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Abstract 

To predict the mechanical properties of wood in the transverse direction, this study used machine learning to extract 
the anatomical features of wood from cross-sectional stereograms. Specimens with different orientations of the ray 
parenchyma cell were prepared, and their modulus of elasticity (MOE) and modulus of rupture (MOR) were meas-
ured by a three-point bending test. The orientation of the ray parenchyma cell and wood density ( ρ ) were used as 
parameters for the MOE and MOR prediction. Conventional machine learning algorithms and artificial neural network 
were used, and satisfactory results were obtained in both cases. A regular convolutional neural network (CNN) and 
a density-informed CNN were used to automatically extract anatomical features from the specimens’ cross-sectional 
stereograms to predict the mechanical properties. The regular CNN achieved acceptable but relatively low accuracy in 
both the MOE and MOR prediction. The reason for this may be that ρ information could not be satisfactorily extracted 
from the images, because the images represented a limited region of the specimen. For the density-informed CNN, 
the average prediction coefficient for both the MOE and MOR drastically increased when ρ information was provided. 
A regression activation map was constructed to understand the representative anatomical features that are strongly 
related to the prediction of mechanical properties. For the regular CNN, the latewood region was highly activated 
in both the MOE and MOR prediction. It is believed that the ratio and orientation of latewood were successfully 
extracted for the prediction of the considered mechanical properties. For the density-informed CNN, the activated 
region is different. The earlywood region was activated in the MOE prediction, while the transition region between 
the earlywood and latewood was activated in the MOR prediction. These results may provide new insights into the 
relationship between the anatomical features and mechanical properties of wood.

Keywords Deep learning, Computer vision, Properties prediction, Structure–property relationships

Introduction
Wood is an abundant and sustainable resource, and is 
widely used for construction, and in the manufactur-
ing of, e.g., furniture, musical instruments, and paper. 
Because wood is a natural material, its properties vary 
owing to the unique anatomical features of different 
wood species, which are influenced by the growth envi-
ronment [1]. Such variations are occasionally considered 
to be problematic because they deteriorate the utiliza-
tion rate of wood resources. Therefore, understanding 
the relationship between the anatomical features and 
the mechanical properties is the subject of ongoing 
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investigation, and a system for the rapid evaluation of 
properties is urgently needed by the wood industry.

With the development of artificial intelligence (AI), 
machine learning has been effectively used as a powerful 
approach for the rapid prediction of the physical proper-
ties of materials, and can accelerate the speed of mate-
rial design [2]. Additionally, machine learning has been 
used to predict the mechanical properties of wood and 
wooden products. A pioneering study by Mansfield et al. 
[3] used an artificial neural network (ANN) to predict 
the modulus of elasticity (MOE) and modulus of rupture 
(MOR) of wood. Subsequently, the density ( ρ ), moisture 
content (MC), microfibril angle, and diffraction pattern 
coefficient of the variation of the azimuthal intensity pro-
file of the wood specimens were measured. These param-
eters were fed into the ANN to build predictive models. 
Additionally, the ANN architecture was used to predict 
the mechanical properties of heat-treated wood and the 
bonding quality of plywood [4–9]. By using near-infra-
red spectroscopy combined with partial least squares 
regression, the MC, ρ , microfibril angles, and mechanical 
properties [10–13] of wood can be estimated with good 
accuracy.

Recently, computer vision-based anatomy has been 
proposed for the automated recognition of wood ana-
tomical features from macroscopic images to micro-
graphs [14–20]. The combination of computed features 
and machine learning algorithms helps in understand-
ing the differences and relationships among different 
wood species [14–17]. By conducting clustering analysis 
on the features calculated for different species, the spe-
cies specificities were successfully extracted [18, 19]. 
Recently, deep-learning-based approach such as convo-
lutional neural network (CNN) has achieved excellent 
performance in both automatic feature extraction from 
input images using convolutional layers and classifica-
tion tasks using fully connected layers [21]. Several stud-
ies have already applied the CNN architecture to wood 

identification [20, 22]. However, few studies have directly 
used the CNN architecture to extract anatomical fea-
tures from wood images with the objective of predicting 
the mechanical properties, even though CNN has been 
used to predict the properties of several materials [23, 
24]. Furthermore, explainable AI technology, such as gra-
dient-weighted class activation mapping (Grad-CAM), 
has also been established to further understand and val-
idate models [25]. If this technique is used to analyze a 
model for predicting the mechanical properties of wood, 
it may assist the discovery of anatomical features that are 
strongly related to the predicted mechanical properties.

This study prepared Sitka spruce specimens with dif-
ferent orientations of the ray parenchyma cells (ORP), 
from 0° to 90° at intervals of 10°, and measured the MOE 
and MOR of the specimens by conducting a three-point 
bending test. The ORP and density were considered as 
the parameters, and input into conventional machine 
algorithms and an ANN to predict the MOE and MOR 
of the specimens in the transverse direction. Secondly, 
the cross-sectional stereograms of those specimens were 
used to build a CNN model to predict the mechanical 
properties of the specimens. Finally, a regression activa-
tion map was constructed to visualize important stereo-
gram regions that are strongly related to the predicted 
mechanical properties of the wood specimens.

Materials and methods
Preparation of specimens
Sitka spruce (Picea sitchensis) was used in this study. Two 
spruce logs labeled as A and B were collected and then 
divided into quarters. For log A (Fig.  1a), the top-right 
quarter and left-bottom quarter were labeled as A1 and 
A2, respectively. For log B (Fig.  1b), two end-matched 
quarters were labeled as B1 and B2, respectively.

Quarter A1 was cut into strips with the dimensions of 
100  mm (length) × 10  mm (longitudinal) × 3  mm (thick-
ness)) with consideration to the ORP. The alignment of 

Fig. 1 Logs cut into quarters and their selection for preparation of specimens: a log A; b log B; c prepared specimen with the ORP of 0°
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the ray parenchyma cells in the horizontal and vertical 
direction was 0° and 90°, respectively. The specimens 
were prepared with the ORP in the range of 0°–90° at 
intervals of 10° through visual observation assisted by 
an angle scale. More than five specimens were prepared 
for each degree. The same process was also carried out 
for quarter A2, B1, and B2. Finally, 271 specimens were 
prepared.

Before observing the cross-section and conducting the 
three-point bending test, all specimens were conditioned 
at 20  °C and 60% relative humidity (RH) for more than 
two weeks. The average ρ and MC of the specimens was 
0.48 g/cm3 and 11%, respectively.

Cross‑sectional observation and three‑point bending test
A sliding microtome (TU-213, Yamato Kohki industrial 
Co., Ltd., Japan) was used to smoothen the specimen’s 
surface. Furthermore, the cell wall lumens were filled 
using chalk to increase the contrast of the cross-section. 
The images of the cross-section under bending spin were 
captured using a stereo-microscope (Leica DMS300, 
Leica Camera AG, Germany). The image size was 1824 
pixels × 1168 pixels with RGB color, and the resolution 
was 2.09  μm per pixel. The central part of the captured 
images was cropped at the size of 935 pixels × 935 pixels 
and resized to 256 pixels × 256 pixels with 8 bit of gray 
scale with the resolution of 7.64 μm per pixel (Fig. 2). The 
preprocessed images were used for further analysis.

After microscopic observation, a three-point bend-
ing test was conducted using a universal testing machine 
(LSC 1/300-2, Tokyo testing machine, Japan) to measure 

the MOE and MOR of the specimens. All experiments 
were conducted at 20 °C and 60% RH. The test speed was 
set to 10  mm/min, and the span of the specimens was 
65 mm.

Conventional machine learning algorithms and ANN 
for prediction of mechanical properties
As an important parameter indicating the orientation of 
wood cells, the precise ORP was calculated from the pre-
possessed images using the fast Fourier transform (FFT) 
method [15]. The obtained ORP and ρ were used as the 
input parameters to predict the MOE and MOR. Figure 3 
shows the flowchart of the MOE and MOR prediction 
model.

The data were split using two methods, which will be 
described later. Subsequently, conventional machine 
learning approaches, namely, k-nearest neighbor (kNN), 
support vector machine (SVM), and random forest (RF), 
were used to build the corresponding models. For the 
kNN, the number of neighbors was set in the range of 
1–10. The radial bias function kernel was used in the case 
of the SVM. The cost and gamma were considered as two 
hyperparameters, whose range is a logarithmic grid from 
 100 to  105 and  10–1 to  10–6, respectively. For the RF, the 
number of estimators was set in the range of 100–1000 
with 100 intervals.

An ANN was also used for prediction. Specifically, a 
multi-layer feed-forward network with backpropaga-
tion was used. The mean square error (MSE) was used 
as a loss function and Adam was used as the optimizer. 
This study used an ANN architecture with three hidden 

Fig. 2 Typical cross-sectional images with different ORP. The numbers indicate the ORP degree of each specimen, which was calculated using the 
fast Fourier transform (FFT) method. Scale bar: 800 µm
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layers. The number of neurons in each layer was set to 8, 
16, or 32. The learning rate was set to 0.1, 0.01, 0.001, and 
0.0001. The maximum number of training epochs was 
set to 1000. The optimal hyperparameters for the kNN, 
SVM, RF, and ANN were selected by performing grid 
search, respectively.

Regular and density‑informed CNN for prediction 
of properties
This study also evaluated the potential of a CNN for MOE 
and MOR prediction based on the cross-sectional images 
of wood. Two CNN models were constructed in this study. 
The regular CNN contained six convolutional layers; a 
pooling layer was inserted every two convolutional lay-
ers, followed by three consecutive fully connected layers 
(Fig. 4). The number of filters for the three sets of convo-
lutional layers was 16, 32, and 64, respectively. The size of 
the convolutional kernel was 5 × 5. In the pooling layers, 
the max pooling function and a kernel size of 4 × 4 were 
adopted. The number of neurons for each fully connected 
layer was 32. To accelerate the training, batch normaliza-
tion was applied at the last fully connected layer. After 
each pooling layer and batch normalization, a dropout 
ratio of 0.3 was used to prevent overfitting. For the den-
sity-informed CNN, one neuron representing ρ was added 
to the first fully connected layer, and the rest of the struc-
ture was the same as that of a regular CNN. For both CNN 

models, the rectified linear unit was used as the activation 
function, and the mean squared error was used as the loss 
function. The learning rate was set to 0.001, and Adam was 
used as the optimizer. The maximum number of training 
epochs was 1000. The model training was performed in 
Tensorflow 2.5.0.

Data splitting method
This study used two splitting methods to test the robust-
ness of the trained model. The first method (Fig. 5a) used 
fourfold validation to select 25% of the data of each group; 
the remaining data were used as the training set. In the 
second method, one individual group was used as the test 
set, and the remaining groups were used as the training set 
(Fig. 5b).

Model evaluation
To evaluate the accuracy of the trained model, the coef-
ficient of determination (R2) and root mean square error 
(RMSE) were used. The equations used to calculate R2 
(Eq. 1) and RMSE (Eq. 2) are presented below:

(1)R2
= 1−

∑n
i=1

(
yi − ŷi

)2
∑n

i=1

(
yi − y

)2 ,

Fig. 3 Flowchart of MOE and MOR prediction by conventional machine learning algorithms and ANN

Fig. 4 Architecture of density-informed CNN
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where n is the number of specimens in the dataset, y 
is the measured value, ŷ is the value predicted by the 
model, and y is the mean value of y.

Results and discussion
Relationship between ORP and mechanical properties 
of wood in the transverse direction
Figure 6a, b shows the MOE and MOR of the specimens 
collected from logs A1, A2, B1, and B2 plotted against 
the ORP. A quadratic function was used to fit the trend 
of the MOE and MOR. Starting from 0°, both the MOE 
and MOR decreased as the ORP increased and reached 
a minimum value when the ORP was approximately 45°. 
These specimens were considered as rift-sawn speci-
mens. Owing to the off-axis loading of the cells in a 
rift-sawn specimen, the shear deformation leads to the 
large flexural deformation of the wood. Hwang et al. [26] 
have confirmed this cell deformation for rift-sawn Japa-
nese cedar (Cryptomeria japonica) and Japanese cypress 
(Chamaecyparis obtusa) specimens using the replica 
method. To analyze the cell deformation with time, Chen 
et al. [27] applied deep-learning-based semantic segmen-
tation to partition individual wood cells, and quantita-
tively analyzed the evolution of cell shear deformation. 
They observed that both the MOE and MOR increased 
when the ORP was in the range of 45°–90°. The MOE and 
MOR of a 0° specimen, which is considered as a quarter-
sawn specimen, are larger compared with those of a 90° 
specimen, which is considered as a flat-sawn specimen. 
The reason for this may be that the ray parenchyma cells 
in the quarter-sawn specimen are aligned in the horizon-
tal direction of the bending test, which is parallel to the 

(2)RMSE =

√
1

n

∑n

i=1
(ŷi − yi)

2
,

tensile and compression direction, as has been discussed 
in a previous paper by the authors [27].

Because the A1 and A2 specimens were obtained from 
different parts of log A, as shown in Fig. 1a, their differ-
ence seems to be larger than that of the end-matched B1 
and B2. As is known, ρ is strongly related to the mechani-
cal properties of wood [28]. The averaged ρ with stand-
ard deviation of A1 and A2 are 0.41 (0.01) and 0.46 (0.02) 
g/cm3, respectively, while the averaged ρ with standard 
deviation of B1 and B2 were 0.54 (0.01) and 0.54 (0.04) 
g/cm3, respectively. Because tree growth is mainly stem 
enlargement, the ρ variation in the cross-section direc-
tion is larger than that in the vertical direction. The 
relationship between the ORP and the specific MOE, 
and that between the ORP and the specific MOR, were 
determined as shown in Fig. 6. By excluding the effect of 
ρ , the R2 of the polynomial fitting for the specific MOE 
and MOR is higher compared with that of the MOE and 
MOR. These results indicate that the ORP and ρ are 
important parameters influencing the mechanical prop-
erties of wood in the transverse direction.

Potential of ORP and density as parameters for MOE 
and MOR prediction
As discussed above, the ORP and ρ are strongly related 
to the mechanical properties of wood in the trans-
verse direction. Therefore, these two parameters were 
selected as the input parameters for the MOE and MOR 
prediction. Table  1 presents the accuracy of the MOE 
and MOR prediction by the conventional machine 
learning algorithms and ANN with the two data split-
ting methods. With splitting method #1, both the con-
ventional machine learning approaches and the ANN 
achieved satisfactory performance. The R2 for both the 
MOE and MOR prediction was more than 0.8. Among 

Fig. 5 Method for splitting dataset: a splitting method #1; b splitting method #2
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these approaches, the ANN achieved the best score on 
the test set with an R2 of 0.868 and RMSE of 72 MPa for 
the MOE prediction, while the kNN achieved the best 
score for the MOR prediction (R2 of 0.841 with RMSE 
of 0.51  MPa for the test set). The results also confirm 
that the ORP and ρ are important parameters influenc-
ing the mechanical properties of wood in the transverse 
direction.

In contrast, the accuracy deteriorated when splitting 
method #2 was used. Specifically, according to the met-
rics, the most inferior result was obtained when the A1 
group was selected as the test set. Among the conven-
tional machine learning approaches and the ANN, the 
SVM achieved relatively good prediction accuracy. As 
shown in Fig. 6, the mechanical properties of the speci-
mens prepared from A1 are largely different compared 
with those of the specimens prepared from A2, B1, and 
B2. Therefore, the A1 test set may be outside of the 
applicability domain (AD) of the built model, which is 
the most likely reason for the low prediction accuracy. 

Hence, to increase the AD of the established model, the 
number of specimens should be increased.

Potential of CNN for ORP and density prediction
The CNN is a well-established approach and has been 
extensively used in several computer vision tasks [20]. 
Additionally, the CNN has been used for the classifica-
tion of wood species because it can achieve remarkable 
performance in the automatic extraction of anatomical 
features from images [22]. This study investigated the 
potential of CNN for predicting the mechanical prop-
erties of wood. First, the regular CNN was evaluated to 
confirm whether it is possible to extract ORP and ρ infor-
mation. Table 2 presents detailed information regarding 
the accuracy of the ORP and density predictions.

For the ORP prediction, the CNN achieved excellent 
accuracy regardless of the splitting method, as shown in 
Fig. 7a. However, it was difficult for the CNN to recognize 
small density variations. Even when splitting method #1 
was used, the average R2 of the test set was only approxi-
mately 0.357, which indicates that the density cannot be 

Fig. 6 Relationship between ORP and mechanical properties of wood in the transverse direction. a, b MOE and MOR against ORP. c, d specific MOE 
and MOR divided by density against ORP
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predicted satisfactorily (Fig. 7b). When splitting method 
#2 was used, invalid R2 values were calculated owing to 
the low prediction accuracy. The possible reason for this 
may be that the local image of the cross-section may not 

represent the density of the entire specimen. Therefore, 
the CNN may have not been able to extract ρ informa-
tion. To achieve accurate MOE and MOR predictions, ρ 
information should be added in the next step.

Table 1 Prediction accuracy of conventional machine learning approaches and ANN using two splitting methods

R2: determination of coefficient; RMSE: root mean square error

The values in parentheses indicate the standard deviation

Learning 
algorithm

Splitting method Group MOE (MPa) MOR (MPa)

R2 RMSE R2 RMSE

kNN Method #1 Train 0.879 (0.021) 71 (5) 0.870 (0.014) 0.47 (0.02)

Test 0.839 (0.065) 80 (12) 0.846 (0.044) 0.50 (0.04)

Method #2 TrainA2,B1,B2 0.879 74 0.830 0.49

TestA1 − 0.657 176 − 1.532 1.30

TrainA1,B1,B2 0.892 74 0.887 0.48

TestA2 0.534 82 − 0.347 0.84

TrainA1,A2,B2 0.902 66 0.891 0.45

TestB1 0.847 72 0.617 0.57

TrainA1,A2,B1 0.893 52 0.872 0.39

TestB2 0.701 141 0.498 0.92

SVM Method #1 Train 0.870 (0.020) 74 (5) 0.857 (0.018) 0.49 (0.03)

Test 0.855 (0.051) 77 (8) 0.843 (0.063) 0.51 (0.08)

Method #2 TrainA2,B1,B2 0.867 78 0.824 0.50

TestA1 0.406 106 − 0.430 0.98

TrainA1,B1,B2 0.879 78 0.877 0.50

TestA2 0.710 65 0.028 0.71

TrainA1,A2,B2 0.888 71 0.871 0.49

TestB1 0.763 89 0.635 0.55

TrainA1,A2,B1 0.816 68 0.869 0.40

TestB2 0.703 141 0.555 0.86

RF Method #1 Train 0.980 (0.003) 29 (1) 0.977 (0.003) 0.20 (0.01)

Test 0.862 (0.033) 75 (7) 0.806 (0.039) 0.57 (0.06)

Method #2 TrainA2,B1,B2 0.979 31 0.971 0.20

TestA1 0.268 117 − 0.699 1.06

TrainA1,B1,B2 0.979 33 0.979 0.21

TestA2 0.643 72 − 0.113 0.76

TrainA1,A2,B2 0.985 26 0.980 0.19

TestB1 0.537 125 0.089 0.87

TrainA1,A2,B1 0.986 19 0.980 0.16

TestB2 0.743 131 0.541 0.88

ANN Method #1 Train 0.889 (0.019) 68 (5) 0.863 (0.014) 0.48 (0.02)

Test 0.868 (0.064) 72 (15) 0.841 (0.062) 0.51 (0.08)

Method #2 TrainA2,B1,B2 0.884 72 0.815 0.51

TestA1 0.194 123 − 0.404 0.97

TrainA1,B1,B2 0.882 77 0.850 0.55

TestA2 0.476 87 0.284 0.61

TrainA1,A2,B2 0.890 71 0.836 0.55

TestB1 0.761 90 0.150 0.84

TrainA1,A2,B1 0.842 63 0.805 0.48

TestB2 0.786 120 0.638 0.78
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Comparison of regular CNN and density‑informed CNN 
for MOE and MOR prediction
As described in the previous section, the regular CNN 
achieved excellent accuracy in the ORP prediction, but 
low accuracy in the ρ prediction. The MOE and MOR 
prediction may deteriorate without ρ information. To 
overcome this problem, a density-informed CNN was 
constructed by adding a neuron representing ρ to the first 
fully connected layer.

Table 3 compares the prediction accuracy of the regu-
lar CNN and density-informed CNN when using the 
two splitting methods. The regular CNN prediction has 
low but surprisingly acceptable accuracy. Even with-
out ρ information, the average R2 of the test set for the 
MOE and MOR using splitting method #1 was 0.735 and 
0.536, respectively. It is possible that the CNN model did 

not only extract the ORP information, but also extracted 
various additional anatomical features from the cross-
sectional images to predict the mechanical properties. 
Some specimens with low MOE and MOR were not satis-
factorily predicted, as shown in Fig. 8a, b. For the results 
of splitting method #2, similar to the results discussed in 
section of potential of ORP and density as parameters 
for MOE and MOR prediction, the accuracy drastically 
decreased, particularly when group A1 was used as the 
test set. Through the visual inspection of the cross-sec-
tional images, it was found that averaged annual ring of 
specimens in A1 group (2.0 mm) was wider than that of 
the other groups (A2:1.5  mm; B1:1.0  mm; B2:1.3  mm), 
which possibly resulted in the low MOE and MOR of 
these specimens. In conclusion, the CNN model may not 
be able to clarify the relationship between anatomical 

Table 2 Accuracy of regular CNN in prediction of specimen’s ORP and ρ 

The values in parentheses indicate the standard deviation

Splitting method for regular 
CNN

Group ORP (°) Density (g/cm3)

R2 RMSE R2 RMSE

Method #1 Train 0.991 (0.004) 2.4 (0.6) 0.674 (0.102) 0.034 (0.005)

Test 0.972 (0.008) 4.4 (0.4) 0.357 (0.061) 0.048 (0.003)

Method #2 TrainA2,B1,B2 0.990 2.7 0.809 0.021

TestA1 0.892 8.9 − 469.166 0.112

TrainA1,B1,B2 0.986 3.0 0.677 0.039

TestA2 0.927 6.9 − 4.211 0.049

TrainA1,A2,B2 0.986 3.5 0.073 0.056

TestB1 0.973 3.4 − 10.321 0.045

TrainA1,A2,B1 0.986 3.1 0.053 0.049

TestB2 0.975 4.1 − 5.815 0.085

Fig. 7 Accuracy of regular CNN in prediction of: a ORP and b ρ of specimen. The R2 and RMSE were calculated from the test dataset
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features, such as the annual ring width, and mechanical 
properties when the model is trained on cross-sectional 
images from groups A2, B1, and B2.

However, when the specimen’s ρ was given, the aver-
age R2 of the MOE drastically increased to 0.859 with 
an RMSE of 77  MPa, while the average R2 of the MOR 
increased to 0.812 with an RMSE of 0.54 MPa when using 
splitting method #1. Figure 8c, d shows the typical pre-
diction results; the predictions for specimens with high 
MOE and MOR are not satisfactory. Interestingly, when 
using splitting method #2, the MOE predictions became 
more robust compared with the conventional machine 
learning approaches, ANN, and regular CNN. However, 
the R2 of MOR still showed a negative value when A1 
group was selected as test set. In conclusion, combining 
features in the cross-sectional images and ρ information 
may provide more information for model training. How-
ever, because satisfactory accuracy was not achieved, a 
further increase in the number of specimens is needed. 
In this study, the collected cross-sectional images were 
two-dimensional and represented a limited area of the 
specimens. To further increase the accuracy, using three-
dimensional images of wood obtained by high-resolution 
micro-computed tomography is considered as a promis-
ing method and should be investigated in future work.

Regression activation map of regular CNN 
and density‑informed CNN
After building the CNN models, the regression activa-
tion map was constructed to visually clarify important 
regions that the trained CNN should focus on to deter-
mine anatomical features that are strongly related to 
the predicted results. For both the regular CNN and the 
density-informed CNN, the fourth convolution layer 
was used for map construction. Figures  9 and 10 show 
the activation map for the MOE and MOR prediction, 
respectively. Notably, these activated regions were com-
monly observed regardless of the ORP of the specimens.

Figure  9a, b shows the activation maps of the regular 
CNN and density-informed CNN for the MOE predic-
tion, respectively. The detailed procedure for the con-
struction of activation maps is shown in Additional file 1: 
Fig. S1 and Additional file 1: Fig. S2. For the regular CNN, 
the activation region was concentrated in the entire late-
wood (LW) region (Fig. 9a). As is known, the annual ring 
consists of the earlywood (EW) region and LW region. 
The EW is formed at the beginning of the growing sea-
son, and has a thin cell wall and large cell lumen for water 
transportation. Compared with EW, the LW has a thicker 
cell wall and a small cell lumen, which results in higher 
density and plays an important role in the mechanical 

Table 3 Accuracy of regular CNN and density-informed CNN in prediction of MOE and MOR of specimen

The values in parentheses indicate the standard deviation

Learning algorithm Splitting method Group MOE (MPa) MOR (MPa)

R2 RMSE R2 RMSE

Regular CNN Method #1 Train 0.929 (0.013) 56 (5) 0.855 (0.032) 0.50 (0.05)

Test 0.735 (0.048) 108 (14) 0.536 (0.076) 0.90 (0.11)

Method #2 TrainA2,B1,B2 0.967 40 0.945 0.28

TestA1 − 0.468 167 − 3.50 1.74

TrainA1,B1,B2 0.941 57 0.882 0.51

TestA2 0.125 113 -0.064 0.75

TrainA1,A2,B2 0.914 62 0.862 0.50

TestB1 0.328 162 − 0.880 1.14

TrainA1,A2,B1 0.911 47 0.841 0.42

TestB2 0.200 238 − 1.691 1.99

Density-informed CNN Method #1 Train 0.961 (0.031) 39 (15) 0.953 (0.008) 0.29 (0.03)

Test 0.859 (0.071) 77 (23) 0.812 (0.022) 0.54 (0.04)

Method #2 TrainA2,B1,B2 0.947 50 0.972 0.20

TestA1 0.728 72 − 0.249 0.92

TrainA1,B1,B2 0.968 42 0.864 0.55

TestA2 0.646 72 0.255 0.63

TrainA1,A2,B2 0.986 25 0.931 0.35

TestB1 0.771 94 0.572 0.55

TrainA1,A2,B1 0.967 29 0.927 0.29

TestB2 0.651 155 0.423 0.92
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support of the tree [29]. Because the mechanical proper-
ties of LW are typically better than those of EW [30–32], 
the ratio of LW to EW is an important factor influencing 
the mechanical properties of wood. This study assumed 
that the ORP angle can be estimated by recognizing the 
LW region. Then, the annual ring width and LW amount 
can also be determined and used to obtain local ρ infor-
mation from the observed image. By combining that 
information, it may be possible for the regular CNN to 
predict the MOE with acceptable accuracy (Table 3).

For the density-informed CNN, the ρ information was 
added to the first fully connected layer, and the acti-
vation region shifted from the LW region to the EW 
region (Fig.  9b). Because ρ information was provided, 
the LW ratio appears to be unimportant. Additionally, it 

is possible that the CNN attempted to estimate a more 
accurate ORP angle by recognizing the LW region, 
because the EW region is typically larger than the LW 
region.

The activation regions of the MOR prediction are dif-
ferent to those of the MOE prediction (Fig. 10). For the 
regular CNN, the LW region was activated with an inten-
sity gradient from the LW region to the transition region 
between EW and LW (Fig.  10a), because the MOR is 
defined as the final strength related to the failure of the 
specimen. In addition to the ORP and ρ information, 
anatomical features inducing specimen fracture should 
also be considered as another important factor influenc-
ing the MOR of the specimen. As discussed above, the 
mechanical properties of EW and LW are significantly 

Fig. 8 Accuracy of regular CNN and density-informed CNN in prediction of MOE and MOR of specimen. The R2 and RMSE were calculated from the 
test dataset. a, b MOE and MOR prediction by regular CNN; c, d MOE and MOR prediction by density-informed CNN
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different. This contrast between EW and LW may be the 
reason for the specimen’s fracture during the mechanical 
test. Therefore, it is hypothesized that the regular CNN 
obtained the ORP and ρ information using the contrast 
between LW and EW, and thus realized the MOE predic-
tion by recognizing the LW region.

Interestingly, for the density-informed CNN, the acti-
vated region shifted from the LW region to the transi-
tion region between EW and LW when ρ information 
was provided (Fig.  10b). When the local information of 
ρ is not required, it is possible that CNN shifts its atten-
tion to the precise recognition of the contrast between 
EW and LW. In addition to the proportion of EW and 
LW, whether the transition between them is gradual or 

abrupt is another factor influencing the mechanical prop-
erties of wood [33]. It is hypothesized that the transition 
region between EW and LW provides a precise gradient 
of the changes in the mechanical properties. Moreover, it 
can also provide information about the ORP angle, which 
results in improved prediction accuracy for the density-
informed CNN.

These results indicate that the regular CNN and den-
sity-informed CNN quantitatively recognized the ana-
tomical features of wood in the cross-sectional images, 
and the activation map provides interesting informa-
tion for understanding the relationship between the 
anatomical features and the mechanical properties of 
wood. Additionally, this suggests that machine learning 

Fig. 9 Activation maps of typical specimen for MOE prediction by a regular CNN and b density-informed CNN

Fig. 10 Activation maps of typical specimen for MOR prediction by: a regular CNN and b density-informed CNN
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approaches have great potential for analyzing other 
anatomical features of wood. More precise analysis and 
further investigation should be conducted to confirm 
the importance of the anatomical features identified by 
machine learning approaches.

Conclusions
This study used machine learning approaches to predict 
the mechanical properties of spruce wood in the trans-
verse direction. A regular CNN and a density-informed 
CNN were built. The activation maps of both CNN 
models were constructed to understand the anatomical 
features that are strongly related to the prediction. The 
following conclusions were drawn from this study:

1. The ORP and density are recognized as two impor-
tant parameters for predicting both the MOE and 
MOR of the specimens. By inputting these param-
eters into conventional machine learning algorithms 
and an ANN, a prediction model with good accuracy 
was successfully established.

2. A regular CNN and a density-informed CNN were 
successfully built to predict the mechanical proper-
ties of specimens based on corresponding cross-
sectional stereograms. The density-informed CNN 
achieved better accuracy compared with the regular 
CNN, because it had an additional neuron that pro-
vided ρ information at the first fully connected layer.

3. The accuracy of the models built using conventional 
machine learning approaches, an ANN, a regular 
CNN, and a density-informed CNN was influenced 
by the data splitting method. When splitting method 
#2 was used, the accuracy always deteriorated, pos-
sibly because the test group was outside of the AD 
of the constructed model. To overcome this problem, 
the number of specimens should be increased.

4. The regression activation map constructed for the 
density-informed CNN established to predict the 
mechanical properties in the transverse direction is 
different to the regression activation map constructed 
for the regular CNN. When ρ information was pro-
vided, the activation region of the MOE shifted from 
the LW region to the EW region, and the activation 
region of the MOR shifted from LW to the transition 
region between the EW and LW region.

The results obtained by this study reveal that machine 
learning approaches have great potential for gaining new 
insights into the relationship between the anatomical 
features and the mechanical properties of wood. These 
approaches can also be used to investigate other anatom-
ical feature-related mechanical behaviors of wood.
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