason why the Tmax of bamboo 
fibers was higher than that of parenchyma cells. The 

main peak of the fibers shifted to a lower temperature 
when treated at 200 and 220 °C, and the latter shifted 
more. The Tmax of the heat-treated parenchyma cells 
decreased obviously except for the heat treatment at 
160 °C. The Tmax of parenchyma cells treated at 220 °C 
was the lowest. Lignin was more difficult to decom-
pose than hemicellulose and cellulose [40, 41]. Lignin 
is a complex aromatic polymer composed of phenyl-
propane structural units connected by C–C bonds and 
C–O–C bonds. The bond energy was widely distrib-
uted, and the pyrolysis of lignin almost took place dur-
ing the entire process [31], but the main degradation of 
lignin occurred at above 350  °C. The results revealed 
that the thermal stability of bamboo fibers remained 
almost unchanged at low treatment temperature but 
decreased at 200 or 220  °C, and the 220  °C-treatment 
resulted in the most pronounced decrease in ther-
mal stability. For parenchyma cells, the decline of 
thermal stability was nearly the same when treated 
at 100–140  °C and it decreased with the increase of 

Fig. 10  Typical TGA curves of a fibers and b parenchyma cells, DTG curves of c fibers, and d parenchyma cells
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temperature between 160 and 200 °C, but higher than 
that of 100–140  °C. The 220  °C-treatment decreased 
the most among all the temperatures.

Conclusions
In this study, the color, microstructure, chemical compo-
sition, and thermal stability of bamboo fibers and paren-
chyma cells with heat treatment were investigated. The 
results indicated that the heat-treatment temperature 
played a critical role in influencing fibers and paren-
chyma cells in terms of color, microstructure, chemical 
composition, and thermal stability. In addition, the differ-
ence in the change between the heat-treated parenchyma 
cells and the treated fibers was also compared:

(1) The colors of fibers and parenchyma cells were 
darkened after heat treatment, and the extent of the 
darkness between parenchyma cells and fibers treated 
with the heat at different temperatures was similar. In 
terms of microstructure, there was no insignificant 
change in fibers and parenchyma cells, but the starch 
granules surface was changed from smooth to spike-
like shape when the temperature increased to 160  °C, 
and the number of starch granules with such shapes 
went up with increasing the heating temperature.

(2) Heat treatment affected the chemical composition 
of fibers and parenchyma cells depending on the tem-
perature. The heat treatment below 220  °C almost did 
not change the chemical composition, but the chemical 
composition altered when treated at 220  °C. The cellu-
lose content of the treated fibers was similar to that of the 
untreated one regardless of the temperature used, while 
the cellulose content for the 220  °C heat-treated paren-
chyma cells increased by 15%. The hemicellulose con-
tent of the treated fibers and parenchyma cells decreased 
while the lignin content increased when treated at 220 °C.

(3) The cellulose crystal structure in parenchyma cells 
and fibers after heat treatment still retained cellulose 
I form. The crystallinity index of the fiber was signifi-
cantly reduced after heat treatment, while the CrI of 
the treated parenchyma cells decreased slightly.

(4) The effect of heat treatment on the thermal stabil-
ity of parenchymal cells was more pronounced than that 
of fibers. The thermal stability of parenchyma cells was 
lower than that of fibers. The thermal stability of paren-
chyma cells decreased except for the treatment at 160 °C, 
and the highest treatment temperature led to the lowest 
thermal stability. The thermal stability for bamboo fibers 
decreased only when treated by heat at 200 and 220 °C.
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