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Abstract 

The anatomy and ultrastructure of sunflower stalk rind are closely related to its conversion and utilization. We studied 
systematically the anatomy and ultrastructure of the stalk rind using light, scanning electron, transmission electron 
and fluorescence microscopy. The results showed that the stalk rind consisted of phloem fibers (PF), xylem fibers (XF), 
vessel elements (V), ground parenchyma cells (GPC), axial parenchyma cells (APC), xylem ray parenchyma cells (XRPC), 
and pith ray parenchyma cells (PRPC). These cell walls were divided into the middle lamella, primary wall, and second-
ary wall (S). It was found that the S of PF, XF and V was further divided into three layers (S1–S3), while the S of APC, GPC, 
XRPC and PRPC showed a non-layered cell wall organization or differentiated two (S1, S2) to seven layers (S1–S7). Our 
research revealed the plasmodesmata characteristics in the pit membranes (PMs) between parenchyma cells (inter-
GPCs, inter-XRPCs, and inter-PRPCs). The morphology of the plasmodesmata varied with the types of parenchyma 
cells. The thickness and diameter of PMs between the cells (inter-Vs, V–XF, V–APC, and V–XRPC) were greater than that 
of PMs between parenchyma cells. The cell corners among parenchyma cells were intercellular space. The lignification 
degree of vessels was higher than that of parenchyma cells and fibers. The results will provide useful insights into the 
biological structure, conversion and utilization of sunflower stalk rind.
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Introduction
The ultrastructure of plant cell walls is important not 
only for plant biology, but also for the conversion and 
utilization of mature plants [1]. Considerable progress 
has been made in understanding the basic structure and 
function of wood cell walls, but the variation in cell wall 
structures in grasses remains poorly understood because 
of the high complexity and dynamic characteristics of the 
cell wall [2, 3]. One of the key steps in lignocellulosic con-
version is cell wall deconstruction. The anatomy and cell 
wall ultrastructure of lignocellulosic materials are closely 
related to their conversion and utilization [4].

Plant cell walls are typically described as complex 
multi-layered structures consisting of an ordered array of 

cellulose microfibrils embedded in a matrix of non-cellu-
losic polysaccharides and lignin [5]. The ultrastructure of 
plant cell walls includes a complex hierarchical structure 
and heterogeneous distribution of chemical components 
between different layers [6]. Plant cell walls are usually 
divided into the middle lamella (ML), primary wall (P), 
and secondary wall (S). The S is the thickest and accounts 
for the largest proportion of the cell wall volume [7]. 
Lignin is the primary component of plant cell wall. Gen-
erally, the concentration of lignin in cell corners (CCs) or 
compound middle lamella (CML) is higher than that in 
the S. It is worth noting that, as an important morpho-
logical region of the cell wall, there are few reports on the 
cell pits and intercell pit membranes (PMs). In the ligno-
cellulosic biorefining process, the characteristics of cell 
wall layers and PMs affect the transverse transport of the 
solution, and then affect the efficiency of biomass conver-
sion [8, 9].
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Sunflower (Helianthus annuus L.) is one of the main 
oil crops. With the increasing demand for vegetable oil, 
the planting area of sunflowers is increasing year by year. 
The global sunflower planting area exceeded 26.5 million 
hectares in 2017, and approximately 80–186 million tons 
of residual stalk was generated [10]. The stalk consists of 
the rind and pith, in which the weight percentage of rind 
is approximately 90% [11]. The stalk rind can be used for 
papermaking [12], producing composite materials [13], 
chemicals [14], and energy fuels [15]. Sun et  al. studied 
the cell composition and arrangement of the base, mid-
dle, and top of sunflower stalks, and analyzed the effects 
of each portion microstructure on mechanical properties 
and water diffusion [16]. Mehdikhani et  al. studied the 
length and width of stalk rind fiber, and discussed its per-
formance in papermaking [10]. Currently, the anatomy of 
sunflower stalk rind is not detailed, and the ultrastruc-
ture of its fibers, vessel elements (V), and parenchyma 
cells has not been reported. Hence, we analyzed the 
anatomy of stalk rind using light microscopy (LM), the 
cell pits characteristics using scanning electron micros-
copy (SEM), the ultrastructure of cell wall layers and 
PMs using transmission electron microscopy (TEM), and 
lignin distribution using fluorescence microscopy (FM) 
and scanning electron microscopy with energy disper-
sive X-ray analysis (SEM–EDXA), and measured cell wall 
layer thickness, the PMs thickness and diameter using a 
combination of TEM images and ImageJ software. This 
study aimed to reveal the anatomy and cell wall ultras-
tructure of sunflower stalk rind and to provide the basis 
for its conversion and utilization.

Materials and methods
Materials
Sunflower stalk was collected from Wuchuan County, 
Inner Mongolia, China. After sunflower maturation, 
stalks with a height of approximately 2 m and diameter of 
approximately 20 mm were selected. The middle section 
of the stalk was taken, and the pith was removed manu-
ally. The stalk rind was air-dried and stored for further 
use.

LM
The stalk rind was cut into strips (0.5–1 cm height) and 
embedded with polyethylene glycol 2000 [17]. Trans-
verse and radial sections (30  μm thickness) were pre-
pared using a sliding microtome (TU-213, Yamato Kohki 
Industrial, Saitama, Japan), then stained with Safranin O 
and mounted in glycerol. Anatomy of the stalk rind was 
observed using a light microscope (BH2, OLYMPUS, 
Japan).

SEM
The radial sections (30 μm thickness) of the stalk rind 
were selected. Before imaging, the sections were sput-
ter-coated with 8  nm of gold using an E-1010 sputter 
coater (Hitachi, Hitachinaka, Japan) for 120 s. The cell 
pit characteristics were observed using an environmen-
tal scanning electron microscope (Quanta 200, FEI Co., 
OR, USA) at an acceleration voltage of 20 kV.

TEM
The stalk rind was cut into sticks (1 × 1 × 1 mm3). The 
samples were embedded in Spurr’s epoxy resin [18]. 
Transverse ultra-thin sections (90  nm) were cut with 
a diamond knife using an ultramicrotome (EM-UC6, 
Leica, Wetzlar, Germany). The sections were stained 
with 1% w/v KMnO4 (prepared in 0.1% w/v sodium cit-
rate) for 2 min at 25 °C. The cell wall layering structure 
and PMs characteristics were observed under a trans-
mission electron microscope (JEM-1400, JEOL, Tokyo, 
Japan) at an accelerating voltage of 80 kV.

FM
Transverse sections (15 μm thickness) were dehydrated 
in a graded series of ethanol solutions, and then were 
mounted in 70% glycerol and covered with a coverslip. 
Sections were observed with a fluorescence microscope 
(BX51, Olympus, Tokyo, Japan) using mercury lamp for 
illumination and using light at 330–385 nm for imaging 
lignin autofluorescence.

SEM–EDXA
Transverse sections (15  μm thickness) were extracted 
with a benzene–ethanol mixture (2:1, v/v) for 24 h. The 
sections were then reacted with 1% w/v KMnO4 for 
5 min at 25 °C. A gold film (8 nm thickness) was coated 
on the sections with an E-1010 sputter coater (Hitachi). 
Finally, the distribution of lignin in the cell walls was 
analyzed by measuring the Mn–Kα X-ray counts using 
a Quanta 200 environmental scanning electron micro-
scope (FEI Co.) equipped with an energy dispersive 
X-ray analyzer (Inca X-act, Oxford, England). The 
accelerating voltage and probe current used were 20 kV 
and 80  μA, respectively. The point measurement of 
Mn-Kα X-rays was performed using at least 10 cells per 
region.

Ultrastructure measurements
ImageJ software (available at http://​rsb.​info.​nih.​gov/​
ij) was used to measure the cell wall layer thickness, 
PMs diameter (DPM), and PM thickness (TPM) based on 
TEM images. The cell wall layer thickness was meas-
ured for at least 20 cells per cell type. The DPM and TPM 
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measurements were recorded for more than 20 PMs 
per pit-pair type.

Results and discussion
Anatomy features
The LM images showed the transverse and radial 
anatomy of sunflower stalk rind (Fig. 1). The stalk rind 
consisted of the epidermis (Ep), vascular bundles, and 
parenchyma tissues. The Ep was composed of epider-
mal membrane and epidermal cells, was located in the 
outermost layer of the stalk rind. The vascular bundle 
tissues were arranged in a ring and consisted of phloem 

(Ph), vascular cambium (VC), and xylem (X). Ph con-
sisted of phloem fibers (PF). X consisted of xylem fib-
ers (XF), vessel elements (V), axial parenchyma cells 
(APC), and xylem ray parenchyma cells (XRPC). The 
cell composition and arrangement of X were similar 
to that of porous wood [19]. There were several types 
of parenchyma cells in the stalk rind, including ground 
parenchyma cells (GPC), APC, XRPC, and pith ray 
parenchyma cells (PRPC). The GPCs were distributed 
near the Ep, while the APCs and XRPCs were scattered 
around the V and XF. The number of PRPC differenti-
ated cells was large, usually present in multiple rows.

Fig. 1  LM images of the anatomy of sunflower stalk rind: a transverse section; b radial section

Fig. 2  TEM images of cell wall layering structure of sunflower stalk rind: a PF; b XF; c APC and V; d XRPC; e PRPC; and f GPC. Scale bars indicate 2 μm
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Cell wall layering structure
Morphological characteristics of the cell wall
The TEM images showed the cell wall layering structure 
of sunflower stalk rind (Fig. 2). The cell walls of fibers, V, 
and parenchyma cells were divided into the ML, P, and 
S. The boundary between the ML and P was not clearly 
distinguishable because of its high density and extreme 
thinness. Therefore, both the ML and the contiguous P 
were referred to as the CML [20]. The S of the PF was 
divided into an outer (S1), a middle (S2), and an inner 
layer (S3) (Fig.  2a). The S layering structure of the XF 
resembled that of the PF, and was also divided into S1, S2, 
and S3 (Fig.  2b). The layering structure of the S of stalk 
rind fibers was similar to that of wood fibers [21], except 
that the S3 of stalk rind fibers was very thin, which was 
occasionally difficult to distinguish from the S2. The S of 
the V was also differentiated into S1, S2, and S3, in which 
the S1 was clearly distinguished from the S2, and the S3 
was very thin (Fig. 2c).

The layering structure of the S of parenchyma cells in 
stalk rind varied with the types of parenchyma cells. The 
S of the APC had a non-layered cell wall organization, 
and these cells were mostly distributed close to the ves-
sels (Fig. 2c). The APC in oak earlywood also showed the 
characteristics of non-layered cell wall organization [22]. 
The S of the XRPC was resolved into three (S1–S3) or 
seven layers (S1–S7) (light and dark alternation) (Fig. 2d). 
XRPCs with the S divided seven layers were usually dis-
tributed between XFs. The S of the PRPC was differenti-
ated into two (S1, S2) or three layers (S1–S3), and PRPCs 
with the S divided two layers was generally distributed in 
the X (Fig. 2e). The S of ray parenchyma cells in Cornus 
alba similarly consisted of two well-defined layers [23]. 
The S of the GPC was divided into three (S1–S3) or four 
layers (S1–S4) (Fig. 2f ). GPCs with the S divided four lay-
ers was distributed near the Ep. To summarize, the S of 
parenchyma cells of sunflower stalk rind showed a non-
layered cell wall organization or could be divided into 
two, three, four and seven layers, with three layers being 
the most common. It was interesting to find that the CCs 
among parenchyma cells in stalk rind were all intercel-
lular space, and the volume of intercellular space in the 
GPC and PRPC was usually larger than that of the APC 
and XRPC. The intercellular space was most character-
istic of mature tissue. The parenchyma cells in sunflower 
stalk rind were mature and fully differentiated, which was 
the outstanding characteristic of annual grass plants dif-
ferent from wood.

When the TEM was used to analyze the lignin distri-
bution in cell wall, the ultra-thin sections needed to be 
stained by KMnO4. KMnO4 having a special reactiv-
ity with lignin, reacted fast with the double bonds in 
lignin molecules by forming manganese dioxide, which 

deposited on the reaction sites [24]. According to the 
difference in the intensity of staining at the reaction site, 
the high and low lignin concentrations were determined 
[25]. As shown in Fig. 2, the staining intensity was high-
est in the CC of fibers, followed by the CML of each cell, 
and the S layer with a lower staining intensity. That was, 
the CC of fiber cells had the highest lignin concentration, 
followed by the CML of each cell, and the S layer had a 
lower lignin concentration. Overall, the staining inten-
sity of S2 layer of vessel was higher than that of fiber and 
parenchyma cells, and the S2 layer was the main part of 
cell wall. Hence, the lignification degree of vessel in stalk 
rind was higher than that of fiber and parenchyma cells 
(Fig.  2c arrow). Plant vessels mainly transported water 
and inorganic salts, which were subjected to great pres-
sure of transpiration. The high degree of lignification of 
the vessel cell wall can increase the pressure resistance, 
so as to protect it from collapse during transporting [26].

Quantification of cell wall layers
On comparing the thickness of cell wall layers of fibers, 
V and parenchyma cells in the stalk rind, only paren-
chyma cells with the S divided three layers were selected 
for measurement. Figure 3 shows the average thickness of 
each layer in stalk rind cell walls. The order of average cell 
wall thickness was PF > XF > V > GPC > APC > XRPC > PR
PC. The thickness of S2 layer of fibers, vessels and paren-
chyma cells in stalk rind was the largest, with an aver-
age thickness of 0.55–2.43 μm, followed by S1 layer, with 
an average thickness of 0.20–0.57  μm. The thickness of 
CML layer and S3 layer was the smallest, with an average 

Fig. 3  The thickness of each layer in sunflower stalk rind cell walls
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thickness of 0.06–0.17  μm and 0.07–0.23  μm, respec-
tively. The average thickness of S2 layer of the PF was 
greater than that of the XF, which indicated that the XF 
had a lower cell wall thickness compared to the PF. The 
average thickness of the S2 layer of the GPC was higher 
than that of APC, XRPC, and PRPC, which was the same 
as the features of cell wall thickness of basic parenchyma 
cells and vascular parenchyma cells in bamboo [27].

Pit characteristics of cells
Type and distribution of pits
The pit is a hole or concave in the process of plant sec-
ondary wall thickening [5]. The pit is the most obvious 
structural feature on the cell wall, and is the main trans-
verse channel for water or nutrient transport in plants 
[28]. The SEM images showed pits characteristics of 
sunflower stalk rind cells (Fig. 4). The pits of the PF were 
mostly bordered (Fig. 4a), while pits of the XF were sim-
ple (Fig. 4b). The pits of both PF and XF were randomly 
distributed on the cell wall, but the number of pits in 
the XF was more than that in the PF. Pits of the V were 
bordered, and were distributed in an alternate pattern 
(Fig. 4c). Pits of the XRPC, APC, and GPC were simple, 
and were scattered randomly throughout the cell wall. 
The distribution of pits in the XRPC and APC was sparse 
and the pit aperture was large, while that in the GPC was 
dense and the pit aperture was small (Fig.  4d–f). Com-
bined with the analysis of the anatomy and cell wall 

layering structure, the stalk rind had the characteristics 
of many parenchyma cells, thin cell wall of parenchyma 
cells, the intercellular space in CC among parenchyma 
cells, and a large number of pits on cell wall, which were 
conducive to the penetration of liquid chemicals during 
the conversion and utilization [29].

Morphological characteristics of pit membranes
The PM was a very important structural part of the pits, 
which was a safety valve for water transport in plants 
[8]. Figure 5a–d shows the PMs between the cells (inter-
Vs, V–XF, XF–APC, and XF–XRPC) in sunflower stalk 
rind, and Fig. 5e–g shows the PMs between parenchyma 
cells (inter-GPCs, inter-XRPCs, and inter-PRPCs). It was 
worth noting that the PMs between parenchyma cells 
was perforated by plasmodesmata (Fig. 5e–g inset), while 
the PMs between other cells was not perforated. It might 
be because on the one hand, plasmodesmata are gener-
ally not found in bordered pit membranes that were 
formed between treachery cells (i.e., tracheid and ves-
sel). In angiosperms, plasmodesmata are absent or rare 
in bordered pit membranes of inter-tracheid and inter-
vessel bordered pits. On the other hand, plasmodesmata 
are abundant in a simple pit of parenchyma cells [30]. All 
PMs had perforations. Perforations allowed for free pas-
sage of water and nutrients, while limiting the passage of 
pathogens between cells [31]. Furthermore, the morphol-
ogy of plasmodesmata on the PMs between parenchyma 

Fig. 4  SEM images of the pits of sunflower stalk rind cells: a PF; b XF; c V; d XRPC; e APC; and f GPC. Scale bars indicate 10 μm
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cells in stalk rind was different, which might be related 
to the physiological function of parenchyma cells. The 
GPCs are located near the Ep, and their main function 
is to store starch granules. The XRPCs are close to the V 
and involve in the transport capacity of the V, transport-
ing water, nutrition, etc. However, the PRPC connects 
outward to the cortex and inward to the pith, and has 
both functions of the GPC and XRPC [32].

Quantification of pit membranes
Figure  6 shows the measurement results of TPM and 
DPM of sunflower stalk rind cells. The order of the 
TPM was V–V > V–XF > V–APC > V–XRPC > GPC–
GPC > PRPC–PRPC > XRPC–XRPC. The order of the 
DPM was V–XRPC > V–APC > V–XF > V–V > XRPC–
XRPC > PRPC–PRPC > GPC–GPC. The TPM (0.33–
0.43 μm) and the DPM (3.17–5.15 μm) between the cells 
(inter-Vs, V–XF, V–APC, and V–XRPC) were all larger 
than the TPM (0.14–0.23 μm) and the DPM (1.32–1.63 μm) 
between parenchyma cells (inter-GPCs, inter-XRPs, and 
inter-PRPCs). The DPM was related to the aperture of 
simple pit [33], and the DPM results of parenchyma cells 
were also consistent with the larger pit aperture in XRPC 
than that in GPC.

Lignin distribution in cell walls
Autofluorescence images can visually display lignin dis-
tribution in the cell walls [34]. Figure 7 shows the auto-
fluorescence images of sunflower stalk rind cell walls. 
The CC of the PF and XF assumed the greatest autoflu-
orescence, while the CML of fibers, V, and parenchyma 
cells displayed greater autofluorescence than that of the 
S layer. The autofluorescence intensity of the V cell walls 
was higher than that of parenchyma and fiber cell walls. 
It suggested that the lignin concentration in the CC and 
CML was higher than that in the S layer, and the vessels 
are more lignified than parenchyma cells and fibers. The 
distribution of lignin in stalk rind cell walls was similar to 
that of poplar and wheat straw [35].

The distribution of lignin was indirectly analyzed by 
Mn–Kα X-ray point scanning method [36]. Figure  8 
shows the Mn–Kα X-ray count measurements of the 
regions in the stalk rind cell walls. The CC of the fibers 
had the highest Mn–Kα X-ray counts. The Mn–Kα X-ray 
counts of the CML in fibers, V, and parenchyma cells 
were higher than that of the S layer. The order of the Mn–
Kα X-ray counts of the S layer was V > APC > XRPC > PRP
C > PF > XF > GPC. The SEM–EDXA measurements were 
consistent with the FM and TEM observations.

Fig. 5  TEM images of pit membranes between sunflower stalk rind cells: a V–V; b V–XF; c APC–V; d XRPC–V; e GPC–GPC; f XRPC–XRPC; and g PRPC–
PRPC. Scale bars indicate 2 μm
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Conclusions

(1)	 Sunflower stalk rind consisted of PF, XF, V, GPC, 
APC, XRPC and PRPC.

(2)	 The layering structure of the second wall (S) and 
the thickness of each layer were different between 
cell types. The S of PF, XF, and V were divided into 
three layers (S1–S3). The S of APC, GPC, XRPC, 
and PRPC showed a non-layered cell wall organi-
zation or differentiated two (S1, S2) to seven layers 
(S1–S7), with three layers being the most common. 

The order of average thickness of each cell wall was 
PF > XF > V > GPC > APC > XRPC > PRPC. The CCs 
among parenchyma cells were intercellular space.

(3)	 The type, distribution of pits and the ultrastruc-
ture of PMs were diverse. The pits of V and PF were 
mostly bordered, while pits of XRPC, APC, GPC, 
and XF were simple. The pits on parenchyma and 
fiber cell walls were scattered randomly, and the pits 
on the V cell walls were distributed in an alternate 
pattern. The PMs between parenchyma cells were 
perforated by plasmodesmata, and the morphology 

Fig. 6  Thickness (TPM) and diameter (DPM) of pit membranes between sunflower stalk rind cells

Fig. 7  Autofluorescence images of sunflower stalk rind cell walls: a Ph; b X
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of plasmodesmata varied with the types of paren-
chyma cells. The thickness and diameter of the PMs 
between the cells (inter-Vs, V–XF, V–APC, and 
V–XRPC) were 0.33–0.43  μm and 3.17–5.15  μm, 
respectively. The thickness and diameter of the PMs 
between parenchyma cells were 0.14–0.23 μm and 
1.32–1.63 μm, respectively.

(4)	 The lignin concentration is the highest in the CCs 
of fibers, followed by the CML, and the lowest is 
in the S layer. The V are more lignified than paren-
chyma cells and fibers.
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