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Structural diversity of natural cellulose 
and related applications using delignified wood
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Abstract 

Cellulose is synthesized by organisms belonging to each biological kingdom, from bacteria to terrestrial plants, lead-
ing to its global-scale distribution. However, the structural properties of cellulose, such as its microfibril size, crystal 
form, cross-sectional shape, and uniplanar orientation, vary among species. This mini-review discusses the structural 
properties and diversity of cellulose. After describing historical developments in the structural analysis of cellulose, 
the technique of intracrystalline deuteration and rehydrogenation to understand structural diversity—particularly the 
localization of crystalline allomorphs in single microfibril—is discussed. Furthermore, the development of cellulose 
materials that maintain hierarchical structures of wood is introduced, and methods for producing functional materials 
are presented.
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Introduction
Cellulose is the most abundant organic material on Earth, 
with 1011–1012 tons produced each year, primarily from 
water and carbon dioxide by plant photosynthesis [1]; it 
has recently attracted considerable attention as a renew-
able material to replace fossil-based resources. Cellulose 
is a major component of wood, which is packed into 
crystalline fibers referred to as “microfibrils” that align to 
form oriented sheets. A lamellar structure, which is based 
on piled sheets, forms the cell wall, and cells arrange to 
form the anatomical structure of wood. The combination 
of this sophisticated hierarchical structure with matrix 
components such as hemicellulose and lignin provides 
trees with the mechanical properties that enable them to 
grow large in size and live for long periods of time.

Many organisms other than trees, including sea algae, 
ascidians, and bacteria such as Acetobacter, also synthe-
size cellulose; however, cellulose suprastructures (e.g., 
crystalline form, cross-sectional shape, and in-plane 

orientation) are highly diverse. This mini-review focuses 
on the structural diversity of natural cellulose and how 
historical developments have shaped our understanding 
of the cellulose structure. The intracrystalline deuteration 
technique that is used to evaluate structural diversity and 
methods for removing matrix components while main-
taining the hierarchical structure of wood are also dis-
cussed in relation to their associated physical properties.

Crystalline allomorphs and their diversity
The Japanese researchers Nishikawa and Ono first iden-
tified the crystal formation of cellulose by irradiating 
wood, hemp, and bamboo with X-rays in 1913 to produce 
diffraction images [2]. Given that Laue had only recently 
discovered that X-rays produce diffraction patterns in 
1912—by demonstrating that crystals are made up of 
periodic structures with intervals comparable to the 
wavelength of an X-ray—one can appreciate how both 
of these Japanese researchers made significant pioneer-
ing contributions to cellulose research. Subsequently, 
the active employment of X-ray diffractometry to obtain 
the first crystal model of cellulose was not reported until 
1928 by Meyer and Mark [3], in which they proposed a 
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parallel-chain structure with two molecular chains of 
the same orientation packed in a unit lattice. Since then, 
various unit lattices have been proposed, including the 
antiparallel chain model of Meyer and Misch in 1937 
that involved two molecular chains face away from each 
other [4], and the eight-chain unit cell reported by Honjo 
and Watanabe two decades later [5]. Unfortunately, these 
models did not lead to the establishment of a widely 
accepted unified model.

The use of infrared (IR) spectroscopy, however, 
revealed that cellulose from sea algae and bacteria con-
tain groups that differ from those of cotton and ramie, 
leading to the further classification of cellulose I as cel-
lulose IA and IB [6, 7]. Fisher and Mann [8] examined 
the packing of molecular chains and found that the crys-
tal lattices of cellulose IA and IB were different. Con-
sequently, it remained a point of contention whether 
a unified model with the same structure for all natural 
celluloses or one with variations among species should 
be accepted. In 1974, a parallel-chain model was pro-
posed using a combination of computerized refinement 
and energy calculations based on diffraction intensities, 
which was widely accepted as the crystal model for cel-
lulose [9, 10]. However, it was not until the 1980s when 
solid-state nuclear magnetic resonance (NMR) spectros-
copy became available that a model corresponding to cel-
lulose IA and IB was proposed, leading to a new phase 
of cellulose structural studies. In other words, the IA and 
IB natural classifications of cellulose I were abandoned 
in favor of a mixture of Iα and Iβ, the ratio of which var-
ies among species [11, 12]. These two types of cellulose 
were broadly classified into the sea algae/bacteria type, in 
which Iα constitutes the majority, and the cotton/ramie 
type, which contains a large amount of Iβ. Moreover, Iα 
cellulose can be converted into Iβ by hydrothermal treat-
ment [13] or high-temperature treatment in organic 
solvents and helium gas [14], which revealed that the Iβ 
phase is more physically stable.

In 1991, the electron diffraction patterns obtained 
from a single microfibril before (Iα-rich) and after 
(Iβ-dominant) hydrothermal treatment were analyzed, 
resulting in the proposed crystal models of single-chain 
triclinic and double-chain monoclinic unit cells corre-
sponding to the Iα and Iβ forms [15]. The precise struc-
tures of native celluloses have since been determined 
by synchrotron X-ray and neutron diffractometry [16, 
17]. The presence of Iα and Iβ can also be determined 
using IR spectroscopy [18], whereby cellulose Iα exhib-
its characteristic IR absorptions at 3240 and 750 cm−1, 
while Iβ exhibits bands at 3270 and 710 cm−1. Although 
it is not clear which cellulose crystal lattice is the domi-
nant form in wood due to its low crystallinity, a multi-
faceted analysis relying on a combination of IR, NMR, 

X-ray, and electron diffraction techniques revealed 
that Iβ dominates both the poplar xylem wall and gel-
atin layer [19]. Ascidians are the only animal species 
that synthesize cellulose, predominantly as cellulose Iβ. 
Interestingly, it was discovered that the type of cellulose 
differed between ascidian larvae and adults, which syn-
thesize Iα and Iβ, respectively [20]. Furthermore, sepa-
rate synthetic genes were found to be involved, thus 
indicating that crystal structure formation is molecu-
larly regulated in this animal. More recently, near-
infrared spectroscopy [21] and terahertz time-domain 
spectroscopy [22] have been employed to evaluate cel-
lulose structure in terms of its allomorphs.

Localization of cellulose allomorphs within a single 
microfibril
Table  1 summarizes the proposed microfibril domain 
distribution models. The micro-electron diffraction 
method was first suggested to model the localization of 
each allomorph along the fiber axis based on the dif-
fraction pattern of a single cellulose microfibril that 
was continuously followed [15]. In addition, detailed 
analyses of electron diffraction data obtained from sev-
eral species of green algae led to the conclusion that the 
Iα and Iβ domains are alternately/laterally localized in 
the microfibril direction [23].

An alternative model in which Iβ is distributed in the 
center of the microfibril crystal and Iα on the crystal 
surface (the “skin (Iα)-core (Iβ) structure”) was also pro-
posed based on the concept that Iα, a metastable struc-
ture, is formed on the crystal surface under shear stress 
resulting from torsion associated with the bacterial cel-
lulose ribbon [24]. Acid hydrolysis revealed microfib-
ers with sharp tips rich in Iβ [25], suggesting that the Iα 
domains on the crystal surface are preferentially acid-
hydrolyzed, leading to the skin (Iα)-core (Iβ) structure 
for green alga cellulose.

As was observed during acid hydrolysis, Iα is more sus-
ceptible to degradation than Iβ during enzymatic treat-
ment [26, 27]. The same research group also observed 
microblock exfoliation from microfibrils in enzyme-
treated Cladophora cellulose by atomic force microscopy 
[28], which led to the conclusion that the crystalline allo-
morphs are longitudinally localized rather than horizon-
tally distributed. The formation of Iβ-rich products with 
smaller microfibrils during treatment also supports a 
model in which Iβ domains are surrounded by Iα in the 
microblocks that form the microfibrils. Interestingly, this 
model is similar to that in which Iβ domains are packed 
inside Iα superlattices. In addition, Iβ-rich cellulose is syn-
thesized when acetic acid bacteria are grown in the pres-
ence of hemicellulose [29].
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Cross‑sectional shape of microfibrils
In order to discuss the natural cross-sectional shape 
diversity of microfibrils, an understanding of the method 
used for observing microfibril cross-sections must be 
mentioned first. Negatively stained transverse ultrathin 
sections can be imaged using electron microscopy by 
tilting them in various directions and at various angles 
[30]. The diffraction contrast method employed by Revol 
et  al. [31] can be used for both bright-field imaging (in 
which all diffracted waves from the crystal are cut off by 
an objective aperture) and dark-field imaging (in which 
only diffracted waves are observed), allowing the cross-
sectional shape to be determined without any need for 
staining.

The actual cross-sectional shape of Valonia cellu-
lose microfibrils is square (approximately 20 × 20  nm) 
or rectangle [32]—similar cross-sectional shapes are 
observed for Oocystis and Glaucocystis [33]. However, 

natural celluloses with cross-sections that are neither 
square nor rectangular have also been observed. For 
example, Micrasterias, a type of aquatic algae belong-
ing to the Zygnematales order, has a very flat micro-
fibril cross-section [34], while ascidians have unique 
parallelogram- or rhomboid-shaped microfibril cross-
sections [35]. The actual cross-sectional shape of wood 
cellulose in the gelatin layer of poplar tension wood was 
reported to be square (approximately 3 × 3  nm) [36]. 
Recent advances in scattering and imaging techniques 
have led to an active debate on the cross-sectional 
shape of microfibrils in terrestrial plants. Spectroscopic 
methods coupled with small-angle neutron and wide-
angle X-ray scattering have suggested a “rectangular” 
model for microfibrils [37], while computer-simulated 
analyses of wide-angle X-ray scattering data resulted 
in a variety of microfibril models [38]. Furthermore, 
Daicho et  al. [39] proposed a hexagonal model with 

Table 1.  Proposed models for localization of cellulose allomorphs within a single microfibril
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boundary faces parallel to all three reflection planes of 
(11̄0) , (110), and (200).

Preferential uniplanar orientation
The cell wall of Valonia, a green alga, has a crossed-
lamellar structure. In other words, microfibrils within 
one lamella are deposited in a parallel arrangement, 
whereas those in adjacent lamellae are orthogonal. The 
microfibrils in both lamellae are oriented on a 0.60–
0.61 nm plane [the (100) plane in Iα and the (11̄0) plane 
in Iβ] parallel to the cell membrane surface. In fact, the 
0.53–0.54 nm plane [the (010) plane in Iα and the (110) 
plane in Iβ] in the Valonia cell wall exhibits a more 
intense peak than the 0.61  nm plane by transmission 
X-ray diffractometry, which indicates that the 0.61  nm 
plane is deposited parallel to the cell wall. In addition 
to the Valonia cell structure, there is a type of structure 
in which microfibrils are deposited with a 90° rotation; 

i.e., the 0.53–0.54 nm plane is oriented with the plasma 
membrane. The majority of microfibrils must be similarly 
oriented and individual microfibrils must also remain 
untwisted to observe a planar orientation. Consequently, 
rigid microfibrils with large fiber diameters and rectan-
gular cross-sections adopt such orientations, which are 
common except among terrestrial plants. Ascidian [16] 
and bacterial [40] celluloses have been identified as types 
in which microfibrils are synthesized with a 0.61 nm pla-
nar orientation, as observed for Valonia. In contrast, the 
cellulose of Glaucocystis [33] is characterized by a plane-
oriented 0.53  nm plane, as are celluloses from aquatic 
algae belonging to the Zygnematales order, such as Spiro-
gyra [41], Closterium [42], and Micrasterias [34].

There are also types of cellulose that do not exhibit 
preferential uniplanar orientation, characterized by 
smaller microfibrils with individual microfibril torsion 
responsible for the lack of facial orientation; those of 
higher plants are included in this group. Packing energy 

Fig. 1  Development of colorless wood by two-step delignification and structural analysis of the hierarchical architecture (reproduced from [70])
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calculations [9] have revealed that cellulose molecules are 
stable in a state slightly divergent from the twofold helix; 
i.e., in a twisted state. In other words, hydrophobic and 
hydrogen bonding interactions within a crystal are less 
constrained for small microfibrils, leading to a loosely 
twisted fibril overall.

Intracrystalline deuteration and rehydrogenation 
for evaluating cellulose structural diversity
Deuteration can be employed to determine the acces-
sibilities of cellulose microfibrils and other organic 
macromolecules because the hydrogen involved in 
hydrogen bonding can be replaced by deuterium. The 
early literature reports the immersion of cellulose 
specimens in D2O, using weight differences to calcu-
late the crystallinity, and in turn determine the struc-
tural accessibility [43]. Moreover, deuterium is useful 
in IR spectroscopy because the hydrogen/deuterium 
mass difference dramatically affects molecular vibra-
tional frequencies, which for cellulose results in O–D 
bond vibrations that are located in spectral regions 
free from other absorbances. An IR spectrum acquired 

immediately after exposure of a deuterated specimen to 
air exhibits strong O–D bands that weaken over time 
owing to D/H exchange with moisture in the air.

A significant achievement was reported in 1997 in 
which high-temperature annealing at 260  °C in 0.1  N 
NaOD resulted in deuterium exchange on the micro-
fibril surface as well as in the crystalline core without 
damaging the crystalline structure [44]. Despite pro-
longed exposure to air, rehydrogenation occurred only 
on the surface of the specimen, with the core remain-
ing deuterated. By lowering the annealing temperature 
of the intracrystalline deuteration technique to 210  °C 
[45], the initial crystalline allomorph persisted, thus 
facilitating investigations of completely deuterated Iα 
and Iβ crystals separately and allowing for the precise 
refinement of hydrogen bonding networks of cellulose I 
allomorphs [16, 17].

Author and co-workers modified this intracrystal-
line deuteration technique to establish a stable and 
reproducible method to initially deuterate all of the pri-
mary hydrogen groups completely. The deuterated sam-
ples are then rehydrogenated by immersion in water at 
room temperature, whereby the deuterium atoms of all 

Fig. 2  Tensile stress–strain curves for an oriented sheet and a random sheet prepared by pressing colorless wood (reproduced from [72])
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surface OD groups are exchanged for protons to form 
OH groups [46]. This behavior during rehydrogenation at 
elevated temperatures confers accessibility to the crystal 
core, thereby providing important information on micro-
fibril dimensions [47] and uniplanar orientation [48]. In 
addition, monitoring exchange behavior by observing 
characteristic IR absorbances on Iα and Iβ during intrac-
rystalline deuteration/rehydrogenation revealed that the 
Iα domain is localized on the surface as well as in the 
central core of the cellulose microfibril; therefore, the tri-
clinic and monoclinic domains cannot be explained only 
in terms of a simple “skin–core” structure (Table 1) [49]. 
Recently, Funahashi et al. [50] developed a technique for 
peeling molecular chains from the surface of cellulose 
microfibrils in a layer-by-layer manner; this technique 
may provide new insights into the localization of cellu-
lose allomorphs within a single microfibril.

Delignification with maintained hierarchical structures
Cellulose nanofibers are expected to be next-generation 
building blocks for the development of new materials 
because they are light and strong, with high elastic mod-
uli and low linear expansion coefficients [51]. Various 
approaches have been developed to fabricate nanofibers, 
such as mechanical processing by grinding [52], aque-
ous counter collision [53], sulfamic acid treatment [54], 
carboxylation using succinic anhydride [55], and a com-
bination of chemical and mechanical treatments using 
2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-
mediated oxidation [56]. High-strength materials can 
be developed when cellulose nanofibers are aligned; 
however, cellulose microfibrils from terrestrial plants 
are extremely difficult to reorient after they have been 
individually dispersed in water. Bottom-up approaches 
use nanofibers to develop cellulosic materials that are 
inspired by the optimal microfibril orientation in the cell 
wall layer [57, 58], although perfectly imitating nature is 
difficult. Alternatively, top-down approaches have been 
proposed, in which the non-cellulosic components are 
removed while maintaining the hierarchical structure of 
the woody biomass.

In order to develop a novel material based on cellulose 
microfibrils supported by the hierarchical wood struc-
ture, researchers have examined top-down approaches 
that remove matrix components. Yano et  al. reported 
the partial removal of lignin using NaClO2 followed by 
treatment with NaOH, and then impregnation with resin 
to obtain a high-strength wood [59]. Delignified and 
densified wood has been reported to exhibit excellent 
mechanical anisotropy [60, 61]. Optically transparent 
wood was first reported in 1992 by Fink [62], and recently 
it was also produced by delignification with NaClO2 fol-
lowed by impregnation with prepolymerized methyl 

methacrylate [63]. Additional techniques for producing 
transparent wood have also been reported (e.g., solar-
assisted chemical brushing [64] and UV irradiation [65]). 
The combination of delignification using boiling aqueous 
NaOH/Na2SO3 with hot pressing results in remarkably 
strong densified wood as well [66]. The selective separa-
tion of oil/water mixtures using strong, mesoporous, and 
hydrophobic biocomposites is a recent application that 
has been explored [67, 68].

By detailed monitoring of wood delignification using IR 
spectroscopy [69], our group fabricated a novel cellulose 
block with the natural architecture of wood through alco-
holysis with ethylene glycol combined with NaClO2 [70]. 
Figure  1 shows a representative colorless wood block 
prepared using the two-step delignification process and 
a schematic model of the hierarchical structure of wood 
with the corresponding morphological and structural 
data obtained from different analytical techniques. This 
delignified wood is unique in that most of the hemicellu-
lose has also been removed. Author and co-workers have 
further improved the technique and demonstrated its 
applicability to bamboo [71]. In addition, non-cellulosic 
components were removed from wood blocks by chang-
ing the treatment conditions to generate cellulose blocks 
with varying degrees of polymerization while maintain-
ing the anatomical structure [72]. The microfibril sheets 
oriented by heat-pressing exhibited desirable physical 
properties (Fig. 2), with the specific modulus independ-
ent of the degree of polymerization as long as the orien-
tation was maintained. In contrast, the tensile strength 
of the oriented sheet varied with the degree of polymeri-
zation, which highlights the notable influence of single 
fiber strength compared to the randomly oriented sheet. 
Lignin-free wood blocks, which are supported by the 
three-dimensional (3D) architecture of wood, have great 
potential as new materials, which can also be used to 
understand the formation and functionality of the struc-
ture of wood. 

Conclusion
Primitive organisms such as bacteria and sea algae syn-
thesize relatively large cellulose fibers. In contrast, ter-
restrial plants generate small microfibrils, possibly to 
increase their surface area and facilitate interactions with 
matrix components, such as lignin and hemicellulose, 
which helps their survival under harsh environmental 
conditions. Given the long history of trees on Earth, the 
complex 3D structure of wood underpinned by cellu-
lose provides the exemplary structure as a high-strength 
material. Consequently, new functional materials with 
guaranteed strengths may be developed using colorless 
wood as a framework and injecting matrix components 
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other than lignin. In addition, incorporating selective 
lignin polymerization technology into colorless wood 
[73] may further clarify the relationship between the 
chemical composition and physical properties of wood.
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