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Abstract 

In the present study, crystalline cellulose biomass material was converted into carbon nanoparticles via carbonization 
to activated carbon with micropores of various sizes. This was subsequently subjected to aqueous counter collision 
(ACC) to produce hydrophobic porous functional particles. Initially, raw crystalline cellulose material was carbonized 
into activated carbon materials with various pore distributions prior to ACC. Pore distribution depended on the activa-
tion time, and was confirmed by nitrogen (N2) adsorption isotherms. The surface areas and pore volumes of carbon 
activated for 8 h were larger than those of carbon activated for 2 h. When they were subjected to ACC, the width and 
length of the carbon particles decreased as the number of pulverizing cycles during the ACC treatment increased. 
Eventually, carbon nanoparticles of 70 nm width that had improved dispersibility and stability were produced. The 
diameters of the carbon nanoparticles and their dispersibility were dependent on the pore distribution and surface 
areas of the activated carbon subjected to the ACC treatment. The ACC process facilitated the preparation of carbon 
nanoparticles from activated carbon derived from biomass, and is, therefore, an important strategy for the sustainable 
production of a sought-after and valuable resource.
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Introduction
Nanocarbons have recently attracted considerable atten-
tion, because they are light-weight and have high specific 
surface areas and favorable electrical and mechanical 
properties. Interest was roused in the 1980s with the 
discovery of fullerenes by Kroto et  al. [1–3], followed 
by carbon nanotubes (CNTs) [4], and graphene [5]. 
These materials have promising properties that can be 
used in various applications. For example, the electri-
cal properties of CNTs have been exploited in nanow-
ires [6, 7], field-effect transistors [8], and nanoscale 
electronic devices [9–11]. Owing to their high Young’s 
moduli and aspect ratios, CNTs can also be used to make 
high-strength fibers [12, 13]. Graphene also has many 

fascinating properties, such as high charge carrier mobil-
ity, and chemical and mechanical stability. Therefore, it 
has been used in a wide variety of applications, including 
energy storage, polymer composites, and bio- and chemi-
cal sensors [14–17].

Recently, diverse synthetic strategies such as chemical 
and electro-chemical exfoliation [18, 19] and chemical 
vapor deposition (CVD) [20–22] have been developed 
to prepare carbon nanoparticles. Graphene can be pro-
duced by transversely cutting carbon nanofibers (CNFs) 
via chemical exfoliation [23]. However, the nanocarbon 
yield is comparatively low, which raises its price. More-
over, it is difficult to prepare carbon nanoparticles via 
a top-down procedure without using chemical agents. 
Therefore, in consideration of the points mentioned 
above, in the present article we propose a facile method 
for converting crystalline cellulose biomass into carbon 
nanoparticles through activated carbon.
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Activated carbon comprises a random network of 
nanometer-sized fragments of graphite (nanocarbon 
domains), in which each domain forms a stack of three 
or four nanosized graphene. The individual nanocarbon 
domains are loosely packed by weak interactions, such 
as van der Waals forces, and the structure consists of 
numerous nanometer-sized pores (micropores) [24–26]. 
Activated carbon is usually prepared by one of two meth-
ods: either physical or chemical activation. Phosphoric 
acid has often been used to activate lignocellulosic mate-
rials, because that route has environmental benefits and 
produces high yields [27, 28]. Zuo et al. [29] showed that 
the duration of impregnation and the nature of the parent 
lignocellulosic material affect the porosity during phos-
phoric acid activation. In a previous study [30], we inves-
tigated the effect of phosphoric acid activation at high 
temperatures on the graphitic microcrystal growth of 
wood-based chars. We found that phosphorus-contain-
ing groups promote the growth of graphitic microcrys-
talline domains, which enables the formation of graphite. 
The pore structure of the activated carbon is produced 
when the nanocarbon domains, which are held together 
by weak interactions, are peeled apart.

Previously, aqueous counter collision (ACC), which is a 
top-down technique, has dealt with activated carbon par-
ticles, such as CNTs and graphene by downsizing them 
on a nano-scale [31]. ACC is capable of solely cleaving 
the intermolecular interactions in biomass materials [32–
35] as well as carbons [31]. The technique uses dual water 
jets to downsize the carbon particles into nano-objects 
without the necessity of chemical modification—includ-
ing the depolymerization of molecules. During ACC, 
aqueous suspensions containing micro-sized particles are 
directed at each other at high speed so that the particles 
collide. This generates elastic–plastic waves that convert 
the particles into nano-scaled objects, thereby dispersing 
them in water. It is possible to obtain nanoscale objects of 
the desired size by controlling the repetition of the colli-
sion and the ejection pressure of the water jets [33–35].

In the present study, starting with crystalline cellulose 
biomass, carbon nanoparticles were successfully pre-
pared via carbonization to activated carbon and sub-
sequent ACC. The ACC process produced activated 
carbon with micropores of various sizes. Subsequently, 
the dependence of the pore characteristics in the acti-
vated carbon on the carbon nanoparticle suspension was 
investigated, and the obtained carbon nanoparticles were 
characterized.

Materials and methods
Carbonization of cellulose samples
A sample of tunics of Halocynthia sp. [33] was used as 
a starting material, because it contains high crystalline 

(86%) cellulose. The sample was homogenized using a 
food processor and purified by treating in aqueous 5% 
potassium hydroxide solution at 80  °C for 3  h and was 
stood at room temperature for 12 h. It was then neutral-
ized in 0.1  N hydrochloric acid and washed well with 
distilled water. The purified tunicate cellulose (TC) was 
freeze-dried before usage. The TC samples were pyro-
lyzed in a TMF-500 N tube furnace (AS ONE Co., Ltd., 
Osaka, Japan) under a nitrogen flow. The samples were 
pyrolyzed by heating them to 800 °C at a rate of 5 °C/min, 
and maintaining that temperature for 1 h. This is a non-
activated (i.e., 0-h-activated) TC carbon, which was used 
as a control.

Acid pretreatment for activation
The obtained TC carbons were ground into particles 
(0.2–0.5  mm in diameter). The particles (0.25  g) were 
then impregnated with 50  mL of 20% phosphoric acid 
(H3PO4) solution. The mixture was kept in a water 
bath at 80  °C for 2 or 8  h, which were defined as 2- or 
8-h-activated, respectively. Each of them was placed 
in a ceramic boat container (14 mm wide; 12 mm high; 
140 mm long). The container was then placed in the mid-
dle of the furnace, the tube of which was 50 mm in diam-
eter and 500 mm long. For activation, the tube was first 
purged with nitrogen (N2) at a flow rate of approximately 
200 mL/min. The impregnated material was then heated 
from room temperature to 800  °C at a rate of 5  °C/min, 
and held at that temperature for 60  min. The N2 flow 
rate of 50 mL/min was maintained throughout the entire 
activation, including the stage in which the samples were 
cooled back down to room temperature. Both the 2-h- 
and 8-h-activated TC carbons were filtered by washing 
repeatedly with warm deionized water until phosphorus 
was undetectable.

Pore characteristics of the activated carbons
Information on the pore structure of the activated TC 
carbons was estimated using gas adsorption and small 
angle X-ray scattering (SAXS) measurements. The 
adsorption of N2 as a probe species was performed at 
−196  °C using a BEL SORP18 system (BEL JAPAN Co., 
Ltd., Osaka, Japan). The nitrogen adsorption isotherms 
of the activated carbon samples were acquired over the 
relative pressure (P/P0) range 0–1. Before obtaining the 
adsorption isotherms, the activated carbons were heated 
to 200 °C for 5 h in a vacuum to clean their surfaces. The 
specific surface area (SBET) values and micropore vol-
ume (Vmic) values of the samples were estimated from 
Brunauer–Emmett–Teller (BET) analysis [36], and the 
subtracting pore effect method [37] using an αs-plot. 
The total pore volume (Vtot) was calculated from the 
amount of nitrogen adsorbed at a relative pressure of 
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0.99. The volume of transitional pore, which is described 
as mesopore volume (Vmes), was obtained by subtracting 
Vmic from Vtot. The pore size distribution was estimated 
from the nitrogen adsorption isotherms.

The SAXS measurements were performed using syn-
chrotron radiation at the BL-11 beam line of the SAGA 
Light Source, with the approval of the Kyushu Syn-
chrotron Light Research Center, Tosu, Japan. The beam 
energy (E) was 8.0  keV and the camera length was 
2.641 m. The closed pore structure of the activated car-
bons was determined from the SAXS profiles.

ACC treatment of activated TC carbons
ACC was carried out according to the method described 
in the literature [31–33]. The sample suspensions in the 
sample tank were divided between the dual nozzles, then 
pressurized and accelerated using a plunger. They col-
lided with each other at high velocity, resulting in wet and 
rapid pulverization into nano-scaled objects dispersed in 
water [31–35].

In the present study, 0.1 g of the activated TC carbon 
was dispersed in 800 mL of pure water for the ACC treat-
ment. The aqueous suspension in the sample tank was 
then ejected from a pair of nozzles at 160 MPa in 0, 30, 
or 60 cycles (passes). ACC-treated carbon particles were 
produced for investigation with a transmission electron 
microscope (TEM).

Transmission electron microscopy
The sizes of the ACC-treated carbon particles were 
determined from images obtained using a JEM-1010 
TEM (JEOL, Ltd., Tokyo, Japan). The sample suspension 
(0.012%) was dropped onto a copper grid and freeze-
dried for 20 min before examination using the TEM at an 
accelerating voltage of 80 kV. The acquired images were 
scanned for digitization to determine the widths and 
lengths of the carbon nanoparticles. Contrast enhance-
ment, calibration of scale, statistical size data collection, 
and cross section along a desired line were carried out on 
the images using Image Pro Plus software v.4.1 (Media 
Cybernetics Co., Ltd., Tokyo, Japan). Both width and 
length were measured for more than 50 specimens in the 
same pass sample.

Crystallographic properties
Wide-angle X-ray diffraction (WAXD) patterns of the 
samples were obtained using a RINT2100V system 
(Rigaku Co., Tokyo, Japan) at 20 mA and 40 kV. Diffrac-
tion intensities were collected in the range 2θ = 5–40°.

Elemental analysis by X‑ray fluorescence measurements
X-ray fluorescence spectra were obtained using a wave-
length dispersive spectrometer (EDX-7000, Shimadzu 

Co., Kyoto, Japan). The measurements were performed at 
room temperature in a helium atmosphere.

Results and discussion
Crystalline and pore characteristics of the activated TC 
carbons
The WAXD intensity curves of three samples, i.e., non-
activated carbons, 2-h-, and 8-h-activated carbons, 
before ACC are shown in Fig.  1. The non-activated 
carbons exhibited a typical amorphous phase. In con-
trast, the 8-h-activated carbons, which were subjected 
to a longer impregnation time, had higher crystallinity, 
because a diffraction peak due to (002) plane of graph-
ite became sharp and was shifted to higher 2θ. This 
indicates that phosphoric acid promoted the growth of 
microcrystalline structure during the activation process, 
so the crystallinity increased as the impregnation time 
increased. The lattice spacing obtained from the diffrac-
tion line (002), d002, was 0.37  nm. Other noises may be 
due to crystalline "impurity". They could be attributed 
to phosphate salts remaining in the carbons, because 
the results of X-ray fluorescence measurements for the 
carbons indicated that the phosphorus element was the 
major one except carbon. It was contained at 4.2 wt% 
in the 8-h-activated carbons. Cations, which are coun-
terions of phosphate, were mainly calcium. Calcium 
phosphate is known to have a polymorphic crystalline 
structure, so that many peaks appear in the X-ray diffrac-
tion profile.

The temperature and duration of the pretreatment by 
H3PO4 impregnation appeared to be critical factors in 
controlling the pore structure of the resulting carbons 
[38]. Figure 2 shows the nitrogen adsorption–desorption 
isotherms obtained for the phosphoric acid-activated 
carbons prepared using various impregnation periods. 
The shapes of the N2 adsorption isotherms of the two 

Fig. 1  Wide-angle X-ray diffraction (WAXD) intensity, I, profiles of 
non-activated carbon, and 2-h- and 8-h-activated carbons before 
aqueous counter collision (ACC)
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specimens were similar and comprised a mixture of 
types I and IV based on the IUPAC classification [39]. 
This indicated that the carbons had mainly micro- and 
mesoporous characteristics. The quantity of N2 adsorp-
tion onto the activated carbons increased with the dura-
tion of H3PO4 impregnation, especially in the relatively 
high-pressure range. The adsorption isotherms were 
also transformed into BET surface area (SBET/m2g−1), 
micropore volume (Vmic), and total pore volume (Vtot) 
values, as shown in Table  1. The surface area and pore 
volume of the 8-h-activated TC carbon were larger than 
those of the 2-h-activated carbon, indicating that the 
duration of impregnation should be taken into account to 
ensure sufficient exposure of the interior of the TC car-
bon to H3PO4.

The mesopore (2–50  nm) distributions were calcu-
lated using the Barrett–Joyner–Halenda (BJH) method 
[40]. As shown in Fig.  3, the pore volumes (Vp) of the 
mesopores in the 8-h-activated carbon were larger than 
those of the 2-h-activated carbon. SAXS measurements 
were used to estimate the closed pore structure of the 

activated carbons. Figure  4 shows the SAXS profiles of 
the activated carbons. I (q) is the scattering intensity and 
q is the absolute value of the scattering vector. In the high 
q range, a difference appeared in the scattering curves of 
the activated carbons of various impregnation times. The 
pore size (d) of the activated carbon was calculated using 
the expression: d = 2π/q.

As a result, the SAXS profiles demonstrated that the 
8-h-activated carbon had more pores than the 2-h-acti-
vated carbon in the q range 10–0.5–100 nm−1, which cor-
responds to the pore size range 6–20 nm. This tendency 
is consistent with the results described above for open 
pore distribution curves.

Carbon nanoparticles prepared from activated carbon 
by ACC​
The TEM images of the 2-h- and 8-h-activated car-
bon dispersions prepared by ACC are shown in Fig. 5. 
The images clearly show that the carbon particles were 

Fig. 2  Adsorption isotherms of 2-h-activated tunicate cellulose (TC) 
carbon and 8-h-activated TC carbon. The open and closed symbols 
indicate the desorption and adsorption curves, respectively. V/mL 
(STP) g−1 indicates the absorption amount per 1 g of sample. P/P0 is 
relative pressure

Table 1  Pore characteristics of activated tunicate cellulose (TC) 
carbons prepared by impregnation with a 20% H3PO4 solution 
for various times

SBET/m2g−1 Brunauer–Emmett–Teller (BET) surface area, Vmic micropore volume, 
Vtot total pore volume

Before/
After ACC​

Impregnating 
time/hour

SBET/m2g−1 Vtot/
cm3g−1

Vmic/cm3g−1

Before 2 512 0.40 0.19

8 659 0.56 0.27

After 2 440 0.43 0.13

8 694 0.79 0.27

Fig. 3  Pore distribution curves for mesopores of activated tunicate 
cellulose (TC) carbons. Vp and Rp indicate pore volume and pore size, 
respectively

Fig. 4  Small angle X-ray scattering (SAXS) profiles of activated 
tunicate cellulose (TC) carbons prepared using various impregnation 
times. I(q) and q indicate scattering intensity and the absolute value 
of scattering vector
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mostly strand-shaped. The widths and lengths of the 
carbon particles decreased as the number of pulveriz-
ing cycles (passes) increased (Table 2). Eventually, ACC 
produced carbon nanoparticles that were 70  nm wide 
from the 8-h-activated carbon suspension. Throughout 
the pass range, the 2-h-activated carbon particles were 
larger than the 8-h-activated particles after ACC.

Figure  6 shows the nitrogen adsorption–desorption 
isotherms of the 2-h- and 8-h-activated carbons after 
ACC. The shapes of the isotherms of both the ACC-
treated carbons were similar to those of the carbons 
before ACC (see Fig.  2). This indicates that the amount 
of N2 adsorbed on the 8-h-activated carbon was still 
larger than that adsorbed on the 2-h-activated carbon, 
even though the particle size had been reduced to the 

Fig. 5  Transmission electron microscope (TEM) images of 2-h-activated carbon dispersions prepared by aqueous counter collision (ACC) with a 0, b 
30, and c 60 passes; and 8-h-activated carbon dispersions prepared by ACC with d 0, e 30, and f 60 passes

Table 2  Averaged lengths and widths of the aqueous counter collision (ACC)-treated activated carbon particles

Activation ACC Pass

0 30 60

length/nm width/nm length/nm width/nm length/nm width/nm

2 h 3290 1243 1918 402 1731 223

8 h 2662 776 916 202 527 70
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nanoscale. Considering the data in Table  1, the surface 
areas of the 2-h-activated carbon particles appeared 
slightly smaller after ACC than before the treatment. In 
contrast, the surface areas of the 8-h-activated carbon 
particles were larger after ACC than before it. It can also 
be confirmed that the V/mL (STP) g−1 for 8-h-activated 
carbon in Fig. 2 are entirely larger than that in Fig. 6. Pre-
sumably, this was because the surfaces of the closed pores 
in the 8-h-activated particles were larger than those in 
the 2-h-activated particles. In the case of the 8-h-acti-
vated particles, the closed pores were possibly fractured 
by ACC, which exposed the interior surfaces, and thus 
the surface areas of the resulting particles increased. As 
a result, the BET surface areas and pore volumes of the 
8-h-activated carbon particles increased after ACC.

After suspended in water, the 8-h-activated TC carbons 
were precipitated immediately, whereas the 2-h-activated 
carbons had relatively better dispersibility in water. Fur-
thermore, an aqueous dispersion containing both the 
2-h- and 8-h-activated TC carbons was phase-separated 

within 1  week. This indicated that the two samples had 
different microstructures prior to ACC.

Because the crystalline density of graphite 
(~ 2.25 g cm−3) is larger than that of the amorphous phase 
of activated carbon (0.3–0.6 g cm−3) [41], the amorphous 
phase may be more favorable for dispersal. Following 
ACC treatment, the aqueous suspension of the 8-h-acti-
vated carbon exhibited improved dispersibility and sta-
bility, as evidenced by the absence of phase separation 
(Fig. 7). This indicates that the greater surface areas of the 
activated carbons produced by ACC nanopulverization 
improved their dispersibility in water. Namely, ACC pos-
sibly facilitated to produce aqueous suspension of carbon 
nanoparticles.

Conclusions
In the present study, crystalline cellulose biomass was 
converted into carbon nanoparticles via carbonization 
to activated carbon with micropores of various sizes. The 
activated carbon was subsequently subjected to ACC to 
produce hydrophobic porous functional particles. The 
ACC method rapidly produced carbon nanoparticles 
from micro-sized activated carbon using only high-speed 
water jets. The carbon nanoparticles in the 8-h-activated 
carbon were approximately 70  nm in diameter, and 
formed stable dispersions in water, even after 1 week. The 
present method can be an advanced process to produce 
aqueous suspension of carbon nanoparticles.

With regard to the characteristics of the pores in the 
initial activated carbon, the larger pore volumes and 
specific surface areas of the activated carbons were 
more beneficial to the yield of carbon nanoparticles dur-
ing ACC. This suggests that pore-size-controlled car-
bon nanoparticles can be prepared by ACC when the 
pore characteristics are designed for the initial activated 

Fig. 6  Adsorption isotherms of 2-h- and 8-h-activated carbons after 
aqueous counter collision (ACC). Legends are the same as Fig. 2

Fig. 7  Photographs of the 2-h- a and 8-h- b activated carbon dispersions prepared by aqueous counter collision (ACC) with 0, 30, and 60 passes, 
and left for 1 week
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carbon. In other words, the process using ACC facilitates 
the preparation of water-dispersing nanocarbons, which 
can open a pathway for a novel strategy of biomass usage.
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