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Abstract 

The utilization of resourceful bamboo can alleviate the wood shortage problem. Bamboo-oriented strand board 
(BOSB) with the highest utilization of bamboo ratio and excellent mechanical properties was considered as a good 
engineering and furniture material. The strength of joints affects the safety of BOSB structure. This study aims to 
investigate the effect of screw spacing on the tensile and compressive stiffness and strength of corner joints from 
BOSB by experimental method combined with finite element method (FEM) compared with wood-oriented strand 
board (WOSB). The results showed that (1) the strength and stiffness of the corner joint was significantly affected by 
the screw spacing, and it affected the compressive strength and stiffness of WOSB more significantly; (2) the bend-
ing moment and stiffness coefficient of BOSB compressed joint decreased with the increase of spacing, while that of 
tensile joint increased first and then decreased, and it reached the maximum value, when the spacing was 48 mm; (3) 
compared with WOSB joint, BOSB joint had higher strength and stiffness, and the failure of the joint was due to the 
yielding of self-drilling screws. This was also verified by numerical analysis results; (4) the bending moment of BOSB 
joints was about 2.5 times that of WOSB joints, while the difference between stiffness coefficient was small; (5) the 
elastic deformations resulted from experimental tests and FEM are similar. It was shown that when the screw spacing 
is 48 mm, the Von Mises stresses on the BOSB joint were smaller, and the bending strength and stiffness were larger, 
which was the most suitable screw spacing.
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stiffness

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Introduction
China is one of the countries with the richest bamboo 
resources and is known as the "Bamboo Kingdom" [1]. 
Moreover, bamboo utilization ranks first in the world in 
terms of product varieties, scale, and output [1–4]. In 

recent years, the development of bamboo-oriented strand 
board (BOSB) made of bamboo shavings [5–7] improves 
the utilization of bamboo and makes it possible to use 
small diameter bamboo and poor-quality materials [8]. 
Moreover, BOSB has the advantages of more excellent 
mechanical properties [1] and better dimensional stabil-
ity [9, 10] compared with wood-oriented strand board 
(WOSB), which is considered as a good engineering and 
furniture material [11, 12]. The strength of furniture is 
not only affected by the mechanical properties of materi-
als, but also depends on the stiffness and stability of joints 
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[13]. The joints in furniture are the weakest elements in 
terms of their strength and stiffness [14]. Therefore, many 
studies focus on the bending moment capacity and stiff-
ness of joints [15]. So far, the mechanical properties of 
wood composite joints have been studied comprehen-
sively, such as PB (particleboard), MDF (medium-density 
fiberboard), HDF (high-density fiberboard), WOSB as 
well as new adhesives and connectors. However, there are 
few researches on the strength of BOSB jointed.

BOSB with high hardness is more suitable for thread 
connections to obtain greater mechanical strength, com-
pared with non-threaded connections [16–18]. Com-
pared with the two-in-one, three-in-one (with embedded 
nut), wood screw, and other threaded connectors, the 
thread end of self-drilling screws is narrower, the thread 
spacing is smaller, and the thread has a greater effect on 
the shear and extrusion deformation of bamboo fiber, so 
its connection strength is greater than other threaded 
connectors [19]. Self-drilling screws are widely used in 
the design of contemporary furniture, especially wooden 
and non-disassemble furniture [20]. Screws can be used 
as an auxiliary for joining connectors and materials, and 
can also be directly used for fixing corner joints, such as 
the joint of back plates and side plates, feet and boxes, 
and laminate plates and side plates. In 2018, Guo et  al. 
found that the screw withdrawal resistance of BOSB is 
much higher than conventional particleboard in all direc-
tions [21]. The durability of BOSB fixed with self-drilling 
screws is greater than that of WOSB and glued laminated 
bamboo [17]. However, the performance of BOSB corner 
joints fixed by screws has not been studied.

Moreover, the screw spacing affects the strength of 
joints in furniture [22–25]. Improper installation spacing 
of screws would affect both the efficiency and cost of pro-
duction and the stability and safety of furniture. However, 
there is no research about the influence of installation 
spacing on the connection strength of BOSB. A review of 
the literature shows that the strength of most furniture 
corner joint is obtained by experimental method [13, 26], 
which is destructive and non-repeatable, and only the 
failure strength and pattern of joints can be obtained. 
Therefore, knowledge of the stress distribution of joint 
is limited, which is not conducive to the optimization of 
furniture structure [27]. With the development of finite 
element software functions, the finite element analysis 
method is applied to the structural design of furniture 
gradually [2, 28, 29]. In the process of furniture design, 
FEM (finite element analysis) can be used as a fast and 
effective simulation method. Mechanical analysis can be 
done by the simulations of complex materials and mod-
els under different loads [2]. And the simulations are 
repeatable.

Therefore, the experimental and FEM analysis are 
used to investigate the effect of screw spacing on cor-
ner joint strength and stiffness of BOSB and WOSB to 
optimize screw connection. The specific objectives of 
this study are to (1) investigate the effect of screw spac-
ing on the strength and stiffness of BOSB and WOSB 
joint by experimental and FEM method; (2) verify the 
accuracy of the FEM compared with the experimental 
results; (3) determine the optimal self-drilling screws 
installation spacing of BOSB and WOSB joint.

Materials and methods
Properties of selected materials
Samples were BOSB and WOSB, which were consid-
ered to be isotropic parallel to their wide surfaces. The 
density and moisture content were measured according 
to the ASTM D4442-92 [30] and ASTM D2395-93 [31], 
respectively. The Young’s modulus and tensile strength 
(σT) were measured by uniaxial tension test [32–34]. 
Poisson’s ratio was tested with strain gauge method 
according to ASTM D3039 [35]. Conventional yield 
point R0.2 was determined using the uniaxial tensile 
tests method. Based on the stress–strain diagram, the 
yield strength R0.2 (MPa) (Fig.  1) represents the stress 
value that produces 0.2% residual deformation [29]. The 
average test values of three square plate specimens can 
be obtained by repeated tests.

Self-drilling screw is stainless steel, with nominal 
diameter (D) of 3.97  mm, inner rod diameter (d) of 
2.76  mm, length (L) of 39.73  mm, thread length (L/

Thread) of 31.5 mm, screw pitch (P) of 1.40 mm (shown 
in Fig.  2) and the yield strength and modulus of elas-
ticity were measured according to standard LY∕T 3219–
2020 [36].

Fig. 1  Diagram used to determine conventional proportionality limit 
and yield point
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Preparation of joints
The self-drilling screws were bought from a local com-
mercial supplier (Hefei, China). The dimensions of BOSB 
were 150 × 100 × 15  mm and 135 × 100 × 15  mm, and 
the dimensions of WOSB were 150 × 100 × 18  mm and 
132 × 100 × 18 mm. The screw spacing (S) was 16, 32, 48, 
64, and 80  mm, respectively, symmetrically distributed, 
and fixed in the middle line of the thickness direction 
of the plates (shown in Fig. 3). Self-drilling screws were 
installed with a guide hole of 3.4  mm, penetrating one 
plate then inserting into the other one. 10 repetitions of 
each joint are prepared, and there were 100 specimens in 
total.

Strength testing
Joint mechanical properties were determined in compres-
sion and tension tests (Fig. 4). Tests were performed using 
a mechanical testing machine (model: WDW-100E, Jinan 
Chenda Testing Machine Manufacture Co., Ltd., Jinan, 
China). Crosshead speed was 10 mm/min. The experimen-
tal tests directly provided dependence between force P and 

displacement DP. The strength of the joint was calculated 
as:

where MC was the bending moment resistance of the 
joint under compression loading (N  m), MT was the 
bending moment resistance of the joint under tension 
loading (N m), Pmax was the maximum load in each test 
sample (N), a’ and e’ were the moment arm in compres-
sion and tension, respectively (m).

For selected load diagrams, the stiffness coefficient of 
joint K (N·m/rad) was presented as the quotient of the 
bending moment for joint posts or rails 0.4MC or 0.4MT 
and rotation angle ∆φ between the joint arms. This angle 
was determined based on the changes in joint geometry 
[15, 29, 34].The coefficient of stiffness coefficient K sub-
jected to compression (Fig. 4a) for the range of linear elas-
ticity of joint was described by the equation [15]:

where:

(1)MC = Pmaxa
′
,

(2)MT = 0.5Pmaxe
′
,

(3)KC =
0.4MC

�ϕ
,

(4)�ϕ =
π

90
(ϕ1 − ϕ2),

(5)a
′
=

√
2

2
a− a

′ ′
,

(6)a
′ ′
=

√

b2 − c2,

Fig. 2  Dimensions of self-drilling screw

Fig. 3  Illustration of screw installation

Fig. 4  Method of joint analysis: a compression, b tension
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The stiffness of joints subjected to tension (Fig.  3b) for 
the range of linear elasticity was calculated from the follow-
ing equations:
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2
2 a

a
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,
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(9)DP0.4Pmax = 0.4 × DPmax.
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)2
,

(18)DP0.4Pmax = 0.4 × DPmax.

The numerical model of joints
Modeling and numerical simulations were performed 
using the Siemens NX 12.0 program and Ansys work-
bench 17.0 software, respectively. Geometry, loading and 
boundary conditions of the model were based on Fig. 3. 
The thread features of screw were ignored in Numeri-
cal simulation. Between the hole in the board and screw, 
the bonded interaction was applied. The contact prop-
erty between boards was specified with a friction coeffi-
cient of 0.1. The elements sizes of board and screw were 
approximately 3 mm and 5 mm, while for contact parts, 
the sizes of elements were approximate 3  mm to make 
the model more accurate. In general, 10-node modified 
quadratic tetrahedron element C3D10M was used (about 
48,240 elements and 74,640 nodes per model). In addi-
tion, geometric nonlinearity is considered to represent 
the large deformation of the structure.

Results and analysis
Properties of materials
As seen in Table  1, the mean density of BOSB was 
806.61 kg/m3, which was about 1.4 times that of WOSB. 
The Young’s modulus and tensile strength of BOSB were 
both about three times that of WOSB. The data in Table 1 
would be used for the finite element analysis.

Strength of joints
It could be observed in Fig.  5a, b that curves for BOSB 
joint were smooth with no rapid changes after the maxi-
mum forces, but the curve of WOSB joint dropped rap-
idly after reaching the maximum force. This mean that 
the BOSB joints fixed by self-drilling screw had good 
durability and the strength of the joints did not decrease 
rapidly after reaching ultimate load, which could ensure 
the safety of the joint. Numerical calculations for the 
examined joints are also presented in Fig. 5, and the regu-
larity of the loading curves obtained from the FEM was 
similar to test curves.

Seen from Fig.  5, the displacement–force curve could 
be approximately categorized into two stages. In the first 
stage, the correlation between force and displacement 
was almost linear, which confirmed the Hook’s law [25]. 
The angle of curves with the horizontal axis represented 
the stiffness of joint [33]. In the case of compression, the 

Table 1  Physical and mechanical properties of board and screw

Material Thickness/
diameter (mm)

Density (kg/m3) Young’s modulus 
(MPa)

Tensile strength 
(MPa)

Poisson’s ratio Yield point (MPa)

BOSB 15 806.61 6770.86 32.09 0.33 27.85

WOSB 18 569.20 2096.15 9.10 0.32 7.98

Screw 4 36,521.08 0.30 646.44
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angle of BOSB joints with screws spacing of 48 mm was 
the largest, which represented the maximum strength 
and stiffness of this joint. Also, the angle was the larg-
est for the WOSB joint with screw spacing of 48  mm. 
Moreover, the angles of BOSB joints with the spacing of 
32, 64 and 80 mm were almost the same, but the maxi-
mum force was obviously different, which indicated that 
the three joints had similar stiffness, but the strength was 
different. Among BOSB joints, the compression ultimate 
force with screw spacing of 64  mm was largest, 505  N, 
and that of 80  mm was smallest (456  N). In the tensile 
test results, the BOSB joint with screw spacing of 16 mm 
had the maximum ultimate force (1460  N), which was 
36% higher than that of the BOSB joint with the spac-
ing of 80 mm (1071 N). For the WOSB joints with screw 
spacing of 48 mm, 64 mm and 80 mm had the same angle 
between the curve and the horizontal coordinate, which 
indicated that the stiffness was similar, while, the WOSB 

joint with screw spacing of 48 mm had the highest ulti-
mate force (501 N), followed by that of 64 mm (477 N).

Overall, the strength of joints subjected to tension 
was almost twofold greater than compressed joints, and 
the deflection of joints in the tension test was approxi-
mately twofold smaller than compressed samples. At 
the same time, the maximum force of BOSB was about 
3 times of WOSB.

Typical damages of arms are illustrated in Fig.  6 
caused by joint compression or tension. It should be 
noted that in the case of BOSB joint, the self-drilling 
screws were bent (due to the yield of the screws) and 
the shavings near them were pulled out, resulting in 
the failure of the joint. But in the case of WOSB joint, 
the board cracked and large pieces were pulled out (the 
board is damaged). This was also the reason that obvi-
ous peak appeared in the displacement–force curve of 
Fig. 5b, c.

Fig. 5  The displacement–force curve of joints: a, b was tension and compression test curves of BOSB joint, c, d was tension and compression 
curves of WOSB joint
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An important and reliable indicator of joint strength 
was provided by the maximum bending moment. Fig-
ure  7 shows the effect of screw spacing on the bending 
moment. It could be seen from Fig. 7a that in the tensile 
test, it was clear from this figure that in the tensile test, 
the bending moment of BOSB joint with screw spacing 
of 16 mm (MT = 69.97 N m) was 38% higher than that of 
BOSB joint with screw spacing of 16 mm (MT = 50.80 N 
m). It indicated that screw spacing significantly affected 
the strength of BOSB joint [28]. In contrast, screw spac-
ing has little effect on WOSB joint.

The bending moment of joints subjected to tensile 
was greater than that of compression joints. For BOSB 
joint, the MT was about 1.5 times MC, and the MT was 
about 2 times MC for WOSB joint. The MC of the BOSB 
joint was almost 3.5- to 4-fold higher than that of the 
WOSB joint. It can be seen from Fig. 7b that the bend-
ing moment of the BOSB joint in the compressive test 
increased and then decreased with the increase of screw 
spacing, and the maximum bending moment at the screw 
spacing of 48 mm (MC = 47.4 N m) was 23% higher than 
the smallest bending moment at the screw spacing of 

Fig. 6  Typical damage of joints: a BOSB, b WOSB

Fig. 7  Bending moment of joints at: a tension, b compression
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80  mm (MC = 38.39  N m). However, for WOSB joints, 
the highest bending moment at the screw spacing of 
48 mm (MC = 13.65 N m) was 40% higher than the small-
est bending moment at the screw spacing of 80  mm 
(MC = 9.78 N m), which indicated that the screw spacing 
had much more obvious effect on the bending moment of 
WOSB joints during compression test.

Analysis of variance (Tables  2 and 3) revealed a sig-
nificant difference between the bending moments for 
joints connected with different screws spacing. For the 
tension test, F (BOSB) = 7.652 > F (WOSB) = 4.785, thus 
screw spacing affected the bending moment of BOSB 
joint more than that of WOSB. While, for the compres-
sion test, F (BOSB) = 4.573 < F (WOSB) = 15.780, which 
indicated screw spacing affected the bending moment of 
WOSB joint more than that of BOSB.

Summing up it may be generalized that the screw spac-
ing was 48  mm, the BOSB joints had the largest bend-
ing moment for compressive and the smallest difference 
with the tensile bending moment, so this screw spacing 
was beneficial to improve the safety of furniture struc-
ture [37]. In this case, the WOSB joint also has better 
strength. Moreover, when Moreover, the strength of joint 
with screw-fixed joint was greater compared to two-in-
one and three-in-one [19].

Joint stiffness
Stiffness of joints was evaluated based on the change of 
stiffness coefficient K (N m/rad) in the function of rota-
tion angle Δφ (rad). Analyses of results given in Fig.  8 

indicated that the Δφ–K curves were smooth, and stiff-
ness coefficient K increased with the increase of rota-
tion angle Δφ nonlinearly before reaching the maximum 
value. In the tension test curve, the peak width of BOSB 
joints was greater than that of WOSB joints, which indi-
cated that BOSB joints had better durability. The curves 
also showed that the stiffness coefficient of the BOSB 
joints was greater than that of the WOSB joints. Addi-
tionally, the stiffness coefficient curves showed that in the 
compression test joints obtain maximum stiffness coeffi-
cient at an almost twofold greater than that of subjected 
to tension. Besides, when the stiffness coefficient reaches 
the maximum, the DP of the BOSB joint in the case of the 
compression and tensile tests were around 7.7  mm and 
5.5 mm, respectively, and it greater than that of WOSB. It 
confirms that the BOSB joint has better durability.

Figure 9 shows the effect of the screw spacing on the 
stiffness coefficient. It could be seen from Fig.  9a that 
the stiffness coefficient of BOSB joint decreased with 
the increase of screw spacing, while it increased for 
WOSB joint in tension test. In the compression test, 
the stiffness coefficient of the BOSB and WOSB joint 
tended to increase and then decrease with increasing 
spacing, their stiffness coefficient reaches the maxi-
mum when the screw spacing was 48  mm. Compared 
with the difference in bending moment, the differ-
ence in stiffness coefficient between WOSB and BOSB 
joint was slightly smaller. For BOSB joints with screw 
spacing of 48  mm the stiffness coefficient takes val-
ues of KT = 324.54 Nm/rad in the case of tension and 

Table 2  ANOVA results of tension moment of joints

Material Source of variation Sum of squares df Mean square F Level of 
significance

BOSB Between groups 1976.597 4 494.149 7.652 0.000

Within groups 2260.235 35 64.578

Total 4236.832 39

WOSB Between groups 67.405 4 16.851 4.785 0.003

Within groups 123.268 35 3.522

Total 190.672 39

Table 3  ANOVA results of compression moment of joints

Material Source of variation Sum of squares df Mean square F Level of 
significance

BOSB Between groups 362.825 4 90.706 4.573 0.004

Within groups 694.189 35 19.834

Total 1057.014 39

WOSB Between groups 68.437 4 17.109 15.780 0.000

Within groups 37.947 35 1.084

Total 106.384 39
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KC = 357.06 Nm/rad for compression, which differs 
by as little as 9%. This showed that the loading mode 
has less influence on the stiffness coefficient of BOSB 
joints with screw spacing of 48 mm. In the tension test 
the stiffness coefficient of BOSB joints with screw spac-
ing of 32 mm, KT = 349.68 Nm/rad, was slightly greater 
than that of the joint in compression test was minimum 
at KC = 233.78 Nm/rad. Thus the difference of 33% was 
significant. The difference of stiffness coefficient of 
BOSB joint with screw spacing of 16  mm between in 
tension and compression test was 18%. To the structural 
design of frame furniture, such a trend was highly dis-
advantageous. This was connected with the commonly 
observed type of deformation, e.g., in the side plating 
of bedsteads. In this case, joints were subjected alter-
nately to tension and compression [15]. Thus, the BOSB 
joint with screw spacing of 48 mm has a comparable or 

identical stiffness to ensure high structural reliability. 
The results of ANOVA results show the screw spacing 
had significant influence on the stiffness coefficient of 
both BOSB and WOSB joint, and it affected the tensile 
stiffness more than compression stiffness.

Results of numerical calculations for modeled joints
Figure 10 presents the Von Mises stresses of joints sub-
jected to compression. From Fig.  10, we can observe 
that the highest stresses were concentrated in bottom of 
holes. It meant that with the load increases, the first dam-
age occurred in this part of the plate [29]. The developing 
stresses were caused by the pressure of the self-drilling 
screws on the side surface of the hole. The boards on the 
inside of the joint also had large stresses due to compres-
sion. The results showed that the place with higher stress 
was the most vulnerable to failure, which was confirmed 
by the failure mode in the experimental test. And it also 

Fig. 8  Variation of stiffness coefficient K (N·m/rad) in the function of the rotation angle Δφ (rad) of joint: a compression, b tension

Fig. 9  Stiffness coefficient for joints subjected to: a tension, b compression
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showed the validity of the numerical analysis results. 
Moreover, it was found from Fig. 10 that under the same 
force, the stress distribution on the BOSB joints with 
screw spacing of 48 and 64 mm was significantly smaller 
than that with screw spacing of 16, 32 and 80 mm. This 
indicated that the safety of BOSB joints with screw spac-
ing of 48 and 64  mm were higher than that of BOSB 
joints with other screw spacing, which was also verified 
by the experimental data.

Figure 11 presents the Von Mises stresses of joints sub-
jected to tension. The maximum stress was also concen-
trated near the hole on the inside of the screw bend. For 
boards parallel to the screw installation direction, the 
leverage on the screw causes the boards to delaminate 
and crack. Typical damages of arms illustrated in Fig.  6 
caused by joint compression or tension corresponded 
with the results of numerical calculations indicating the 
same places of failure. Comparing the Von Mises stresses 
of different joints in Fig. 11, it was found that the maxi-
mum stress of joints with screw spacing of 48 and 64 mm 
was smaller, which indicates that the joints were safer. 
This result corresponds to the experimental result.

Conclusions
In this study, the effect of screw spacing on corner joint 
stiffness and strength of BOSB was studied using FEM 
and experimental test to optimize self-drilling screw 

spacing compared with WOSB. The following conclu-
sions were drawn:

(1)	 The bending moment and stiffness coefficient were 
significantly affected by screw spacing. The screw 
spacing affected the mechanical property of BOSB 
joints more significantly than that of WOSB joints 
in tension test, while for compression test the screw 
spacing affected the bending moment and stiffness 
coefficient of WOSB joints more significantly than 
that of BOSB joints. The bending moment of BOSB 
joints subjected to compression and tension were 
almost 3.5- to 4-fold greater than that of WOSB 
joints, while the difference of stiffness coefficient 
was small. Moreover, the bending moment of BOSB 
joints subjected to tension was almost twofold 
greater than compressed samples.

(2)	 For BOSB, the screw spacing of 48  mm could 
ensure the maximum strength and stiffness of cor-
ner joints and improve the safety of furniture.

(3)	 The failure of BOSB joints was caused by the screw 
yielding and pulling out from the board (non-
cracking). Due to the small mechanical strength of 
WOSB, the boards cracked during joint bending, 
resulting in the failure of the corner joints.

Fig. 10  Von Mises stresses of joints subjected to compression
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(4)	 A comparison of displacement and failure mode of 
joints between experiment test and FEM showed 
that their results were the same and confirm the 
finite element analysis was effective.
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