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Abstract 

Fungal decomposition of wood severely affects the soundness of timber constructions. The diagnosis of wood decay 
requires direct observations or sampling by skilled experts. Wood decay often occurs in obscure spaces, including the 
enclosed inner spaces of walls or under the floor. In this study, we examined the ability of machine olfaction to detect 
odors of fungi grown on common construction softwoods to provide a novel diagnostic method for wood construc-
tion soundness. The combination of a simple device equipped with semiconductor gas sensors (gas sensor array) 
and multivariate analysis discriminated a fungi-related odor from control odor without instrumental analysis (e.g., gas 
chromatography). This method is often referred to as machine olfaction or electronic nose. We measured the odor of 
wood test pieces that were infected with Fomitopsis palustris or Trametes versicolor and sound test pieces using a gas 
sensor array. The sensor responses of the specimens showed different patterns between the inoculated and control 
samples. Each specimen class formed independent groups in a principal component score plot, almost regardless of 
wood species, fungal species, or cultivation period. This method provides a new decay diagnosis method that is cost-
effective and easy to operate.
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Introduction
The biological decomposition of wood severely affects 
the soundness of timber structures, and fungal degra-
dation is the most common cause. Diagnosis of wood 
decay requires direct observation and/or destructive 
sampling. Therefore, in narrowly enclosed spaces, includ-
ing the internal spaces of walls, wood decay detection is 
difficult. The detection of airborne substances such as 
microbial volatile organic compounds (MVOCs) or their 
odor from wood-decay fungi has been studied to over-
come this difficulty. Kauhanen et  al.  [1] demonstrated 
that trained dogs can detect wood-decay fungi. Konuma 
et  al.  [2, 3] reported the detailed chemical composition 
of MVOCs emitted by Fomitopsis palustris (brown-rot) 
and Trametes versicolor (white-rot) using several instru-
mental analysis methods. For termite detection, another 

important biological issue of wood, Yanase et  al.  [4, 5] 
introduced a gas analyzer equipped with a packed col-
umn and a semiconductor gas sensor as a detector. They 
qualified and quantified hydrogen and methane emitted 
from termite activities. Airborne substances can be col-
lected by air sampling. Air sampling can be performed 
remotely and nondestructively.

Machine olfaction or an electronic nose is an odor clas-
sification method that combines multiple gas sensors 
and multivariate analysis. This method mimics mam-
mal olfactory function by substituting olfactory recep-
tor cells and the olfactory cortex with electronic sensors 
and a computer, respectively. The receptor cells of mam-
mals have a small range of variation, and each variant 
responds to a broad range of substances. A particular 
type of odor is discriminated by a network of cross-con-
nected receptor cells and neurons that process patterns 
of signals from variant receptors. In machine olfaction, 
odor discrimination is conducted by applying a pattern 
recognition algorithm to the response of multiple gas 
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sensors [6]. Semiconductor gas sensors for specific gases 
have a high sensitivity to their target gases, but they also 
have a broad sensitivity to untargeted substances [7]. The 
sensor responses to individual odors vary among sensors 
depending on their gas-specific design. Because of this, a 
group of different gas-specific sensors, called a gas sensor 
array, generates unique patterns of output, often referred 
to as odor fingerprints for different odors [8]. The output 
of machine olfaction devices is represented by a vector 
with the dimension of the number of sensors. Principal 
component analysis (PCA) is commonly used to extract 
odor features. The PCA is also used to reduce data 
dimensions for data visualization. Supervised machine 
learning, for example, linear discriminant analysis or arti-
ficial neural network, is also applied for automated odor 
classification  [9]. The advantages of machine olfaction 
over analytical methods are continuous monitoring  [8], 
ease of building, cost-effectiveness, and short analysis 
time [9].

This method has been widely studied in food sci-
ences, as odor is one of the most important factors of 
food. Machine olfaction is applied to evaluate food odor 
to avoid time-consuming analytical methods or sen-
sory tests that are associated with unavoidable olfactory 
fatigue problems. Hui et  al.  [10] measured apple aroma 
and effectively predicted the storage time. Wei et al. [11] 
measured the odor of peanuts using machine olfac-
tion and the acid and peroxide values of peanut kernels 
using traditional methods. The results of both analyses 
are highly correlated. Haugen et  al.  [12] measured the 
odor of spoilage in bacteria-inoculated milk using both 
machine olfaction and gas chromatography–mass spec-
trometry and revealed that both results were highly cor-
related. They concluded that machine olfaction could be 
used to detect milk spoilage.

In the field of wood sciences, Garneau et al.  [13] dem-
onstrated that some commercial electronic nose systems 
could classify three different softwood chips: spruce, fir, 
and pine. Baietto et al.  [14] introduced several commer-
cially available electronic noses for wood decay detection. 
They measured the odor of artificially infected wood sam-
ples and concluded that the electronic noses effectively 
detected wood decay. They used 23 fungal species and 18 
wood species. They also measured the odor of inoculated 
tree root samples and concluded that the electronic nose 
could further detect root decay of trees [15]. Their scope 
was to investigate the decay of urban shade trees to pre-
vent sudden collapse. Their choice of fungal cultures did 
not include common species found in wooden buildings 
such as T. versicolor, and most of the wood samples were 
hardwood. They used general-purpose laboratory-grade 
electronic noses. Furthermore, some of their data analy-
sis depended on machine-specific built-in software.

Our final goal is to develop a wood construction-
specific on-site measuring device equipped with an 
automatic diagnosis algorithm using recent comput-
ing technology. As the first attempt to achieve the goal, 
we have developed a simple and cost-effective semicon-
ductor gas sensor array that comprised commercially 
available components. Using the gas sensor array, we 
implemented a simple static headspace machine olfaction 
chamber. In this study, we aimed to examine the ability of 
a simple implementation of a machine olfaction device to 
detect odors from wood-decay fungi grown on common 
construction softwood. As representative wood-decay 
fungi, we selected F. palustris (brown-rot) and T. versi-
color (white-rot). These species were chosen considering 
the availability of strains, information on cultivating con-
ditions, and reported cases in wooden constructions [16], 
and they are also standard species in Japan Industrial 
Standard (JIS)  [17]. As a typical construction softwood 
species, we selected sugi (Cryptomeria japonica) and 
karamatsu (Larix kaempferi). Both species are widely 
planted in Japan and commonly employed for construc-
tion. Sugi is also the standard species for JIS test methods 
for wood preservatives [17].

Materials and methods
Fungal strains
Two species were used in this study, namely F. palustris 
(Berkeley. et M.A. Curtis) Gilbertson et Ryvarden (FFPRI 
0507) and T. versicolor (Linnaeus) Pilát (FFPRI 1030), 
hereinafter referred to as FP and TV, respectively. Both 
are standard species in JIS K 1571, the test methods for 
wood preservatives [17].

Wood test pieces
Test pieces were prepared following the sample prepara-
tion procedure of JIS K 1571 [17]. The samples were cut 
into test pieces with dimensions of 20 mm × 20 mm in 
the axial section, and 10 mm in the fiber direction. The 
wood test pieces were kept for 48 h in a drying oven at 
60 ± 2 ◦ C, and then cooled for 30 min in a glass desic-
cator. After cooling, the initial weights of the test pieces 
were obtained. The test pieces were sterilized using ethyl-
ene oxide (EO) gas for 5 h at 40 ◦ C. We randomly picked 
six sterilized test pieces from each species as a sound-dry 
class. The test pieces were sealed in an air-tight plastic 
bag and maintained at 25 ± 2 ◦C.

Cultivation of fungi on test pieces
Three hundred and fifty grams of sea sand (Miyazaki 
Chemical, Tokyo, Japan), 100 mL of liquid medium 
(d-(+)-glucose 4.0% (w/w), peptone 0.3% (w/w), and malt 
extract 1.5% (w/w)) were added into each glass jar and 
autoclaved the jars at 60 ± 2 °C for 30 min. Then, mycelia 



Page 3 of 8Suzuki et al. J Wood Sci           (2021) 67:62 	

growing in a Petri dish on potato dextrose agar were inoc-
ulated at the medium center. The jars were maintained at 
26 °C for 14 days. Thereafter, three pieces of wood were 
placed on the medium in each jar (Fig. 1). For FP, a plas-
tic mesh sterilized by EO gas was placed between the test 
pieces and the medium. For TV, the test pieces were set 
directly on the medium. The jars were maintained at 26 
± 2 °C for 4, 8, 12, and 20 weeks. These samples were 
named the decayed class. Two jars (six test pieces) were 
prepared for each condition. Non-inoculated jars were 
also prepared. The jars were processed using the same 
procedure described above except for inoculation and 
placed under the same conditions and periods. These 
samples were named the sound-wet class. This class was 
used to evaluate the effects of a medium odor.

Equipment
We developed a simple static headspace machine olfac-
tion device equipped with a semiconductor gas sen-
sor array. An array of six SnO2-based semiconductor 
gas sensors and a circulation fan was placed under the 
lid of a 7-L stainless steel chamber. A data logger (GL-
840, Graphtec, Yokohama, Japan) and a DC power sup-
ply were connected to the measuring chamber (Fig.  2). 
All gas sensors were commercially available devices for 
environmental monitoring, for example, leak detec-
tion and air purifiers (Table 1). Before measurement, we 
connected a clean air supplier (AOE2300, GL Sciences, 
Tokyo, Japan) to the chamber and aged the sensors in a 
clean air atmosphere at a flow rate of 100 mL/min for 2 
weeks.

Measurement
Before measurement, a 380-mL stainless container 
filled with activated charcoal for an odorless air sup-
plier (1050-3300, GL Sciences, Tokyo, Japan) was 
placed in the measuring chamber. The data logger was 
then set to record the output voltage of the gas sensors 
every 30 s. After at least 12 h, the sensor baseline values 
of a day were obtained. This sequence was performed 
every day during the measurement. A pair of test pieces 
was taken from the glass jars and placed on a glass Petri 
dish. Mycelia on the surface of the test pieces were kept 
as they were. The test pieces were quickly exchanged 
with the charcoal container in the measuring cham-
ber. The chamber was then closed tightly. The voltage 
changes of the sensors 35 min after the chamber clo-
sure were recorded. After the measurement, the lid and 
test pieces were removed from the chamber. The cham-
ber bucket was rinsed with distilled water, wiped with 
a paper towel, and then blown with hot air to remove 
moisture and odors. The charcoal container was placed 
again in the chamber. After 30 min, the next measure-
ment was performed. The measured test pieces were 
dried at room temperature for 24 h, in a drying oven at 
60 ± 2 °C for 48 h, and then cooled for 30 min in a glass 
desiccator. After cooling, the weights of the test pieces 
were obtained.

Data processing
The conductance of sensors was calculated from the 
sensor output voltage as follows:

where Gi is the conductance (the reciprocal of the resist-
ance) of sensor i ( �−1 ), RL is the resistance of the load 
resistor inserted in series to the sensors (1 k � ), Vin is 
the voltage of the power supply (V), and Vi is the output 

Gi =

1

RL(
Vin

Vi
− 1)

,

Fig. 1  Cultivation of the wood-decay fungi

Table 1  List of gas sensors

No. Name Target gases Manufacturer

1 TGS2600 Hydrogen, ethanol Figaro Eng. Inc.

2 TGS2602 Ammonia, H2S Figaro Eng. Inc.

3 TGS2603 Trimethylamine Figaro Eng. Inc.

4 TGS2620 Alcohol, solvent vapors Figaro Eng. Inc.

5 TGS826 Ammonia Figaro Eng. Inc.

6 MQ7 Carbon monoxide Henan Han-
wei Electronics
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voltage of sensor i (V). The sensor response was calcu-
lated as follows [18]:

where Si is the sensor response and G0i is the baseline 
conductance of sensor i ( �−1).

The sensor responses were normalized to extract the 
features of the odor and to remove the concentrations of 
the vapors (odor strength) as follows [18]:

where S̃i is the normalized sensor response of sensor i.
PCA was performed on the normalized sensor 

responses using R 4.0.3 [19].

Results and discussion
Figure 3 shows the rate of mass loss of wood test pieces. 
FP showed a rapid mass loss for the first 12 weeks, which 
was followed by a slower loss in both wood species. TV 
showed a linear mass loss through the cultivation time 
in both wood species. Figure 4 shows representative raw 
sensor output voltages responding to the test pieces of FP 
on sugi at 20 weeks. The sensor output voltages showed 
a quick increase (conductance decrease) after the place-
ment of the test pieces into the chambers (at 5 min). The 
slope of the curves then decreased with time. The sensors 
used in the measurement showed sensitivity to the odors 
of the specimens. We used the values at 30 min after 

Si =
Gi − G0i

G0i

,

S̃i =
Si

√

∑

n

i=1 S
2
i

,

placing the test pieces based on the behavior of the sensor 
output. Figure  5 shows the normalized sensor response 
patterns of FP on sugi at 20 weeks. The normalized sen-
sor responses showed unique patterns among the classes 
of specimens. The sound-dry class showed a distinctive 
pattern compared with the others. This difference can 
be explained by the low water content of the wood test 
pieces and the absence of a culture medium. Although 
fungi cultivation was applied only to the decayed class, 
both decayed class and sound-wet class showed simi-
lar patterns. This similarity could be because the sen-
sor response was affected by the odor of the cultivation 
medium or wood test pieces with a higher moisture con-
tent. On the contrary, some sensors, especially sensor 

Fig. 2  Static headspace odor measurement device

Fig. 3  Changes in mass loss over time
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3, showed different responses to these classes. These 
responses are considered to be fungi-related signals. To 
investigate whether the gas sensors could discriminate 
the fungi-related odor, the PCA was performed to reduce 
the data dimensions. Figure 6 shows scatter plots of prin-
cipal components 1 and 2 of all measurements. In most 
of the measurements, each class formed an independent 
group in the plots except for FP karamatsu 8 weeks, TV 
sugi 4 weeks, and TV sugi 8 weeks. Overlapping distri-
butions were found between decayed and sound-wet 
classes. The lower mass loss in the early stage of the cul-
tivation might explain these overlaps. However, the rela-
tionship is unclear because it depends on both wood and 
fungal species. The decayed and sound-wet classes were 
closely distributed in the plots. This phenomenon shows 

that the sensors used in this study interpreted the odor 
of decayed and sound-wet classes as a similar odor. This 
result also reflects the patterns shown in Fig. 5. However, 
in most cases, the decayed class was separated from both 
sound-dry and sound-wet classes.

This result suggests that the odor of wood-decay fungi 
can be distinguished from that of sound wood using a gas 
sensor array. It could be presumed that decay detection 
using the gas sensor array was performed using a combi-
nation of MVOCs from wood-decay fungi and odor from 
sound wood. This hypothesis is based on a previous emis-
sion analysis. Konuma et al. [2] reported that wood-decay 
fungi emit various MVOCs, for example, 3-octanone. 
Suzuki [20] investigated three Japanese softwood species 
and reported that terpenes, including α-pinene, were the 
predominant volatile organic compounds. In addition to 
the substances mentioned above, the odor of the culture 
medium and its change over time should not be ignored 
in experiments using a cultivation medium. The sensor 
responses to these odors could be an unintentional signal 
that could lead to an overestimation of the discrimina-
tion ability. Baietto et al. [14] reported a clearer discrimi-
nation in PCA plots than our results using commercial 
electronic noses. However, some parts of their prepara-
tion procedure for control (not inoculated) samples, for 
instance, the presence of medium or storage conditions, 
were unclear. In this study, we prepared sound-wet and 
sound-dry classes to clarify the effects of the treatment 
of sound samples. The sound-wet class was carefully pre-
pared in the same way as the decayed class, except for 
mycelia inoculation. The sound-wet class appeared near 
the decayed class in the PCA plot and was also sepa-
rated from the sound-dry class. This distribution can 
also be interpreted as the odor of the cultivation medium 

Fig. 4  Voltage change of the sensors responding to the decayed 
sample

Fig. 5  Example of the normalized sensor response patterns (FP on sugi 20 weeks). Each line shows a pair of test pieces
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transferred to the wood pieces, which is a mutually pre-
dominant odor in both decayed and sound-wet classes. 
If the control samples were inappropriately prepared, 
for example, a lack of cultivation medium or shortage of 
storage time, the gas sensor array would have detected 
the odor of the cultivation medium or its change over 
time. This would have been incorrectly interpreted as a 
signal of wood-decay fungi. Our results showed reason-
able discrimination between the decayed and the two 
sound classes. Not only fungal MVOCs or terpenes, but 

the absence of the cultivation medium odor could also 
separate the sound-dry class and decayed class. On the 
contrary, the distinction between the sound-wet and 
decayed classes was also achieved in most cases. This 
suggests that the gas sensors responded to the fungi-
related odor under the mutual cultivation medium odor.

To determine whether this method can distinguish 
wood-decay fungi-related odor from sound wood odor, 
the data of the measurement period and wood-decay 
fungal species were merged. In these new datasets, the 

Fig. 6  PCA scatterplots of each measurement. The ellipses are 68% probability ellipses assuming a normal distribution
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sound-dry and sound-wet classes were also merged into 
a new sound class to simplify the problem, because these 
classes were not inoculated. Figure 7 shows scatter plots 
of principal components 1, 2, and 3 of the merged data-
sets. In both wood species, the decayed and sound classes 
formed individual groups in the plots. However, these 
groups partially overlapped with each other. These over-
laps were comparatively small. The results also suggested 
that the gas sensor array detected specific patterns of the 
samples with wood-decay fungi and the sound samples, 
regardless of the species of wood-decay fungi and the 
cultivation period.

The simple device that we implemented is effective in 
detecting fungus-related odors in the combination of 
the two constructional softwoods and the two wood-
decay fungi mentioned above. However, the present 
study has some limitations. It was conducted under pure 
cultivation conditions using limited fungal and wood 
species. Further, the sample sizes were small. Addition-
ally, the static head space method that we used in this 
study required destructive sampling. Therefore, further 
research is needed under realistic cultivation conditions 
using non-destructive methods.

Conclusions
The findings of this study suggest that the simple semi-
conductor gas sensor array implemented in this study 
can detect the difference in odor between wood-decay 
fungi-inoculated wood and sound wood samples. The 
measured data of odor from inoculated samples and 
sound samples were reasonably well discriminated by 
PCA, regardless of the fungal species, wood species, 
or incubation period. In a pure culture experiment, the 
cultivation medium-related odor was predominant. The 
results suggest that our gas sensor array detected fungi-
related odor from the samples prepared under pure 
culture conditions. Sensor-based odor discrimination 
enabled odor-based wood-decay fungi detection using 
a combination of JIS standard  [17] fungal species and 
common construction wood. The approach evaluated 
in this study could be used as a cost-effective and easy-
to-use wood decay diagnosis. Furthermore, odor-based 
fungi or decay detection can be used to perform remote 
diagnoses when combined with air sampling methods.

Abbreviations
FP: Fomitopsis palustris; TV: Trametes versicolor; JIS: Japan Industrial Standards; 
EO: Ethylene oxide; PCA: Principal component analysis; MVOC: Microbial 
volatile organic compound.
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