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Abstract 

The construction of structures using cross-laminated timber (CLT) has grown in popularity as a result of its environ-
mentally friendly and high-strength characteristics. The primary function of angle bracket connections is to resist 
the force of CLT structures under horizontal forces, which is essential to ensure the seismic resilience and ductility 
of CLT structures. A regression algorithms-driven method for predicting the mechanical performance of angle bracket 
connections is introduced in this study. As input parameters, the geometric dimensions of the angle bracket connec-
tor, the connection method of the connector with the wall and floor slabs, and the properties of the CLT panel are 
utilized to predict the yield load, the maximal load, the initial stiffness, and the ductility ratio of the angle bracket con-
nection. Prediction models were developed using the collected data from 110 angle bracket experiments, and each 
prediction model’s performance was discussed in depth. Lastly, the permutation importance and SHapley Additive 
exPlanations (SHAP) value analysis were used to interpret the prediction models. The results showed that the extreme 
gradient boosting (XGB) algorithm could accurately predict the maximum and yielding load of the angle bracket con-
nection, with  R2 reaching 0.968 and 0.939. Furthermore, in predicting the initial stiffness of the angle bracket, the XGB 
algorithm performed the best with an average ratio of predicted to actual values of 0.985. The results indicated 
that this study proposed an accurate and efficient method for angle bracket connection to predicting its mechanical 
properties and confirmed the trustworthiness and feasibility of the prediction models.

Keywords Machine learning, Regression algorithm, Cross-laminated timber structure, Angle bracket connection, 
Mechanical property

Introduction
The timber structure is frequently cited as the sustain-
able alternative to concrete and steel construction for its 
green resources, low gravity, and carbon storage. Mass 

timber projects with high construction efficiency, such 
as cross-laminated timber (CLT) structures, are increas-
ing globally [1]. CLT structures have been prefabricated 
wood solutions that have excellent seismic response due 
to the lightness of engineered CLT panels and the dis-
sipative capacity of the connections. Over the last dec-
ade, various application examples of CLT could be found 
worldwide, like the 18-story building Mjøstårnet, com-
pleted in Brumunddal, Norway [2]. As for the codifica-
tion, European Committee for Standardization (CEN) 
drafted the second generation of Eurocode in 2012 [3], in 
which much work has gone into implementing the design 
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rules of the CLT structure. Therefore, it can be observed 
that CLT structures have positive development pros-
pects, and it is meant to improve the learning of the work 
properties of CLT structures and their components.

Connections are crucial in providing timber structures 
with strength, rigidity, stability, and ductility. Extensive 
research has shown that deformation in CLT structures 
arises mainly from the bending and slippage of metal con-
nections [4]. Angle bracket connection is a type of CLT 
structural connection typically evenly arranged along the 
wall to provide stiffness and strength in the shear direc-
tion. Therefore, it is of utmost significance to identify a 
method for predicting the mechanical performance of 
angle bracket connection to optimize the design of CLT 
structures and ensure their seismic safety. However, there 
are multiple damage mechanisms for angle bracket con-
nections during operation, including the tearing of wood, 
deformation of steel members, and loss of nail bearing 
capacity, making evaluating the mechanical properties of 
angle bracket connections more complicated.

Previously, a considerable amount of research has 
been performed on the mechanical functionality of 
angle bracket connections. Gavric et  al. [5] accom-
plished monotonic and low-cycle reversed loading tests 
on angle bracket connections of different sizes and with 
varying numbers of fasteners to evaluate and discuss 
their mechanical characteristics, such as energy dissipa-
tion, loss of strength, rigidity, stiffness, and ductility. The 
study suggested that it is necessary to put the resistance 
of the fasteners and the characteristics of the CLT walls 
into consideration when predicting the shear strength of 
the angle bracket connection. Mahdavifar et al. [6] inves-
tigated the influence of various wood densities on the 
properties of angle bracket joints by conducting shear and 
uplift experiments on angle bracket connections with two 
sets of conventional CLT panels and eight sets of hybrid 
CLT panels. The test findings revealed that if the damage 
of the screws or bolts penetrated the low-density core 
layer of the CLT panel, there was a substantial difference 
in connection efficacy between hybrid and conventional 
CLT panels. Rezvani et  al. [7] built a three-dimensional 
(3D) numerical model of the angle bracket connection 
using commercial finite element software ABAQUS to 
simulate its mechanical properties under different load-
ing combinations. They also introduced a 3D model of 
the fasteners to conduct a preliminary numerical simula-
tion study of the angle bracket connection. The numeri-
cal modeling analysis indicated that replacing nails with 
screws and adding larger-sized screws did not noticeably 
improve the shear resistance of the connection. Pošta 
et al. [8] performed shear experiments on three types of 
angle bracket connections and compared the experimen-
tal results with Eurocode 5 (EC 5) [9]. The results showed 

that the maximum loads obtained by EC 5 calculations 
were much higher than those obtained experimentally. 
The difference was even more remarkable for the angle 
bracket without a rib, which could be dangerous in prac-
tical applications. The above study shows that there is 
still much room for optimization of mechanical prop-
erty prediction of angle bracket connections. Mechanical 
property tests and authentic numerical simulations are 
time-consuming and costly, so finding more efficient and 
accurate prediction methods is significant.

Machine learning (ML), a data-driven analytical 
approach, has become widely used in building construc-
tion design and performance evaluation in recent dec-
ades [10]. Zhang et  al. [11] used nine ML algorithms 
to build a reinforced concrete (RC) wall seismic per-
formance prediction model based on 429 sets of RC 
wall test data, including the classification prediction of 
wall damage modes and the regression prediction of 
wall lateral stiffness and lateral displacement. Suzuki 
et al. [12] successfully classified wood damage locations 
using vibration waveforms combined with ML methods. 
The specimen waveforms were obtained by piezoelec-
tric sensors, and a classification model was built using 
a neural network (NN). The results showed that NN 
could effectively improve the applicability of the wood 
health monitoring system, with an accuracy of 83.3% 
for the classification of damaged or undamaged loca-
tions. Luo et al. [13] proposed a local ML model named 
locally weighted least squares support vector regression 
machine (LWLS-SVMR) to enhance and generalize the 
estimation of drift capability of RC columns, and the 
effectiveness of LWLS-SVMR method was verified by 
comparing it with traditional empirical formulas. The 
above study shows that using ML in civil engineering 
has symbolic advantages. However, mechanical property 
prediction of CLT metal connections using ML algo-
rithms has yet to be reported.

Based on the above research problems of angle 
bracket connections and the advantages of ML meth-
ods, this paper selects input variables and uses 110 
sets of angle bracket connection tests and numerical 
simulation data collected to estimate the mechani-
cal properties of angle bracket connections using four 
ML regression algorithms: random forest, support 
vector regression, gradient boosting and extreme gra-
dient boosting. Furthermore, the prediction perfor-
mance of ML for yielding load, maximum load, initial 
stiffness, and ductility ratio of angle bracket connec-
tions is evaluated. Lastly, this paper provides a param-
eter importance analysis of the input parameters, and 
the interpretability analysis of the prediction models 
is performed to validate the reliability of the predic-
tion models. The method presented in this paper can 
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automatically and efficiently predict the performance of 
the angle bracket connection, taking into consideration 
various factors that may affect the performances of the 
angle bracket connection; the parameter importance 
analysis and the interpretability analysis of the model 
serve as an optimization and guide for designing this 
connection in practical engineering.

The selection of input and output parameters is pre-
sented in the next section, and the statistical distribution 
of each parameter in the database used in this study is 
described. Then, the process of the proposed ML regres-
sion algorithm-driven method for predicting is detailed 
in the following section. The four regression algorithms 
and evaluation coefficients used in this study are also 
described in this section. Subsequently, the outcome of 
each algorithm and evaluation of the outcomes are dis-
cussed by assessing the coefficients. Finally, an interpret-
ability analysis of the prediction model proposed in this 
paper is provided.

Preparation of experimental database
Selection of input and output parameters
Numerous studies have revealed that when the external 
load increases, the three phases of mechanical behavior 
that the angle bracket connection typically exhibits are 
the elastic, elastoplastic, and failure stages [14]. Accord-
ingly, the four mechanical properties of yielding load 
( Fy ), maximum load ( Fm ), initial stiffness ( Ke ), and ductil-
ity ratio ( D ) are selected as the output variables for the 
angle bracket connection. The yielding displacement ( vy ) 
and maximum displacement ( vm ) can be obtained based 
on these output variables, and the simplified bilinear con-
stitutive relationship of this angle bracket connection can 
be derived (Fig. 1), which will be fundamental to in both 
the design and research of the angle bracket connection.

To comprehensively quantify the angle bracket con-
nection features, ten variables are selected as inputs in 
this paper. Four categories can be made up of the input 
feature variables. The first set of features corresponds 
to the geometric features of the angle bracket, includ-
ing the width (B), length (P), height (H), and thickness 

(t) of the connector (Fig.  2); the second group of fea-
tures is the thickness of CLT wall panel (T); the third 
group is related to the connection fasteners to the wall, 
including the self-tapping screw diameter ( Sr), the self-
tapping screw length ( Sl), the number of self-tapping 
screws ( Sn); the last group of features is related to the 
connection fasteners to the floor, with the ground con-
nection bolts (or screws) diameter (Br), the number of 
bolts (Bn). The units of variables B, P, H, t, T, Sr, Sl, and 
Br are mm.

Description of experimental database
This study collected 110 sets of shear tests [5, 6, 15–36] 
for angle bracket connections, including 107 sets of 
experimental data and 3 sets of numerical simulation 
data (Additional file 1). The distribution of the dataset is 

Fig. 1 Bilinear constitutive relationship

Fig. 2 Geometric parameters of angle bracket

Fig. 3 The distribution of the dataset
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shown in Fig. 3. The experimental data within the dataset 
stem from shear loading tests conducted along the direc-
tion of angle brackets. Monotonic or cyclic loading pro-
cedures were executed to derive a comprehensive set of 
mechanical performance parameters for angle brackets. 
This approach guarantees that the data within the data-
base are amenable to integration for subsequent regres-
sion analyses. The minimum error between the numerical 
simulation results in the dataset and the experimental 
results is 0.1%, while the maximum error is 35.5%, with 
an average error of 19.0%. These data were utilized to cre-
ate ML models to forecast the mechanical characteristics 
of angle bracket connections.

Figure  4 illustrates the statistical distribution of the 
input and output variables. The number of data points 
within the relevant interval is shown on the left y-axis., 
while the x-axis displays the range of values for the cho-
sen variables. Accordingly, the equivalent cumulative 
probability is shown on the right y-axis.

Data preprocessing is required before training the pre-
diction model using Scikit-learn to increase the predic-
tion model’s accuracy and stability. The data collected 
were normalized to a range of [0,1] to ensure comparabil-
ity between features and eliminate the influence of mag-
nitudes. The mean value was utilized to fill in the missing 
values based on the central tendency of the sample to 
handle any missing values in the collected information. 
In this study, while considering the detailed description 
of angle bracket connections concerning input param-
eters, a series of measures were taken to account for the 
influence of non-independent variables. Apart from fea-
ture engineering, such as parameter selection and data 
normalization, in the choice of regression algorithms, an 
emphasis was placed on selecting ensemble algorithms 
that exhibit robustness in handling correlation. Model 
performance with respect to correlation was further 
improved and validated through hyperparameter optimi-
zation and cross-validation techniques.

Regression algorithms‑driven methodology 
for mechanical estimation of angle bracket
At present, experimental or numerical modeling analysis 
methods are mainly used to study the mechanical char-
acteristics of angle brackets. In the shear test of angle 
bracket connection, the variety of parameters is easily 
limited due to the cost and time required. The mechani-
cal characteristics of angle bracket connections can be 
effectively simulated using finite element analysis. How-
ever, detailed numerical simulations take much time for 
modeling calculations, and the parameters of metal fas-
teners and connected wood units are usually missing 
when performing simulations to improve efficiency.

In contrast, the prediction model of mechanical char-
acteristics of angle bracket connection under shear estab-
lished by ML can better analyze the interrelationship 
between parameters and accurately and quickly predict 
the mechanical properties of angle bracket connection 
under various conditions.

Framework
Figure 5 gives the proposed framework for predicting the 
angle bracket connection’s mechanical properties using 
ML. The data collected are split into two parts at ran-
dom: the training set, which makes up 70% of the total, 
is used to develop the prediction model, and the test set, 
which makes up 30% of the total, is used to measure the 
performance of the prediction model. The same training 
and test datasets are used for all algorithms to guaran-
tee compatibility among ML algorithms. During model 
training, hyperparameter optimization is performed by 
a grid search to get the most remarkable performance 
out of the algorithms. Finally, the test set not involved in 
model training is used for prediction model performance 
evaluation, and the 10 feature values are analyzed for per-
mutation importance and SHAP value.

Regression algorithm
Random forest
Random forest (RF) is a bagging algorithm based on deci-
sion trees [37], in which each iteration selects a subset of 
data with replacement and a subset of characteristics as 
inputs randomly (Fig.  6a). In regression, the "ensemble 
predictor" is created by averaging the output of individ-
ual decision trees ( h1(x)、h2(x)…hK (x) ) (Eq. 1). In each 
decision tree, the root node determines, in accordance 
with predefined criteria and conditions, which branch to 
follow, leading to the internal nodes. Based on the avail-
able features, these internal nodes perform assessments 
to create homogeneous subsets, which are denoted by 
leaf nodes (or terminal nodes). Since each decision tree 
is entirely random, compared with a single decision tree, 
a random forest reduces the possibility of overfitting and 
improves generalization ability:

Support vector regression
Support vector regression (SVR) is a variant of support 
vector machine (SVM) and has been extensively used in 
regression issues [38]. The SVR model is used to find a 
suitable high-dimensional hyperplane that minimizes the 
total deviation of all samples from the hyperplane:

(1)f (x) =
1

K

K
∑

i=1

hi(x).
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(a) Distribution of input variables

(b) Distribution of output variables
Fig. 4 Statistical distribution of input and output variables, depicting minimum (Min), maximum (Max), mean (Mean), and standard deviation (St. 
Dev) values for a comprehensive overview of the dataset’s characteristics
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Fig. 5 Prediction workflow of mechanical properties of angle bracket connection

(a) Radom forest (b) Support vector regression

(c) Gradient Boosting (d) Extreme gradient boosting
Fig. 6 Diagram of ML algorithm. In a, c, and d, the blue dots represent the root nodes of the decision tree, initiating branching based on specific 
conditions. These branches, termed ’directed edges’ in decision tree terminology, are visualized as one-way arrows. Branches from root nodes lead 
to internal nodes, as represented with yellow dots, and subsequently to the next level of internal nodes (green dots in d) until a stopping condition 
is met. The final level of nodes, denoted by red dots, represents terminal nodes
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The notation < •, • > denotes dot product, where w 
is the normal vector of the hyperplane and b is the bias 
term.

In the SVR model, a certain degree of tolerance devi-
ation ε is given. When the absolute difference between 
f(x)  and y is within ε , the loss value is not calculated, 
which is equivalent to creating a "margin strip" on both 
sides of the hyperplane (as shown in Fig. 6(b)), and only 
the samples falling outside the margin strip are used to 
calculate the loss.

Gradient boosting
Gradient boosting (GB) is a supervised ML algorithm 
that trains new weak learners by using the negative 
gradient information of the loss function of the pre-
sent model [39]. The existing model is then additively 
integrated with the trained weak learners (as shown in 
Fig. 6(c)). For a given training set (x, y)Ni=1 , the GB algo-
rithm uses K weak learners to fit the model fk(x):

 where h(x, θ) is a straightforward parameterized func-
tion of input variables x , defined by parameters θt ; the 
optimal step-size ρ should be given at each iteration.

Extreme gradient boosting
Extreme gradient boosting (XGB) is a scalable ML sys-
tem for tree boosting. The target function is where it 
diverges most from the GB algorithm [40].

 where l is the loss function used to measure the differ-
ence between the true value yi of the i-th sample and 
its predicted value yi . The model complexity function is 
represented by � . The XGB method adds a regulariza-
tion parameter compared to the GB algorithm to address 
generalization problems and lessen model complexity (as 
shown in Fig. 6d).

(2)f (x) =< w, x > +b.

(3)
{

minimize 1

2
||w| |2

s.t.
∣

∣yi − (wxi + b)
∣

∣ ≤ ǫ, ∀i
.

(4)fk(x) ← fk−1(x)+ ρth(x, θt),

(5)(ρt , θ t) = argmin

N
∑

i=1

L(yi, fk−1(xi)+ ρh(xi, θ)),

(6)OBj =

n
∑

i=1

l
(

yi, yi
)

+

K
∑

k=1

�
(

fk
)

,

Hyperparameter optimization
In the ML model-building process, besides the model 
parameters estimated by the model from the given data, 
some parameters that cannot be estimated from the 
given data, and these parameters are called hyperparam-
eters. The choice of hyperparameters, which are used 
to control the ML procedure, can impact on the algo-
rithm’s robustness, stability, and generalization. Hyper-
parameter optimization is the task of finding the optimal 
combination of hyperparameter values to achieve the 
optimal performance of the model in a reasonable time. 
The grid search approach is applied for hyperparameter 
optimization in this paper. For the grid search method, 
a grid of possible values is created for the hyperparam-
eters, and each iteration is tried in a specific order for 
the hyperparameter combinations. The performance 
of the trained model produced by each combination is 
recorded, and the best model with the best hyperparam-
eters is returned at the end. Table  1 lists the results of 
hyperparameter optimization for each prediction model 
in this paper.

Evaluation metrics and model interpretability
In this work, the predictive capability of the models 
was assessed using an impartial testing set. As shown in 
Table  2, four evaluation metrics—mean absolute error 
(MAE), mean squared error (MSE), root mean square 
error (RMSE), and coefficient of determination (R 
squared, R2)—were used to evaluate the accuracy of each 
regression model.

However, ML models generally boost their accuracy 
by increasing model complexity [41], which makes their 
operation uncertain. Therefore, in addition to verifying 
the certainty of prediction results, it is equally important 
to understand why the model makes such predictions and 
prevent model bias. Permutation importance and SHAP 
value analysis are techniques used to determine which 
characteristics affect model fitting most. Permutation 
importance randomly orders each feature and calculates 
model changes to overcome the drawback of default fea-
ture importance computed with mean impurity decrease. 
The SHAP explanation method, inspired by cooperative 
game theory [42], builds an additive explanation model 
that can reflect each feature’s influence and positive or 
negative effects in each sample.

Predicted results and assessment
Prediction results for yielding load
Figure  7 compares the tested normalized yielding loads 
( Fyt ) and predicted normalized yielding loads ( Fyp ) for 
both training and testing sets. The model performs 
more predictably the closer the data points are near the 
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black line. The figure also includes lines for relative error 
of ± 15% and ± 30% in the testing set. Among the 110 test 
data points, the RF, SVR, GB, and XGB algorithms have 
96, 56, 101, and 105 data samples within the ± 30% limit. 
Figure  8 presents the evaluation coefficients of MAE, 
MSE, RMSE, and  R2 for these models on the test dataset.

Based on the prediction results of angle bracket yield-
ing load,  R2 values for the three ensemble models (RF, 
GB, and XGB) are all greater than 0.746, indicating that 
the ensemble models outperform the single model (SVR) 
(as shown in Fig.  7). However, relying solely on  R2 to 
determine prediction accuracy may not be proper, and 
additional evaluation metrics need to be considered. 
According to overall veracity and performance, XGB is 
an effective machine learning model for predicting angle 
bracket yielding load.

It is noteworthy that the RF model has MAE, MSE, 
RMSE, and  R2 of 0.0207, 0.0008, 0.0297, and 0.956 on the 

training set, respectively. However, the predicted results 
for the testing set have MAE, MSE, RMSE, and  R2 of 
0.0514, 0.0096, 0.0983, and 0.746. This indicates that the 
RF model has poor generalization in predicting the yield-
ing load of angle bracket connections. Therefore, more 
accuracy in the training set does not always equate to 
greater accuracy in the test set. Thus, evaluating the pre-
diction model using the training set can reduce the ten-
dency of model overfitting.

Prediction results for maximum load
The tested normalized maximum load ( Fmt ) and pre-
dicted normalized maximum load ( Fmp ) for the train-
ing and testing sets under various ML methods are 
displayed in Fig.  9. The figure also presents lines repre-
senting the relative error of ± 15% and ± 30% in the test-
ing set. Among the 110 test data points, the RF, SVR, 
GB, and XGB algorithms have 97, 58, 89, and 103 data 
points within the ± 30% limit, respectively. The distribu-
tion of samples indicates that the predictions of RF, SVR, 
and GB have remarkable errors when the actual values 
are low, while the overall prediction accuracy of the XGB 
algorithm is high.

In addition, Fig.  10 shows the evaluation metrics, 
including MAE, MSE, RMSE, and  R2, of these models on 
the testing set. The  R2 of the trained regression models 
(i.e., RF, SVR, GB, and XGB) are 0.872, 0.839, 0.846, and 
0.939, indicating good prediction results [43]. It ought to 
be noted that the MAE value of the XGB model (0.0362) 
is significantly better than that of the SVR model (0.0677) 
because the maximum load values have been normalized 

Table 1 Hyperparameter optimization for prediction models

RF SVR GB XGB

Fy – – – max_depth = 9
colsample_bytree = 0.8
min_child_weight = 1
subsample = 0.6
eta = 0.5

Fm n_estimators = 20
max_depth = 10

kernel = "linear" n_estimators = 750
min_samples_split = 8
max_depth = 1
learning_rate = 0.05

max_depth = 8
colsample_bytree = 0.8
min_child_weight = 1
subsample = 0.8
eta = 0.1

Ke n_estimators = 20
max_depth = 10

kernel = "linear" – max_depth = 8
colsample_bytree = 0.8
min_child_weight = 1
subsample = 0.8
eta = 0.4

D – – n_estimators = 100
min_samples_split = 2
max_depth = 3
learning_rate = 0.01

max_depth = 5
colsample_bytree = 0.5
min_child_weight = 3
num_boost_round = 10
subsample = 0.5
eta = 0.1

Table 2 Evaluation metrics for the regression model

y , ̂y  are the target value and the predicted value for the normalized test dataset, 
respectively; n is the number of samples in the test dataset; and yi , ̂yi refer to the 
i-th target value and the i-th predicted value for the normalized test dataset, 
respectively

Evaluation metrics Definition

MAE MAE
(

y ,̂y
)

= 1
n

∑n
i=1

∣

∣yi − ̂yi
∣

∣

MSE MSE
(

y ,̂y
)

= 1
n

∑n
i=1 (yi − ̂yi)

2

RMSE
RMSE

(

y ,̂y
)

=

√

1
n

∑n
i=1 (yi − ̂yi)

2

R2
R2
(

y ,̂y
)

= 1−

∑n
i=1 (yi−̂yi )

2

∑n
i=1 (yi−yi )

2
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to a small range. Based on the predicted outputs in 
Fig. 9 and the generalization metrics in Fig. 10, it can be 
declared that the XGB model performs more accurately 
than the other three methods in predicting the maximum 
load of angle bracket connections, with MSE and RMSE 
values of 0.0024 and 0.0491.

Prediction results for initial stiffness
The actual normalized initial stiffness ( Ket ) and the 
predicted normalized initial stiffness ( Kep ) of the 

training and testing sets under various ML meth-
ods are displayed in Fig.  11. The figure also presents 
straight lines indicating the relative error of ± 15% 
and ± 30% in the testing set. Among the 110 testing 
data markers, the RF, SVR, GB, and XGB algorithms 
have 85, 57, 94, and 96 data points within the ± 30% 
limit. The distribution of data points reveals that the 
XGB method has a more robust overall forecast accu-
racy, while the SVR prediction results have larger 
errors when the actual values are low.

Moreover, Fig.  12 describes the performance met-
rics of MAE, MSE, RMSE, and  R2 for these models 
on the test database. When predicting the initial stiff-
ness of the connection, the MSE and RMSE of the RF 
algorithm are 0.0164 and 0.1283, and those of the GB 
algorithm are 0.0148 and 0.1217, which are signifi-
cantly inferior to those of the SVR and XGB algorithms. 
The  R2 values of the four regression models (i.e., RF, 
SVR, GB, and XGB) are 0.642, 0.602, 0.678, and 0.809, 
respectively. The XGB algorithm has far better gener-
alization performance than the other three algorithms. 
Therefore, among these four regression models, the 
XGB algorithm performs best for predicting the initial 
stiffness of the angle bracket connection.

Fig. 7 Comparison of tested yielding load and predicted yielding load of different algorithms

Fig. 8 Evaluation metrics of various ML models for predicting 
yielding load
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Prediction results for ductility ratio
Figure 13 depicts the predicted normalized ductility ratio 
( Dp ) and the tested normalized ductility ratio ( Dt ) of 
training and testing sets. The testing set’s 15% and 30% 
relative error lines are also shown in the image, with RF, 
SVR, GB, and XGB algorithms having 81, 78, 81, and 87 
data sets that fall inside the 30% limitations, respectively. 
It can be observed from the distribution of data sets that 
SVR and GB models have larger errors in predicting 
when the actual values are low, while the overall predic-
tion accuracy of the XGB algorithm is higher.

Figure 14 shows the assessment indices of MAE, MSE, 
RMSE, and  R2 of these models on the testing set. When 
predicting the ductility ratio of the angle bracket con-
nection, the  R2 value of the single model (SVR) is 0.623, 
which is better than that of the ensemble models (RF, GB, 
XGB) in terms of generalization performance. Based on 
the general performance and precision, SVR is a valu-
able ML model for estimating the ductility ratio of angle 
bracket connections.

Interpretability of prediction model
The XGB model was used to conduct permutation 
importance and SHAP analysis on the predicted results 
of the mechanical shear properties of angle bracket con-
nections based on the prediction models in the previous 
section. The analysis results are shown in Figs.  15 and 
16. From the permutation importance analysis results, it 
can be seen that the width of the angle bracket connec-
tor and the number of screws connecting it to the wall 
panel have the greatest impact on the maximum load and 
initial stiffness of the connection, with importance coeffi-
cients of 44.5% and 24.5%, respectively. Furthermore, the 
number of bottom anchoring devices and the thickness 
of the angle bracket have the most significant impact on 
the yielding load and ductility ratio.

Fig. 9 Comparison of tested maximum load and predicted maximum load of different algorithms

Fig. 10 Evaluation metrics of various ML models for predicting 
maximum load
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Based on the SHAP analysis results (Fig. 16), it is evi-
dent that the number of fastens used to connect the angle 
bracket to the wall panel has an enormous influence on 
the yield strength of the connection. The width of the 
angle bracket connection is found to have the highest 
sensitivity with regard to the maximum load and initial 
stiffness. Additionally, the thickness of the angle bracket 
connector is observed to have the greatest effect on the 
ductility coefficient. By comparing the SHAP values of 
various parameters, it can be concluded that, for maxi-
mum load and initial stiffness, the number of self-tapping 

screws, the width of the angle bracket, and the number of 
bolts have a more significant influence compared to the 
other parameters. Regarding the maximum load of the 
connector, the width of the angle bracket has a greater 
influence than the length and thickness of the angle 
bracket. However, for the ductility coefficient, the length 
and thickness of the angle bracket have a more substan-
tial effect than the angle bracket width.

It is crucial to note that permutation importance 
evaluates the impact of a feature on model performance 
by randomly shuffling the feature values, while the core 
idea of SHAP is to calculate the marginal contribution 
of a characteristic to the model output. When predict-
ing the yielding load of the angle bracket connection, 
a comparison of the two methods reveals a consider-
able difference in the impact of the thickness of the 
angle bracket and the number of self-tapping screws 
connecting it to the wall panel. Because permutation 
feature importance mainly measures the model predic-
tion error through single perturbation to determine the 
importance of features, it cannot consider the correla-
tion between factors. In addition, the thickness of the 
angle bracket connection in the database is relatively 
fixed, so the model error will be smaller when perturb-
ing this feature. As a post hoc explanation method for 

Fig. 11 Comparison of tested initial stiffness and predicted initial stiffness of different algorithms

Fig. 12 Evaluation metrics of various ML models for predicting initial 
stiffness
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models, SHAP analysis provides local and global expla-
nations for the "black box". According to the SHAP 
analysis approach, the angle bracket connection’s thick-
ness affects yield load less than the number of screws 
used to attach it to the wall panel. Self-tapping screws 
play a role in bearing shear forces when the angle 
bracket connection is subjected to shear, so the num-
ber of self-tapping screws more strongly influences the 
yielding load of the angle bracket connection than by 
its thickness.

Discussion
In previous studies on the mechanical properties of angle 
bracket connections, experimental or numerical mod-
eling analysis methods were typically used. However, the 
impact of each feature value on mechanical properties 
was challenging to quantify while incurring high compu-
tational time and cost. This work demonstrated that it is 
feasible to develop a prediction model for the mechani-
cal shear properties of angle bracket connectors using 
regression algorithms. When performing regression pre-
dictions on the yielding load, maximum load, and initial 
stiffness, ML showed good generalization performance. 
But when predicting the ductility ratio, the best model 
achieved an  R2 of 0.623, indicating significant room for 
improvement, likely due to limited sample diversity in the 
current dataset. In addition, due to the limitation of the 
dataset, the type of steel used for angle bracket, anchor 
and bolt were not considered with regard to the type of 
wood used for CLT panels, but this study confirms the 
feasibility of the prediction method by analyzing the 
available data. Therefore, expanding the dataset in future 
studies can effectively improve accuracy.

In the context of this study, the principal objective 
was predicting the mechanical performance of angle 
brackets, and the algorithms employed were unsuitable 

Fig. 13 Comparison of tested ductility ratio and predicted ductility ratio of different algorithms

Fig. 14 Evaluation metrics of various ML models for predicting 
ductility ratio
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for addressing the classification of failure modes. Con-
sequently, this study did not include predictions related 
to the classification of connection failure modes. Nev-
ertheless, the practical significance of this research is 
emphasized, as these predictive models can offer valuable 
insights for engineering design and performance optimi-
zation. With the limitations, future research is encour-
aged to delve deeper into the classification prediction of 
connection component failure modes, thereby facilitating 
the provision of more comprehensive insights for engi-
neering applications.

Conclusions
This study was based on a database containing 110 sets 
of angle bracket shear test data and used ML methods to 
establish predictive models for the yielding load, maxi-
mum load, initial stiffness, and ductility ratio of angle 
bracket connections under shear. The generalization per-
formance and prediction accuracy of different ML meth-
ods were analyzed and compared, and thrpretability of 

ML methods was studied. The results of this study show 
that:

1. XGB algorithm has the highest accuracy in predict-
ing the yielding load and initial stiffness of angle 
bracket connections, with  R2 values of 0.969 and 
0.809. In addition, higher certainty in the training 
dataset does not automatically imply higher certainty 
in the test dataset. Evaluating the predictive models 
with an independent training set can reduce the ten-
dency of model overfitting.

2. RF, SVR, GB, and XGB algorithms perform well in 
predicting the maximum load of angle bracket con-
nections, with evaluation coefficients MSE smaller 
than 0.068 and  R2 greater than 0.830.

3. A single model (SVR) has better generalization per-
formance than ensemble models (RF, GB, XGB) in 
predicting the ductility ratio of angle bracket connec-
tions and is an effective machine learning model for 
predicting the ductility ratio.

Fig. 15 Relative importance of input features
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4. Based on the XGB model, permutation feature 
importance and SHAP value analysis are used to 
determine the effect of different features on the 
mechanical properties of angle bracket connections 
under shear, providing the machine learning model a 
logical interpretation and enhancing the reliability of 
the model.

5. A database of angle bracket shear test data is estab-
lished, and the experimental data are systematically 
organized and shared in Additional file 1, facilitating 
future research.
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