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Similarity network fusion for aggregating 
headspace GC–MS and direct analysis in real 
time–mass spectrometry data from solid 
samples to enhance species identification 
efficiency of high–temperature heated wood
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Abstract 

Pterocarpus santalinus and Pterocarpus tinctorius are commonly used species of the genus Pterocarpus in the wood 
trade. Although both of them have been listed in Appendix II of the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) since 2019, it is still critical to identify them in terms of plant taxonomy. Cur-
rently, high-temperature heating is an accepted treatment method for high-density wood species such as Pterocarpus 
to improve dimensional stability and restore previous drying defects partially. It has proved challenging to identify the 
high-temperature (e.g., 120 °C) heated wood from these two species. Thus, this study approaches species identifica-
tion of two Pterocarpus of high-temperature (e.g., 120 °C) heated solid wood samples using headspace–gas chroma-
tography–mass spectrometry (HS–GC–MS). Besides, a computational analytical method named similarity network 
fusion (SNF) was proposed to aggregate data in two different types, respectively, derived from the HS–GC–MS and 
direct analysis in real time–mass spectrometry (DART–MS) to explore the feasibility of improving the efficiency and 
accuracy of wood species discrimination. The SNF exhibits more significant differences and higher predictive accuracy 
(100%) between P. santalinus and P. tinctorius than that based on the HS–GC–MS data (77.78%) or DART–MS (66.67%) 
alone. These results demonstrated the capability of the HS–GC–MS technique in the analysis of high-temperature 
heated solid wood and the potential of multidimensional or comprehensive data sets based on the SNF algorithm in 
the field of wood species identification.
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Introduction
Illegal logging encourages the inefficient use of resources 
and results in a threat to the reputation and sustainabil-
ity of the legitimate timber trade [1]. A series of meas-
ures have been taken in the international community, 

including enacting laws designed to discourage the 
trade in illegally sourced timber and prohibit or limit the 
trade of specific species or those from particular areas 
[2]. However, the enforcement of these laws relies heav-
ily on wood identification technology. Thus, it is vital to 
develop and improve the wood identification technology 
to support further the certification and verification of 
timber legality.

In many cases, wood chemical analysis can provide 
information about wood identification, which can be 
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difficult to determine by visual means [2]. Intra-specific 
variation in some species has been detected through 
specific chemical analyses, including mass spectrometry 
and near infrared spectroscopy, etc. [2–6]. Most previous 
studies on the chemical constituents of wood focused on 
odor compounds and organic solvent extracts detected 
by gas chromatography–mass spectrometry (GC–MS) 
[7–16], and direct analysis in real time–mass spectrom-
etry (DART–MS) [3, 17–22]. Using GC–MS as an instru-
ment method, they have a variety of injection methods. 
For instance, GC–MS with liquid injection was used to 
study the chemical components of wild and cultivated 
agarwood extracts [16]. Similarly, the liquid injection was 
also applied in the identification of volatile compounds 
for the ethanol–benzene extractives of Dalbergia odor-
ifera and D. stevensonii by GC–MS [23], the extract of 
Pterocarpus macrocarpus [9], and the chemical compo-
sitions in wood and bark of Albizia julibrissin tree [14], 
etc. Compared to the complex pre-treatment process 
for the liquid injection method, a headspace solid-phase 
microextraction (HS–SPME) system requires only simple 
heating of the sample. It has been used for analyzing the 
odorous constituents of wood [15]. However, the HS–
SPME injection method is more limited in terms of vola-
tile components due to the choice of the fiber material, 
and this injection method cannot be easily automated 
[24]. As an alternative method, headspace injection (HS) 
eliminates the need for long distillation periods and sol-
vent consumption and is a faster, more efficient method, 
which made it successfully applied for the evaluation of 
the separation and recognition of complex mixture com-
pounds, such as wood. In recent years, headspace–gas 
chromatography–mass spectrometry (HS–GC–MS) 
has been employed to differentiate two species of Asari 
Radix by their odors [25], to identify Phoebe zhennan and 
Machilus pingii [7], and investigate the incense smoke 
produced by different types of agarwood powder [26], 
etc. In most of these studies, the wood powder was used 
more frequently as sample material than solid chips. 
However, the headspace above the solid wood chips also 
contains the vapor generated by the volatile compounds 
present in the wood and is responsible for the distinct 
odor of wood species, which could provide information 
for species identification [27]. Thus, it is vital to explore 
the feasibility and effectiveness of wood identification 
utilizing solid samples coupled with the simple and reli-
able HS–GC–MS.

In plant metabolomics, researchers agree that a sin-
gle analytical method is seldom adequate to provide the 
holistic view of metabolites required for metabolic pro-
filing [28, 29]. Similarly, this concept was also applied 
to plant-derived materials, such as wood. Therefore, it 
is well worth trying to develop a multiplatform or data 

integration approach, including several chemical analysis 
technologies for wood identification. Similarity network 
fusion (SNF) is a computational method for data integra-
tion, which can fuse or integrate multiple types of data to 
create a comprehensive descriptor of the underlying data 
[30]. It was proposed first to construct a sample-similar-
ity network for each data type and then integrate them 
into a single similarity network by a nonlinear combina-
tion method [30]. The fused similarity networks capture 
both shared and complementary information from mul-
tiple types of data, making it possible for a large number 
of data and good robustness to noise and data hetero-
geneity. The SNF method has been used for integrating 
nine multi-molecular level omics data blocks for enabling 
molecular classification of chronic obstructive pulmo-
nary disease, which included data collected from isobaric 
tags for relative and absolute quantitation mass spec-
trometry and tandem mass tag mass spectrometry [31].

Among Pterocarpus species, Pterocarpus santalinus is 
known for its high commercial value in furniture, crafts, 
dyes, and medicine. Pterocarpus tinctorius is famous 
for imitating P. santalinus because of its similar macro-
scopic and microscopic features. With the increase in 
illegal logging of these two species, both P. santalinus 
and P. tinctorius have been listed in the Convention on 
International Trade in Endangered Species of Wild Fauna 
and Flora (CITES) Appendix II [32]. Concurrently, the 
International Union for Conservation of Nature (IUCN) 
listed P. santalinus as endangered and P. tinctorius as 
least concern [33]. Besides, the commercial market pref-
erentially selects individual species that may have full of 
historical and cultural information. For instance, P. san-
talinus is particularly highly valued and popular in the 
international market. It is also prized due to the presence 
of  various components, such as carbohydrates, steroids, 
anthocyanins, saponins, tannins, phenols, triterpenoids, 
flavonoids, glycosides, and glycerides [34]. However, 
there is a lot of controversy in the market and academia 
about P. santalinus and P. tinctorius. Therefore, though 
these two species have had the same protection level in 
CITES, it is still critical to differentiate them in plant tax-
onomy. Furthermore, wood drying and heat modifica-
tion are significant in processing wood products [35]. In 
China, high-temperature heating is a commonly accepted 
treatment method for high-density timber from tree 
species, such as Pterocarpus, Dalbergia, and Diospyros, 
to improve dimensional stability and partially recover 
previous drying defects when making high value-added 
wooden furniture. After the high-temperature heating, 
the compounds existing in wood may be destroyed [36, 
37]. In our previous work, although wood chips of P. san-
talinus and P. tinctorius under air-dried and heated at 
lower temperature (e.g., < 70  °C) were well differentiated 



Page 3 of 13Zhang et al. Journal of Wood Science           (2022) 68:38 	

by DART–MS, it is difficult to identify the high-temper-
ature (120 °C) heated wood using DART–MS alone [19].

The high stability and simple operation for HS–GC–
MS, and the fast and accurate detection of DART–MS 
with full ions, made them suitable for the efficient and 
precise detection of solid wood samples. In addition, 
these two methods easily generate more resulting data 
together with do not necessitate complex pre-treatment 
work, which made them more suitable for the data inte-
gration in the SNF method compared with other wood 
identification methods. In this study, wood chips col-
lected from P. santalinus and P. tinctorius samples heated 
at a high-temperature (120  °C) were analyzed by HS–
GC–MS technology. Moreover, the feasibility of SNF was 
explored to aggregate multidimensional data sets in types 
of HS–GC–MS newly obtained in this work and DART–
MS previously collected from the same samples [19] for 
proposing a new wood identifying methodology.

Materials and methods
Wood materials
The wood samples selected in this study were the same as 
those in our previous work [19]. In brief, 29 authorized 
specimens collected from the heartwood of vouchered 
or validated xylarium collections were randomly divided 
into 20 training (including nine P. santalinus specimens 
and eleven P. tinctorius specimens) and 9 testing samples. 
Wood chips less than 2 mm in thickness were obtained 
from each specimen and treated at a high temperature 
(120°C for 10 days). The treated wood ships were subse-
quently conditioned at 25°C and 60% relative humidity 
(RH) for 30 days.

Light microscopy
A sliding microtome (SM2010R, Leica, Germany) was 
used to prepare transverse, radial, and tangential sections 
of wood chips into thicknesses of 15  μm, and then sec-
tions stained with 1% aqueous safranin were observed 
under a microscope (BX61, Olympus, Japan).

HS–GC–MS experiments
The HS–GC–MS experiments were newly accomplished 
on a GC–MS (Agilent 7890A, Santa Clara, CA, USA) 
coupled with a 5975C mass spectrometer (Avondale, PA, 
USA) whose stability is ± 0.1  m/z mass accuracy over 
48 h. The chromatographic analysis was performed on the 
HP–5MS capillary fused silica column (30  m × 250  µm 
i.d., 0.25 µm film thickness). Helium (99.999%) was used 
as carrier gas at a flow rate of 1  mL/min. The injection 
volume was 500 μL for wood chips by a Combi-PAL 
autosampler (CTC Analytics, Zwingen, Switzerland). The 
column temperature program was set as follows: 60  °C 
initial temperature for 2 min, then ramped to 280  °C at 

a rate of 10 °C/min to, and then held at 280 °C for 5 min. 
The GC–MS interface temperature was maintained at 
260  °C. The mass spectra obtained with full scan and 
mass ranged from 33 to 500 m/z.

The HS–GC–MS data were processed and converted 
into NETCDF format using MS–DIAL software (v 2.74) 
[38]. A peak list with aligned peak area based on the full 
HS–GC–MS spectra was exported for the subsequent 
analysis.

DART​–MS experiments
Mass spectral data were previously acquired using a 
DART–SVP ion source (IonSense, Saugus, MA, USA) 
coupled to a 12 T Bruker solariX XR FTICR–MS (Bruker 
Daltonics, Bremen, Germany) in positive mode with a 
resolving power of 1,000,000 full width at half maximum 
(FWHM). Wood chips were analyzed directly by expos-
ing them to the open-air space between the ion source 
and the mass spectrometer inlet with tweezers. The 
details of the DART–MS test and analytical methods of 
wood chips were shown in the previous report [19].

SNF
Two types of data sets, including newly obtained HS–
GC–MS (Data set 1, n = 20) and DART–MS (Data set 2, 
n = 20) from the previous study from the same samples, 
were aggregated. The data matrix of DART–MS contains 
129 variables, and the data matrix of HS–GC–MS con-
tains 744 variables. Three parameters mainly used in the 
SNF algorithm are the number of neighbors (K), hyper 
parameter ( µ ), and the number of iterations (t), which 
were initially performed for the ranges recommended in 
[30]. Integration of multidimensional data sets and sub-
ject-based clustering were performed using the R-pack-
age SNFtool (cran.r-project.org/web/packages/SNFtool) 
[30]. Network graphs were generated using Python 3.0 to 
visualize the relationship among samples, where nodes 
represent wood samples and edge thickness reflects 
the similarity degree between each pair of samples. In 
the SNF algorithm, the ranking of each variable can be 
assessed using normalized mutual information (NMI), 
where the rankfeaturesbyNMI function can help to calcu-
late the relative contribution of each variable in different 
groups based on their clustering assignments.

The validation and prediction of the classification model
Orthogonal partial least squares–discriminant analysis 
(OPLS–DA), which improves the partial least squares–
discriminant analysis (PLS–DA) approach that employs 
orthogonal signal correction, was used to identify the 
selected species based on the HS–GC–MS alone. Moreo-
ver, the OPLS–DA analyses were generated by SIMCA-P 
(14.1 Umetrics, Umea, Sweden) software.
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In SNF analyses, the SNF matrix from each data set, 
and not the full matrix of the original variables, makes it 
possible to integrate disparate types of data with vastly 
different numbers of variables [30]. Leave one out cross-
validation (LOOCV) was used to evaluate the perfor-
mance measure for the classification model based on the 
SNF. Spectral clustering was used to predict the group 
belonging of wood samples in the testing set. The above 
algorithms were implemented using R version 3.3.3.

Results and discussion
In general, the anatomical features of heartwoods 
between P. santalinus and P. tinctorius were difficult to 
distinguish [39]. However, few studies have analyzed and 
compared their anatomical structures (especially micro-
structures) after high-temperature treatment. Thus, the 
transverse, radial, and tangential sections of two Ptero-
carpus species after high-temperature treatment were 
obtained, and the optical microscope was used to charac-
terize the structure (Fig. 1). From the light micrographs, 
the cell arrangement and features on the vessels, axial 
parenchyma, fibers, and rays after high-temperature 
treatment, were similar to the anatomic structures of 
Pterocarpus in general.

Figure  2 shows the total ion current diagram of HS–
GC–MS and the representative DART–MS spectra of 
P. santalinus and P. tinctorius. In the HS–GC–MS spec-
tra, the principal compounds for these two species origi-
nated from peaks at the retention time of 11.76  min, 
12.90 min, 13.69 min, 15.38 min, 15.69 min, 16.34 min, and 
18.15 min. These peaks were tentatively identified by match-
ing their mass spectra with those in the NIST 11 library 
and the literature. In addition, the possible compounds, 
respectively, included 4-hydroxybenzaldehyde (C7H6O2, 
7.9%), 3,5-dimethoxybenzaldehyde (C9H10O3, 33.76%), 
(+)-β-selinene (C15H24, 7.09%), 2-Naphthalenemethanol, 
1,2,3,4,4a,5,6,7-octahydro-α,α,4a,8-tetramethyl-, (2R-cis)-
(C15H26O, 4.64%), 2-Naphthalenemethanol, decahydro-
α,α,4a-trimethyl-8-methylene-, [2R-(2α,4aα,8aβ)]- (C15H26O, 
11.69%), 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-
octahydro-naphthalen-2-ol (C15H24O, 14.75%), and spathule-
nol (C15H24O, 11.06%). According to our previous inference 
about DART–MS, peaks at 221.19 m/z and 257.11 m/z could 
be assigned to spathulenol (molecular formula C15H24O) 
and pterostilbene (molecular formula C16H16O3), respec-
tively [39]. These chemical components mainly come from 
the extractives of heartwood. Although some chemical 
components seem to be detected in both HS–GC–MS and 
DART–MS, most substances were different during these 
two detection methods. DART–MS contains several high 
molecular weight (> 500  m/z) compounds that cannot be 
detected in HS–GC–MS. Meanwhile, the existed differences 
in the chemical spectra of HS–GC–MS and DART–MS can 

be seen between P. santalinus and P. tinctorius in Fig. 2. An 
observation came to light during the analysis of HS–GC–MS 
spectra that the chemical peaks of P. santalinus mostly con-
centrated in the retention time range of 13–19 min. In com-
parison, the chemical peaks of P. tinctorius mainly appeared 
before the retention time of 13 min. Considering the intra-
specific variation, the overall statistical analysis is essential to 
discriminate between the two wood species.

Spathulenol and pterostilbene were also elucidated as 
the critical compounds for the separation of the ethanol 
and water (EW) extracts of P. santalinus and P. tincto-
rius in the previous work on the chemotaxonomical dis-
crimination using GC–MS with the liquid injection [13]. 
Compared with the GC–MS spectra of EW extracts, the 
HS–GC–MS obtained from high-temperature heated 
wood chips showed a significant difference in the num-
ber of peaks and retention times. The spathulenol also 
exists in the high-temperature heated wood chips, 
while the pterostilbene was not detected using HS–
GC–MS. The direct analysis in real time–time-of-flight 
mass spectrometry paired with discriminant analysis of 
principal components has been successful in classify-
ing seven Pterocarpus species, including P. erinaceus, 
P. santalinus, P. tinctorius, P. indicus, P. macrocarpus, P. 
dalbergioides, and P. soyauxii [22]. In this research, P. 
santalinus showed higher intensity at 219.1763 m/z, and 
P. tinctorius showed ions that were significantly reduced 
or missing in other species, including ions at 224.1285 
and 247.1444 m/z. This result is different from our find-
ings here and the previous studies on the DART–MS of 
air-dried wood chips [19]. However, in the survey of the 
original geographic region of timber of Pterocarpus sam-
ples by direct analysis in real time–time-of-flight mass 
spectrometry (DART–TOFMS), the ion at 257.115  m/z 
was also found in the species of P. tinctorius [40], which 
is consistent with our result. Therefore, it would be worth 
detecting the distinction of ions between these two mass 
spectrometers for the same species in further work.

In our previous work, the classification of these two 
Pterocarpus species based on DART–MS showed that the 
two species are more difficult to distinguish after high-
temperature heating treatment. The classification accu-
racy was only 66.67% when the OPLS–DA was used [19]. 
Herein, a classification model between two species was 
also built based on the HS–GC–MS data set of the high-
temperature heated wood chips coupled with OPLS–DA. 
Subsequently, the classification model made with a train-
ing set was applied to the testing set, consisting of records 
with unknown class labels. The performance of a classifi-
cation model was evaluated by the counts of test records 
correctly and incorrectly predicted by the model. These 
counts results are tabulated in Table 1. Seven samples in 
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the testing set were identified correctly, and the accuracy 
was 77.78% (Table 1).

SNF can tackle the issue that the data are gathered from 
more than one source, because it can take advantage of 
the commonalities of different data types to obtain a bet-
ter classification performance than a single data type. 
Thus, given the low classification accuracy based on 

DART–MS or HS–GC–MS data set alone, the SNF anal-
yses were tried to improve differentiating performance 
of two Pterocarpus species. First, HS–GC–MS data and 
DART–MS data of high-temperature heated wood chips 
from the P. santalinus and P. tinctorius were used to 
construct fused similarity networks. Compared with K 
and t, the parameter µ has little effect on the result, so a 

Fig. 1  Light micrographs of transverse, radial and tangential sections of heated Pterocarpus santalinus (a, c, e) and Pterocarpus tinctorius (b, d, f) 
wood. – Scale bars, 200 μm (a, b, e, f), 100 μm (c, d)
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practical value of 0.5 was selected. Then the SNF-fused 
similarity networks were constructed and compared with 
different levels and combinations of the K and t. LOOCV 

with random sampling was used to predict test groups 
and to select the value of parameters. The K parameter 
was evaluated from 2 to 19. The t parameter was assessed 
from 1 to 50. In the LOOCV test, the areas under curve 
(AUC) of the receiver operating characteristic (ROC) 
curve were used to evaluate the ability to discriminate 
wood species. The results are shown in Fig. 3. It can be 
seen from Fig. 3 that AUC was 1 when the K parameter 
was evaluated from 3 to 19, and the t parameter was eval-
uated from 1 to 50. However, when the K parameter was 

set to 2 and the t parameter was assessed from 1 to 50, 
the value of AUC was only 0.95. Considering the ranges 

Fig. 2  Total ion current diagram of HS–GC–MS (a) and the representative DART–MS spectra (b) for Pterocarpus santalinus and Pterocarpus tinctorius 

Table 1  Prediction accuracy using HS–GC–MS, DART–MS, 
and the SNF composed of HS–GC–MS and DART–MS data, 
respectively

Samples Accuracy

HS–GC–MS data of wood chips 77.78%

DART–MS data of wood chips 66.67%

SNF composed of HS–GC–MS and DART–MS data 100.00%

Fig. 3  Receiver operating characteristic (ROC) curve of the SNF fused similarity networks with different levels and combinations of the K and t 
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(K parameter: usually (10–30), t parameter: usually (10–
50)) recommended in previous research [30], we finally 
selected K = 10, µ = 0.5, and t = 10 in all further SNF 
analyses to reduce the amount of calculation as much as 
possible based on ensuring the classification accuracy.

During the SNF, the P. santalinus and P. tinctorius simi-
larities for Data set 1, Data set 2, and their SNF fused 
similarity were conducted. The results are visualized 
in Fig. 4. It can be seen that there are 20 squares in the 
horizontal and vertical directions, representing 20 sam-
ples, the first nine samples are P. santalinus, and the last 
eleven samples are P. tinctorius. The shade of each square 

represents the degree of similarity between the two sam-
ples. The darker the color of the square, the higher the 
similarity exists between the two samples. The networks 
built using a single data type present many different pat-
terns of similarity between these two species. It is diffi-
cult to classify the P. santalinus and P. tinctorius based 
on the HS–GC–MS data (Fig. 4a) or the DART–MS data 
alone (Fig.  4b) alone. In comparison, the fused network 
using two data types shows a much clearer picture of 
clustering in our set of wood species (Fig. 4c).

Network visualizations are becoming more attractive 
for data representation, because they can clearly show 

Fig. 4  Wood chips similarities for each of the data types independently compared to SNF fused similarity. HS–GC–MS data (a), DART–MS data (b), 
and SNF-fused similarity matrix (c). The first 9 samples are Pterocarpus santalinus, and the last 11 samples are Pterocarpus tinctorius 
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the relationship between the data as graphs. Here, net-
work graphs between two Pterocarpus species based on 
Data set 1, Data set 2, and their SNF fused similarity are 
shown in Fig. 5. In the network graphs, many thin edges 
can be seen in the network for Data set 1 (Fig. 5a) or Data 
set 2 (Fig. 5b) alone, which present a weak distinctiveness 
between P. santalinus and P. tinctorius. The fused net-
work gives a clearer picture of clustering, illustrated by 
the tightness of connectivity within clusters (Fig. 5c).

However, due to the limitation of the data and the sam-
ples, the developed model is prone to overfitting. When 
the overfitting exists, the model performs perfectly on 
the training set, while fitting poorly on the testing set. 
Thus, Spectral clustering was used to predict the group 
label of the testing set based on the similarities to all sam-
ples in the network to evaluate the performance of the 
classification model from multiple data sets fusion. The 
prediction accuracy was assessed by comparing the pre-
dicted label and the true label, and the results are listed 
in Table  1. As can be seen, all the testing set samples 
from the high-temperature heated wood chips based on 
the SNF-fused network of the DART–MS data set and 
HS–GC–MS data set were correctly classified. The pre-
diction accuracy reached 100%, which was much higher 
than based on only one data type. To further understand 
which ion peaks or chemical compounds have a greater 
impact on the wood identification, the contribution of 
each variable was calculated by NMI. As for the HS–
GC–MS, the variables with higher contribution are peaks 
at 11.76 min, 12.34 min, 12.90 min, 13.69 min, 15.38 min, 
16.34 min, and 18.15 min, respectively. The relative peak 
areas of the seven peaks present significant differences 
between the two Pterocarpus species (Fig. 6). For DART–
MS, the top seven ranked by NMI are ions at 251.17 m/z, 
257.11  m/z, 453.33  m/z, 471.34  m/z, 487.34  m/z, 
489.36  m/z, and 511.21  m/z, respectively. Although the 
relative peak intensities in several ions are not very high, 
a visible distinction can be observed between these two 
species (Fig.  7). Besides, some intra-specific variations 
exist among samples from the same species. These peaks 
in the HS–GC–MS or ions in the DART–MS provide evi-
dence about wood identification between two Pterocar-
pus species, but whether they can be used as taxonomic 
markers requires further experimental validation.

It has been suggested that gas chromatography with 
high-resolution quadrupole time of flight mass spec-
trometry and the DART–TOFMS techniques are com-
plementary to one another, each with their advantages in 
the study about the identification of protected Dalbergia 
timber [41]. Although there are differences in the models 
of mass spectrometers, our study also supports this opin-
ion. It confirms the complementary between HS–GC–
MS and DART–MS for wood identification using SNF. 

The SNF can obtain shared and complementary informa-
tion from various kernel matrices so that the integrated 
matrix reveals HS–GC–MS/DART–MS information as 
much as possible. However, it should also be noted that 

Fig. 5  Subject similarity networks of wood chips based on HS–
GC–MS data (a), DART–MS data (b), and their fused SNF similarity 
network (c). Nodes represent wood samples (blue square: Pterocarpus 
santalinus; red circle: Pterocarpus tinctorius), edge thickness reflects 
the strength of the similarity
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Fig. 6  Relative peak areas of seven peaks from the HS–GC–MS coupled with SNF. 11.76 min (a), 12.34 min (b), 12.90 min (c), 13.69 min (d), 15.38 min 
(e), 16.34 min (f), 18.15 min (g). Pterocarpus santalinus (S), Pterocarpus tinctorius (T)
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Fig. 7  Relative peak intensities of seven ions from the DART–MS coupled with SNF. 251.17 m/z (a), 257.11 m/z (b), 453.33 m/z (c), 471.34 m/z (d), 
487.34 m/z (e), 489.36 m/z (f), 511.21 m/z (g). Pterocarpus santalinus (S), Pterocarpus tinctorius (T)
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although the integrated matrix contains two types of 
chemical information, further research on the details, 
such as how the chemical information is related and 
complementary to each other in the matrix, is needed in 
future work.

The SNF of HS–GC–MS and DART–MS data for wood 
chips might achieve a complementary effect of the two 
data sets and ultimately improve the ability to distinguish 
and classify P. santalinus and P. tinctorius. It has been 
reported that SNF could obtain helpful information from 
a small number of samples [30]. Pterocarpus wood sam-
ples are challenging to collect, especially for the author-
ized wood samples from xylarium or verified specimens 
by DNA barcodes. The high classification accuracy in this 
study proved that the SNF method is appropriate for ana-
lyzing valuable and rare wood species. In addition, it is 
necessary to emphasize that SNF requires relatively high 
statistical knowledge, so it is worth trying if only one 
method cannot meet the requirements. Otherwise, it will 
increase many calculations. Wood anatomical features, 
DNA barcoding, wood images, physical features (color, 
density), and other chemical features (infrared spec-
trum, near-infrared spectrum, fluorescence spectrum, 
etc.) contain much critical information for the wood 
species. Therefore, SNF-fused multidimensional or com-
prehensive data sets consisting of DNA barcoding, ana-
tomic features, chemical features, and physical features 
could be further proposed in future research on wood 
identification.

Conclusions
In this paper, high-temperature (e.g., 120  °C) heated 
solid wood samples from P. santalinus and P. tincto-
rius were analyzed by HS–GC–MS technology, and 
a novel machine-learning method SNF was applied 
to the wood identification of these two species. The 
HS–GC–MS analysis revealed the differences between 
chemical profiles of the volatile constituents of high-
temperature heated solid wood samples of each wood 
species from each other. Still, the prediction accuracy 
of the classification model established by HS–GC–MS 
coupled with OPLS–DA was only 77.78%. After SNF, 
one fused network composed of HS–GC–MS data set 
and DART–MS data set was established on wood chips 
heated at high temperature. The developed SNF-fused 
network exhibits a better level to group two wood spe-
cies than that based on the HS–GC–MS data set or 
DART–MS data set alone. Higher discrimination power 
(100% of prediction accuracy) was obtained when the 
Spectral clustering approach was used. This study dem-
onstrates the capability of the HS–GC–MS technique 

in the high-temperature heated solid wood analysis 
and its potential as a simple, non-destructive, and rapid 
alternative for wood species identification. Multidi-
mensional or comprehensive data sets based on SNF 
are the potential to have a broader application in the 
wood identification field. Furthermore, considering the 
possible effects on the reliability of data analysis with 
the limitation of the data and the samples, a larger sam-
pling size should be adopted for the establishment of 
SNF-fused data sets in future research.
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