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The effects of watering on cambial activity 
in the stems of evergreen hardwood (Samanea 
saman) during the pre‑monsoon season 
in subtropical Bangladesh
Md Hasnat Rahman1,2, Shahanara Begum3, Widyanto Dwi Nugroho4, Satoshi Nakaba1,2 and Ryo Funada1,2*    

Abstract 

Water stress has a significant impact on tree growth. However, the effects of watering on cambial activity and its influ-
ence on tree growth in subtropical climates is poorly understood. The present study analyzed the cambial activity on 
the stem of evergreen hardwood Samanea saman in response to either high frequency or low frequency watering 
during the pre-monsoon season in subtropical Bangladesh. We used two groups of seedlings: one group of seedlings 
was watered daily (high frequency watering), while the second group of seedlings was watered at 4–5-day intervals 
(low frequency watering). Samples for sequential observations of cambial activity by microscopy were collected from 
the main stems of seedlings of both groups. At the start of the experiment on March 25, 2015, during the pre-mon-
soon season, the cambium was inactive with no evidence of cell division. After 10 days of high frequency watering, 
cambial cell division and xylem differentiation were initiated. New cell plates were formed in the phloem side of the 
cambium. However, the cambium was inactive when low frequency watering was supplied. Supplying water in high 
frequency reactivated the cambium with forming small to large vessels. In contrast, the cambium remained inac-
tive when low frequency watering was supplied throughout the experiment. These results suggest that continuous 
supply of water to the soil is one of the most important factors for cambial reactivation during pre-monsoon season 
in subtropical trees. Furthermore, our findings of artificial watering treatments might help to better understand the 
response of cambium to changes in precipitation patterns under natural conditions, allowing us to learn more about 
how cambium of subtropical trees responds to climate change.
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Introduction
Climate change and its impact on tree growth have 
received special attention in recent years, because, from 
an environmental, social, and economic perspective, 
trees play an important role in establishing a sustainable 
society [1, 2]. Trees will try to adapt to climate change by 

synchronizing their phenological events and physiologi-
cal processes. It is assumed that global warming at the 
recently projected temperature rise of 3 to 6 °C within the 
next century would extend the tree growing season as a 
consequence of higher air temperatures [3–5]. In addi-
tion, the increased concentration of atmospheric carbon 
dioxide would enhance tree growth. However, higher 
rates of tree growth can only be sustained over time 
when excess water from the soil is available to the trees, 
as this is essential for photosynthesis and other physio-
logical functions [6–9].
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Tree water status and phenology, such as leaf shedding, 
flowering, and shoot growth, are influenced by frequent 
precipitation or artificial watering [7, 8, 10–12]. Water 
stress influences radial growth of trees both directly, 
through cambial activity, and indirectly, through photo-
synthesis and the balances of plant hormones [13–16]. 
Cambium is a meristematic tissue that can divide and 
differentiate into secondary xylem and phloem and is 
responsible for the radial growth of trees [2, 17, 18]. Stud-
ies on temperate trees indicate that water stress can cease 
cambial activity and change the anatomical structure 
of the xylem [6, 19, 20]. It is important to note that cli-
matic factors, such as temperature, precipitation, and day 
length, are the main regulators of cambial activity and, 
consequently, carbon allocation in woody parts of trees. 
The relationship between climatic factors and cambial 
activity has been studied in detail in trees in temperate 
climates [2, 21, 22]. However, less attention has been paid 
to trees growing in tropical and subtropical regions [23, 
24].

It is assumed that temperature, precipitation, day 
length, or a combination of these factors influence cam-
bial activity in trees growing in tropical and subtropical 
regions [7, 9, 23–32]. In tropical regions, temperature 
remains relatively constant throughout the year, but the 
patterns of precipitation often exhibit seasonal varia-
tions, which are known to be the most important factor 
for cambial activity [31, 33–36]. The absence (or less than 
60 mm) of precipitation for 1–3 months during the dry 
season is responsible for a temporary cessation of cam-
bial activity in tropical trees [34, 37]. However, in com-
parison with trees in tropical regions, the relationship 
between cambial activity and climatic factors of subtropi-
cal trees, is more complex because of the year-round var-
iations of temperature, precipitation, and day length.

The factors that regulate cambial activity in subtropi-
cal trees are still unclear, because subtropical trees show 
contrasting findings of both decrease and increase in 
radial growth in relation to climate change [30, 32, 38, 
39]. These differences are related to regional variances 
in main climatic factors, such as temperature, precipita-
tion, and water availability, all of which control cambial 
activity. For example, precipitation affects cambial activ-
ity [40]; however, when soil water is abundant, cambial 
activity is associated with temperature rather than pre-
cipitation [25, 30, 32, 41]. We recently observed that, if 
precipitation continued regularly during the drier month, 
the cambium of Acacia mangium, Tectona grandis, 
Eucalyptus urophylla, and Neolamarckia cadamba trees 
remained active throughout the dry season in tropical 
Indonesia [31]. This investigation revealed that the pat-
tern of precipitation is important for cambial activity, 
although it is unclear whether continuous or intermittent 

precipitation pattern is more effective [7, 31, 42]. So 
far, most studies on tropical and subtropical trees have 
focused on seasonal cambial activity and tree ring anal-
yses. A sequential experimental setup involving inten-
tional variations of environmental factors can provide 
more precise and detailed information on the climatic 
regulation of cambial activity in subtropical trees [30, 31].

Climate change potentially poses a very high risk to 
Bangladesh as a sub-tropical country. However, until now, 
little is known of how the cambium of perennial trees 
responds and synchronizes its activity under these uncer-
tain climatic conditions. Dendrochronological studies of 
some tree species growing in Bangladesh have shown the 
formation of annual rings, indicating that cambial activ-
ity can cease and later resume [38, 43–47]. The width of 
annual rings drastically decreased and xylem anatomical 
features changed as a response to extreme drought [48, 
49]. In particular, a slightly higher temperature during 
the pre-monsoon season (i.e., a hot spring) just before 
the monsoon season adversely affected the annual rings 
as well as the anatomical features of the xylem [45, 50]. 
Although tree ring analyses reveal a relationship between 
annual tree growth and precipitation, it is unknown how 
artificial watering during the pre-monsoon season affects 
the onset, continuation or termination of cambial activity 
[42].

The present study was designed to understand the 
response of the cambium on the stem at two different 
frequencies of watering during the pre-monsoon season 
in subtropical Bangladesh. We studied cambial cell divi-
sion, xylem differentiation, and anatomical structure of 
xylem of the main stem of evergreen hardwood Sama-
nea saman seedlings. We selected the S. saman tree spe-
cies for this study because of its common use as an easily 
adapting and fast-growing tree in homesteads, along 
roadsides, and other places [51].

Materials and methods
Climate and soil status
Bangladesh has a warm and humid climate that com-
prises six seasons: summer, rainy, autumn, late autumn, 
winter, and spring. However, in practice, most of the six 
seasons overlap with each other. Based on meteorological 
climate data, Bangladesh is divided into winter (Decem-
ber to February), pre-monsoon (March to May), mon-
soon (June to September), and post-monsoon (October 
to November). The variation in monsoon rainfall depends 
on the easterly trade winds, southwest monsoon, and El 
Niño–Southern Oscillation (ENSO).

We set the experiment in a homestead area in the Dina-
jpur district of Bangladesh (25° 37′ 9.084’’ N and 88° 38′ 
49.2504’’ E). This area is 42 m above sea level and located 
in the northern part of Bangladesh, which includes a 
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Fig. 1  Map showing the location of Bangladesh and of the experimental site (a yellow star; Source: Google, TMap Mobility, and Bangladesh forest 
department)
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small tropical moist deciduous forest (Fig. 1). According 
to the Köppen climate classification, this area has a tropi-
cal wet and dry climate and falls under agro-ecological 
zone 1 (Old Himalayan Piedmont Plain). Sandy loam and 
clay loam soils are predominant with strongly acidic top-
soil and moderately acidic sub-soils and comparatively 
higher soil organic matter content than other areas of 
Bangladesh [52].

The meteorological data for Dinajpur, Bangladesh for 
the years from 1901 to 2016 were obtained from the 
Climate Change Knowledge Portal [53], World Bank 
Group (Fig. 2a). The meteorological data for 2015 were 
obtained from the Meteorological Agency in Dhaka, 
Bangladesh (Fig. 2b).
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Fig. 2  Meteorological data showing average monthly air temperature and monthly (total) precipitation in Dinajpur, Bangladesh from 1901 to 
2016 (a). The maximum, average, and minimum daily air temperatures and the daily precipitation of 2015 (b) at the experimental site in Dinajpur, 
Bangladesh (yellow arrow indicates irrigation period)
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Plant materials
This experiment was designed for a total of 22 seedlings 
of evergreen S. saman (age, approximately 1.5  years; 
height, approximately 40  cm; average diameter of the 
sampled stems, 2 mm). The seedlings were grown in pots 
(diameter, 21 cm; height, 19 cm) that were filled with soil 
containing a mixture of two-thirds garden soil and one-
third organic compost.

Treatments
Two treatments, namely, high frequency watering and 
low frequency watering, were applied to two separate 
groups from a total of 22 seedlings. In the “high fre-
quency watering treatment”, approximately 300  mL of 
water was applied to the soil daily. In the “low frequency 
watering treatment”, approximately 300 mL of water was 
applied to the soil every 4–5 days. The experiment was 
started on March 26, 2015, and continued until April 25, 
2015. We did not design an experiment without water 
treatment, because complete absence of watering dur-
ing the pre-monsoon season would have likely resulted in 
dead plants and no additional data.

Collection of samples
Stem samples were collected 7–8 cm above the soil level 
of the main stem at 5-day intervals from all seedlings. 
Two seedlings were subjected to each condition on each 
sampling date and immediately fixed in 5% glutaralde-
hyde in 0.1 M phosphate buffer (pH 7.3) at room temper-
ature (25–30 ℃).

Preparation for light microscopy
Fixed samples were washed in 0.1  M phosphate buffer, 
trimmed, dehydrated in a graded ethanol series, and 
then embedded in epoxy resin. Transverse sections 
with a thickness of approximately 1  µm were cut from 
the embedded samples with a glass knife on an ultrami-
crotome (Ultracut N; Reichert, Vienna, Austria). The sec-
tions were stained with a solution of 1% safranin in water 
for 30  min and washed five or six times with water to 
visualize cambial cell division and xylem differentiation. 
In addition, hand-cut transverse sections were prepared 
with a razor blade and double stained with Congo red 
and acridine orange to show cellulose in red and lignin in 
green according to Nakaba et al. [54], Rahman et al. [31] 
and Kitin et al. [55]. Thick hand cut sections were stained 
in an aqueous solution of 10  μM acridine orange for 
10–15  min and washed four to five times with distilled 
water before they had been stained with 0.1% Congo red 
solution for 5  min and washed two times with distilled 
water.

All sections were examined under a light microscope 
(Axioscop; Carl Zeiss, Oberkochen, Germany) using 

three optical systems: bright field, polarized, and fluo-
rescence as previously described [54–57]. Semi-thin sec-
tions were examined by bright field and polarized and 
hand-cut thick sections were examined by fluorescence 
according to Nakaba et  al. [54] and Rahman et  al. [31]. 
Using fluorescence filters set for green (Ex/Em, BP450–
490/BP500–550) and red (Ex/Em, BP539–563/BP570–
640), the Congo red stained for cellulosic cell wall and 
acridine orange stained for lignified cell wall were stud-
ied. The red and green color images were merged using 
the merge channels function of ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA).

Cambial reactivation was determined by the occur-
rence of first cell division with thin tangential cell walls 
[5, 56, 58]. Active cambium is defined by the continu-
ous division of cambial cells, while inactive cambium is 
defined by the absence of cell division in the cambium 
[5, 31]. Cambial cells were distinguished from newly dif-
ferentiating xylem (expanding cells and secondary wall 
thickening cells) based on their smaller radial diameter, 
occurrence of division plates and cell wall birefringence, 
as visualized in epoxy-embedded 1-μm-thick transverse 
sections [5, 31, 56–61]. Under polarized light, cambial 
cells and expanding cells consist of only primary walls 
and exhibit no birefringence, whereas secondary wall 
thickening cells show birefringence. We separated differ-
entiating expanding cells from cambial cells by measuring 
their size; if the cell size was nearly double that of cam-
bial cells, we classified them as differentiating expanding 
cells. These differentiating expanding cells with primary 
walls were distinguished from differentiating secondary 
wall thickening cells by examining cell wall birefringence.

Results
Temperature and precipitation profiles
We observed identical variations of intra-annual sea-
sonal temperatures and precipitation (Fig.  2). The 115-
year record from 1901 to 2016 showed highest monthly 
precipitation (above 300  mm) from June to September; 
then, the monthly precipitation continuously decreased 
until it was very low or absent until the start of the rainy 
season in the following year from June onwards (Fig. 2a). 
The average temperature decreased in December and 
increased gradually from February. The changes in daily 
temperatures and precipitation in 2015 follows the same 
pattern as the 115-year record of temperature and pre-
cipitation profiles (Fig.  2b). The study area experienced 
six-to-seven drier months during the winter and pre-
monsoon seasons.

Investigation of cambial activity
On March 26, 2015, before the start of the experiment, 
the cambium was inactive with no evidence of cell 
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division (Fig.  3a–e). The inactive cambium consisted 
of three to five layers of radially narrow and compactly 
arranged fusiform cells that were located between 
the phloem and xylem cells (Fig.  3a, b). We observed 

some differentiating xylem cells between the compactly 
arranged cambial cells and completely developed xylem 
(Fig. 3b, c).

Fig. 3  Light, polarized and fluorescence micrographs showing transverse views of cambium before the start of the experiment on 26 March 2015 
(a–e). On this date, three to five layers of fusiform cambial cells were arranged compactly with no evidence of cell division, indicating inactive 
condition of cambium on the stem (a, b). A polarized light micrograph of thin sections after staining with safranin showing the cambial region (c). 
Expanding and expanded xylem cells were separated by observing the birefringence of cell wall. Fluorescence micrographs (d, e) showing the 
phloem, cambium and xylem. The heterogeneous intensity of fluorescence in (d, e) indicates the less-lignified xylem adjacent to cambium. Merged 
green (Ex/Em, BP450-490/BP500-550) and red (Ex/Em, BP539-563/BP570-640) image. Ap axial parenchyma, C cambium, Ph phloem, F fibers, Xy 
xylem. Bars = 50 µm
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On April 5, 2015, after the application of high fre-
quency watering for 10 days, we observed the formation 
of new cell plates with thin cell walls in the cambium, 
which is an indication that cambial reactivation occurred 
on the stem (Fig.  4a). This newly dividing cambial cells 
were located near the phloem side of the cambium. Just 
below the dividing cambial cell layers in the xylem side, 
we observed differentiating xylem cells. In contrast, on 
the same date, cell division in the cambium was absent on 
the stems of those seedlings that had been treated with 
low frequency watering, indicating the inactive condition 
of cambium (Fig. 4b). Between these compactly arranged 
inactive cambium and completely developed xylem, dif-
ferentiating xylem cells were observed.

On April 15, 2015, after the application of high fre-
quency watering for 20  days, cambium was active and 
cell division in the cambium continued (Fig.  4c). We 
observed approximately 4–7 radial layers of dividing fusi-
form cells (Fig.  4c). Just below the dividing cambial cell 
layers in the xylem side, we observed expanding and sec-
ondary wall forming xylem cells that were differentiating 
into new wood fibers or parenchyma cells or vessel ele-
ments (Fig. 4c). By contrast, on the same date, the cam-
bium was still in inactive condition with no evidence of 
cell division in samples when low frequency watering had 
been applied (Fig. 4d). Between the compactly arranged 
cambial cells and completely developed xylem, differenti-
ating xylem cells were observed.

On April 25, 2015, after the application of high fre-
quency watering for 30  days, the cambium was highly 
active with continuous cambial cell division and xylem 
differentiation (Fig.  4e). Just below the layers of newly 
dividing cambial cells in the xylem side, differentiating 
new wood fibers and vessels elements were observed 
(Fig. 4e). In contrast, on the same date, with the applica-
tion of low frequency watering, cambium remained inac-
tive with no evidence of cell division (Fig.  4f ). On this 
date, we observed differentiating xylem cells between the 
inactive cambium and completely developed xylem.

The detailed anatomical characteristics of newly 
formed xylem cells, with the application of high fre-
quency watering, were observed on the last date of obser-
vation on April 25, 2015 (Fig.  5a–f). We observed 4–5 
layers of expanding and secondary wall forming xylem 
cells with large numbers of newly differentiating ves-
sels located near the cambium (Fig.  5a, b). These newly 
formed vessels had variable diameters and thick cell walls 
(Fig. 5c, d). Thickening of vessel cell walls occurred ahead 
of the surrounding wood fibers and longitudinal paren-
chyma cells (Fig. 5b, e, f ).

There were no identical differences in cambial activity 
among the individual seedlings from the same treatment 
on each sampling date. The low magnification image of 

the sample stem of high frequency watering treated seed-
ling on April 25, 2015 showed no clear xylem growth ring 
boundary (Fig. 6).

Discussion
The application of high frequency watering during the 
pre-monsoon season induced cambial reactivation of 
inactive cambium on the stem of the diffuse-porous 
evergreen hardwood S. saman. In contrast, the cam-
bium remained inactive when low frequency watering 
was applied. The results reveal that a continuous supply 
of water to the soil is one of the most important factors 
for cambial reactivation of the stem in the pre-monsoon 
season in trees growing in sub-tropical regions, such as 
Bangladesh.

Trees are more sensitive to temperature in compara-
tively cold regions. In contrast, they are more sensitive 
to water in hot and dry regions, and become increas-
ingly temperature restricted with shortage of available 
soil water [9, 28, 62]. Studies in subtropical regions of 
China, India, and Mexico have revealed that cambial 
reactivation is closely associated with seasonal tem-
peratures [25, 28, 30, 41]. In temperate and cool cli-
mates, an increase in temperature from late winter to 
early spring is widely recognized as a trigger for reac-
tivating the process of cambial cell division and xylem 
differentiation in tree stems [56, 60, 61, 63–66]. Rossi 
et  al. [64, 67–69] observed that cambial activity and 
xylem differentiation started above a certain threshold 
value of mean daily temperatures of 5–9 °C in temper-
ate-grown Larix decidua, Pinus cembra, Picea abies, 
Abies balsamea, Pinus sylvestris, Pinus leucodermis, 
and Pinus uncinata. Cambial reactivation occurs when 
the daily maximum temperature exceeds the threshold 
maximum temperature of 10–15  °C for several days in 
deciduous hardwood hybrid poplar, evergreen coni-
fer Cryptomeria japonica, and Chamaecyparis pisifera 
in Tokyo, Japan [5, 70, 71]. However, in subtropical 
China, cambial reactivation and xylem differentiation 
in P. massoniana Lamb. started in February, with a 
7-day mean temperature of 12.2–16.1  °C [30]. Obser-
vations in subtropical regions in India showed that 
cambial reactivation and xylem differentiation started 
in March with monthly maximum, average, and mini-
mum temperatures just above 20  °C, 15–20  °C, and 
12–15  °C, respectively, in Dillenia indica and P. kesiya 
trees [25, 41]. In the present study, before the start of 
our experiment in March, the daily maximum, aver-
age, and minimum temperatures ranged from 27.0 to 
34.5 ℃, 20.3 to 27.6 ℃, and 13.5 to 23.4 ℃, respectively. 
During our experiment from March 26 to the date of 
cambial reactivation on April 5, the daily maximum, 
average, and minimum temperatures ranged from 27 °C 
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Fig. 4  Light micrographs showing transverse views of cambium from high frequency and low frequency watering treatments. On 5 April 2015, 
after 10 days of application of high frequency watering, cell division in the cambium was initiated and many cambial cells started to divide 
(arrowheads) and differentiate into xylem cells (arrows, a). On the same date, with the application of low frequency watering, the cambium was 
in inactive condition (b). On 15 April 2015 after 20 days of application of high frequency watering, cambial cell division (arrowheads) and xylem 
differentiation (arrows) were observed on the cambial zone (c). On the same date, with the application of low frequency watering, cell division 
was absent in the cambial zone (d). On 25 April 2015, after 30 days of treatment with high frequency watering, cambial cell division and xylem 
differentiation were continued (e). On the same date, after treatment with low frequency watering, there was no new cell division in the cambial 
zone (f). C cambium, F fibers, Ph phloem, * vessel elements, Xy xylem. Bars = 50 µm
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Fig. 5  Light and fluorescence micrographs showing transverse views of cambium and differentiating xylem cells after 30 days of application of 
high frequency watering on 25 April 2015. A newly differentiating vessel located close to the cambium consisted of large radial diameter and thin 
cell wall (a). The vessel located close to the cambium exhibited a narrow diameter and thicker cell walls than the surrounding wood fiber cells 
(b). Small vessels located close to the cambium exhibited thick cell walls (c, d). Fluorescence micrographs showing the phloem, cambium and 
differentiating (arrows) and differentiated vessel elements located close to the cambium (e, f). The heterogeneous intensity of fluorescence in (e, f) 
indicates the less-lignified rays and wood fibers adjacent to cambium. Merged green (Ex/Em, BP450–490/BP500–550) and red (Ex/Em, BP539–563/
BP570–640) image. Ap axial parenchyma, C cambium, * Ph, phloem, *, vessel elements, Xy xylem. Bars = 50 µm
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to 33  °C, 23  °C to 27  °C, and 19  °C to 23  °C, respec-
tively. Although the ambient air temperatures during 
our experimental period were sufficiently high in our 
study area to promote continuous cambial activity, the 
cambium remained inactive. Therefore, it was hypoth-
esized that climatic factors other than temperature, for 
example, precipitation could influence the timing of 
cambial reactivation during the pre-monsoon season in 
Bangladesh.

Cambial reactivation occurred in deciduous hard-
wood Tectona grandis and evergreen conifers, P. kesiya, 
P. latteri and Pinus merkusi, and woody Kielmeyera 
grandiflora (Wawra) Saddi (Calophyllaceae) during the 
transition from the dry to rainy season or at the start of 
the rainy season when water was abundant in the soil 
[32, 34, 40, 72]. An exceptional precipitation or irriga-
tion under natural condition during the mid-dry season 
caused bud flush in several tropical tree species grown 
in Costa Rica [73]. The first heavy rains initiate rehy-
dration of the tree trunk and activate flushing, which 
in turn induce cambial activity [7, 72]. However, the 
observations of Trouet et al. [42], in Brachystegia spici-
formis growing in tropical southern Africa, revealed 
that a substantial rainfall event, after the end of the 
seasonal cambium activity, did not induce xylem or 
false ring formation. Our observation in subtropical 
Bangladesh indicates that the application of high fre-
quency watering for at least 10  days during the pre-
monsoon season is required to produce new cell plates 
in the cambium and differentiation of cambial cells into 
xylem on the stem of S. saman. Our results suggested 

that cambial reactivation and the start of xylem differ-
entiation may require a continuous supply of water to 
the soil for a specified duration of time during the pre-
monsoon season.

Under the artificial water deficit condition, a small 
decrease in water potential in a tree can lead to the loss 
of cell turgor pressure and decline physiological strength 
of living cells around the cambium and ultimately restrict 
the cambial activity [6, 20]. In Bangladesh, an increase 
in pre-monsoon temperatures caused increased water 
stress, which eventually limited xylem growth ring 
width in Chukrasia tabularis [44]. In the present study, 
the application of low frequency watering did not initi-
ate cambial reactivation on the stem indicating that low 
frequency watering was inadequate to reactivate the 
inactive cambium. However, with the application of high 
frequency watering, cambial cell division and xylem dif-
ferentiation continued after the reactivation of inactive 
cambium. Our finding suggested that application of high 
frequency watering might provide a consistent osmotic 
flow to maintain the cambium cell turgor pressure which 
is needed for the continuation of cambial cell division 
and xylem differentiation.

Cambial dormancy is an important adaptive mecha-
nism for tree survival under adverse climatic conditions. 
In temperate trees, a distinct period of cambial dor-
mancy in winter represent compactly arranged cambial 
cells with no evidence of cell division [21, 22]. These cam-
bial cells were located between the secondary phloem 
and thick-walled secondary xylem that had formed dur-
ing the previous growing season. Such cambial dormancy 
in temperate trees consisted of two stages, namely, rest-
ing and quiescent [74–76]. The rest stage is the stage of 
dormancy imposed by internal factors, while the quies-
cent stage is the stage of dormancy imposed by external 
(environmental) factors, such as temperature [56, 58, 
63, 76–78]. The adequate environmental conditions in 
the quiescent stage can initiate the formation of new cell 
plates in the cambium. However, these definitions are 
based on trees in temperate and cool climates, and it is 
not established whether subtropical and tropical trees 
respond with similar stages of dormancy. In subtropical 
China, a short inactive period of cambium was observed 
in P. massoniana, characterized by the cessation of cam-
bial activity and the continuing lignification of the xylem 
cell wall near the cambium [30]. It was suggested that 
this shorter inactive period of cambium was imposed 
environmentally (quiescent), for example by a lower tem-
perature and shorter photoperiod, when compared to 
the distinct cambial dormancy in temperate regions and 
defined as “semi-dormancy”. The results of our study in 
the pre-monsoon season on subtropical S. saman show 
that the cambial cell division was absent at the start and 

Fig. 6  Fluorescence micrograph showing low magnification 
transverse view of the stem sample consisting phloem, cambium and 
xylem after 30 days of application of high frequency watering on 25 
April 2015. Absence of sharp boundary indicating xylem growth ring 
was not visible. Merged green (Ex/Em, BP450–490/BP500–550) and 
red (Ex/Em, BP539–563/BP570–640) image. C cambium, Ph phloem, P 
Pith, Xy xylem. Bar = 50 µm
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cell division remained absent until the end of the experi-
ment when low frequency watering was applied; however, 
application of high frequency watering could restart the 
cambial cell division immediately. Thus, we hypothesized 
that, during our experiment, inactive condition of cam-
bium in S. saman seedlings might resemble the charac-
teristics of semi-dormancy as like other studied tropical 
and subtropical tree species [30, 31] and it will reactivate 
immediately when adequate environmental conditions 
are met.

Artificial water stress during the active growing season 
induced deformed tracheids in C. japonica and vessel ele-
ments in Populus sp. [19, 20]. Under natural conditions, 
severe drought induced narrow tracheids in P. kesiya [79] 
and small vessels in Chukrasia tabularis as the number 
of vessels increased [48, 49]. In contrast to the results 
of water stress and severe drought, we observed that 
numerous vessels were produced with variable diameters 
and thick cell walls in the present study when we sup-
plied high frequency watering for 30 days. Thickening of 
cell walls of vessel elements occurred earlier than the sur-
rounding wood fibers and longitudinal parenchyma cells. 
A similar pattern of differentiation of vessel elements 
was found in the early growth season on temperate hard-
woods, such as Kalopanax pictus, Quercus serrata, and 
Robinia pseudoacacia [80, 81]. It is plausible that the 
time required for xylem cells to mature vary according 
on their types and that temperate and subtropical hard-
woods might have a similar tendency of xylem differen-
tiation in the early growing season.

Cambial activity in tropical and subtropical trees are 
mostly studied by collecting samples seasonally or at 
regular intervals over a long period. To our knowledge, 
the present study is the first attempt to show that arti-
ficial watering induces cambial reactivation and xylem 
differentiation in subtropical trees over a relatively short 
period. Such an experimental setup might be particularly 
beneficial for studying the physiological and histochemi-
cal changes that occur during the cessation and reactiva-
tion of cambial activity in tropical and sub-tropical trees.

In conclusion, our results suggest that a continuous 
supply of water to the soil is one of the most important 
factors for cambial reactivation in the stem of S. saman 
during the pre-monsoon season. Our findings of artifi-
cial watering treatments on cambial activity might help 
to explain how variations in precipitation patterns affect 
cambial activity under natural conditions. The response 
of the cambium to water stress in subtropical Bangla-
desh offers valuable information which in turn may help 
us better understand how subtropical trees respond 
to climate change. Furthermore, in a country, such as 
Bangladesh, where natural forests are scarce, an efficient 
irrigation schedule could be a very useful practice for 

optimizing yield from commercial perennial fruit tree 
farms and artificial tree plantations.
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