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Acetylxylan esterase is the key to the host 
specialization of wood‑decay fungi predicted 
by random forest machine‑learning algorithm
Natsuki Hasegawa1, Masashi Sugiyama2,3 and Kiyohiko Igarashi1,3*    

Abstract 

Wood-decay fungi produce extracellular enzymes that metabolize wood components such as cellulose, hemicel-
lulose and lignin. Each fungus has a preference of wood species as the host, but identification of these preferences 
requires a huge amount of cultivation data. Here, we developed a method of predicting the wood species prefer-
ence, Angiosperm specialist or Gymnosperm specialist or generalist, of wood-decay fungi using the random forest 
machine-learning algorithm, trained on the numbers of families associated with host specialization in the Car-
bohydrate-Active enZymes database. The accuracy of the prediction was about 80%, which is lower than that of 
the classification of white- and brown-rot fungi (more than 98%) by the same method, but the reason for this may 
be the ambiguity of the definition of “preference” and “generalists”. Carbohydrate esterase (CE) family 1 acetylxylan 
esterase was the most significant contributor to the prediction of host specialization, followed by family 1 carbohy-
drate-binding module and CE family 15, mainly containing glucuronoyl esterases. These results suggest that the abil-
ity to degrade glucuronoacetylxylan, a major hemicellulose of Angiosperm, is the key factor determining the host 
specialization of wood-decay fungi.
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Introduction
Wood-decay fungi are a unique group of organisms on 
Earth that exclusively metabolize wood [1]. Their ecologi-
cal impact extends beyond the local decay process, influ-
encing global carbon cycling. Moreover, they serve as a 
critical source of biomass-converting enzymes for build-
ing a decarbonized society [2]. However, wood-decay 
fungi can have both positive and negative effects. While 

they contribute to nutrient recycling and carbon seques-
tration, their activity can compromise the structural 
integrity of wood, especially in construction-grade soft-
wood materials [3]. This degradation not only reduces the 
lifespan and value of wooden structures, but also poses 
risks during natural disasters such as earthquakes [4–6]. 
Understanding the fundamental principles underlying 
wood decay is therefore essential for achieving a sustain-
able economy.

Research on wood-decay fungi dates back to the early 
nineteenth century when scientists classified them based 
on the post-decay wood color, distinguishing between 
white-rot and brown-rot (formerly known as red-rot) 
fungi [7]. Advances in chemistry led to compositional 
analyses of decayed wood, linking enzymatic activity to 
wood degradation [8]. Subsequent studies focused on 
enzyme purification and characterization, connecting 
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specific enzymes to chemical changes in wood com-
ponents [2]. In recent decades, molecular biology and 
bioinformatics have enabled comprehensive investiga-
tions into the genomics, transcriptomics, proteomics, 
and metabolomics of various wood-decay fungi [9–12]. 
However, these studies have mostly been conducted in 
controlled laboratory environments, which may not fully 
represent natural decay processes in real-world settings.

Our recent research leveraged machine learning, spe-
cifically the random forest (RF) algorithm, to predict 
whether a given fungus is a white- or brown-rot species 
based on its Carbohydrate-Active enZymes (CAZymes) 
family composition [13]. By analyzing genomic data, we 
achieved over 98% accuracy in distinguishing between 
these two decay types [14]. Notably, the lytic polysaccha-
ride monooxygenase (LPMO) from the auxiliary activity 
(AA) family 9 emerged as the most influential enzyme for 
this classification. LPMO, which was discovered in 2010 
[15], enhances cellulase activity by oxidatively damaging 
cellulose surfaces [16, 17]. Other enzymes such as cel-
lulobiohydrolases from glycoside hydrolase (GH) fam-
ily 7 and Class II peroxidases (from the AA2 family) also 
contributed to distinguishing white-rot from brown-rot 
fungi, in accordance with previous biochemical and other 
analyses [11, 18].

Furthermore, white- and brown-rot fungi exhibit dif-
ferent host specializations [19]. Brown-rot fungi include 
more generalists that can infect both Gymnosperms, 
generally called softwood, and Angiosperms, hardwood. 
In contrast, white-rot fungi are specialists, with over half 
of them specifically occurring on hardwoods [20]. In the 
present study, we trained the RF algorithm [21] on the 
number of CAZymes families associated with host spe-
cialization and identified acetylxylan esterase (AcXE) 
from carbohydrate esterase (CE) family 1 as playing a key 
role in host specialization.

Materials and methods
Creation of a host specialization data set for wood‑decay 
basidiomycetes
The data set related to host specialization of wood-decay 
basidiomycetes was created based on prior research by 
Krah and colleagues [20]. First, we utilized the R package 
“rusda” to retrieve data from the Fungus-Host Distribu-
tion Database and Specimens Database (https://​fungi.​ars.​
usda.​gov) maintained by the United States Department 
of Agriculture (USDA) [22]. We used the species names 
reported for each fungus in our previously created decay 
type data set as queries. For some fungi, automatic col-
lection using “rusda” was not feasible, and in these cases, 
we manually collected the data.

We then scraped data from the National Center for 
Biotechnology Information (NCBI) taxonomy using 

the genus names as queries to determine whether the 
collected hosts were classified under the Acrogymno-
spermae phylum Gymnosperms or softwood, or the Mag-
noliopsida phylum, Angiosperms or hardwood. For hosts 
with discrepancies between the USDA Fungus Databases 
and NCBI registration names, we supplemented the clas-
sification by manually searching for synonyms based on 
data from the Global Biodiversity Information Facility 
(GBIF) [23], International Plant Names Index (IPNI) [24], 
and Tropicos [25] databases. Host species not belonging 
to either Gymnosperms or Angiosperms were removed 
from the data set.

Subsequently, we examined whether each host spe-
cies was woody or herbaceous using the woodiness data 
set [26]. Herbaceous hosts were excluded, and for hosts 
without information in the woodiness data set, we re-
searched using genus names. If all species within the 
same genus were either woody or herbaceous, we extrap-
olated the classification. In cases where both woody and 
herbaceous hosts coexisted, we considered them inde-
terminate and removed those host species from the data. 
These steps resulted in a data set comprising wood-decay 
fungi associated only with Gymnosperm and Angio-
sperm hosts.

From this data set, the “Gymnosperm association” was 
defined by dividing the number of gymnosperm host tree 
species (NG) by the sum of the number of angiosperm 
(NA) and gymnosperm host tree species: gymnosperm 
associations [%] =  NG

NG+NA
 . Based on these values, we cat-

egorized fungi into three groups: angiosperm specialists 
(0–10%), generalists (10–90%), and Gymnosperm spe-
cialists (90–100%), following the approach by Krah and 
colleagues. [20].

Construction and evaluation of RF models
We next conducted two analyses: classification to predict 
which of the three host specialization groups, Angio-
sperm specialist, Gymnosperm specialist, or generalist, 
a given genome sample belongs to, and regression to 
directly predict the Gymnosperm association value. In 
line with our previous report, we split the data set into 
training and test data (70% and 30%, respectively), cor-
rected for data set imbalance by means of oversampling 
using the synthetic minority over-sampling technique 
(SMOTE) [27] for classification and the synthetic minor-
ity over-sampling technique for regression with Gauss-
ian noise (SMOGN) [28] for regression, and evaluated 
model performance on the test data. We used the Ran-
domForestClassifier and RandomForestRegressor from 
the Python library scikit-learn for model construction. 
We also performed the same tasks using LightGBM, an 
ensemble learning algorithm based on decision trees 
[29]. LightGBM adjusts data weights based on previous 

https://fungi.ars.usda.gov
https://fungi.ars.usda.gov
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tree predictions, creating trees sequentially in a gradient 
boosting fashion. Compared to RF, LightGBM generally 
achieves higher accuracy [29]. We built models using 
the Python package “lightgbm” and automatically tuned 
hyperparameters using Optuna [30].

For both tasks and algorithms, we incorporated num-
bers of all enzyme families/subfamilies as explanatory 
variables. Model construction was randomized and 
repeated 1000 times with oversampling and data split-
ting. We calculated performance metrics and averaged 
the Gini importance of each explanatory variable.

Results and discussion
The host specialization of wood-decay basidiomycetes 
differs between white-rot and brown-rot fungi, i.e., 
white-rot fungi predominantly specialize in Angiosperms 
(hardwood), while brown-rot fungi exhibit a higher pro-
portion of generalists that infect both Gymnosperms 
(softwood) and hardwood [20]. Despite this knowledge 
of decay modes, the genetic basis of host specialization 
remains largely unexplored. In ascomycetes, changes in 
host range have been associated with gene duplications 
or losses [31, 32], but host range reduction in mycor-
rhizal fungi does not always involve gene loss [33]. The 
mechanisms underlying host specialization likely relate 
closely to the organism’s nutritional strategy. White- and 
brown-rot fungi, being part of the Basidiomycota lineage, 
decompose dead plant cells differently from ascomycetes 
that can interact with living plants. As saprotrophs, they 
derive nutrients from decaying organic matter. Therefore, 
they may employ unique mechanisms diverging from 
those observed in ascomycetes that form mycorrhizal 
associations with living plants.

In this study, we applied comparative genomics meth-
odology using the RF algorithm, which was validated for 
its utility in the context of decay types in our previous 
report [14], to study host specialization. The aim of this 
work was to gain insights into the genetic mechanisms 
underlying host specialization in wood-decay basidiomy-
cetes. This approach also serves as an illustrative example 
of how machine learning can predict candidate genes by 
systematically exploring genomes in uncharted research 
areas.

Data set for the random forest machine‑learning algorithm
In the host specialization data set used for the experi-
ment, there were 88 samples of angiosperm specialists, 
64 samples of generalists, and 30 samples of gymno-
sperm specialists (Fig.  1). The composition of this data 
set aligned with previous studies by Krah and colleagues 
[20]: among white-rot fungi, angiosperm specialists con-
stituted more than half, while among brown-rot fungi, 
generalists were the most prevalent. Except for a single 

case (Fistulina hepatica), Agaricales, where only white-
rot fungi were found, lacked Gymnosperm specialists, 
and Gloeophyllales, composed solely of brown-rot fungi, 
had no Angiosperm specialists.

Model performance
Classification predictions using RF improved with over-
sampling of the data set, resolving the discrepancy 
between recall and precision, but the accuracy remained 
only around 80% (Fig. 2a). In regression tasks, the coef-
ficient of determination (R2) was approximately 0.6, and 
both the mean absolute error (MAE) and root-mean-
square error (RMSE) exceeded 0.2 (Fig. 2c). While these 
values ensured some predictive ability for host specializa-
tion traits, they were lower than the decay type predic-
tions obtained in the previous report [14]. Even when 
using LightGBM, which is generally considered more 
accurate than RF, there was minimal change in preci-
sion metrics for both classification and regression tasks 
(Fig.  2b, d). The Gymnosperm association value, based 
on reporting frequency of host relationships, could be 
affected by sampling bias and probabilistic errors. Addi-
tionally, the conversion of its continuous value into cat-
egorical labels introduced artificial boundaries such as 
“preference” and “generalists”, potentially contributing 
to the limitations in predictive accuracy due to data set 
imperfections. To address this, alternative indicators for 
accurately and precisely evaluating fungal host speciali-
zation would be needed.

Nevertheless, the model still achieved reasonable accu-
racy in predicting wood-decay fungi’s host specialization. 
Leveraging machine learning in this noisy data set may 
be advantageous for identifying trends that would be 
challenging to discern manually. Furthermore, the host 
specialization trait in wood-decay fungi remains under-
studied and poorly understood, making it an area ripe for 
exploration. Our methodology enabled us to pioneer this 
uncharted field by predicting noteworthy genes through 
comprehensive exploration and illustrates an effective 
application of machine learning to comparative genom-
ics. Averaging the class probabilities predicted by the 
RFs in the classification task, 40 samples were misclassi-
fied, but in most of them the class probability of the cor-
rect host specificity group was the second highest value 
(Fig. 3a). In addition, both the angiosperm specialists and 
gymnosperm specialists were misclassified as generalists 
more often than they were misclassified as specialist in 
the other category (Fig. 3b). Therefore, the prediction by 
RF was not entirely misplaced, and the model was con-
sidered to reflect, at least to some extent, the relationship 
between the host specificity of wood rot fungi and the 
number of CAZymes genes.



Page 4 of 10Hasegawa et al. Journal of Wood Science           (2024) 70:44 

The high number of prediction errors between spe-
cialists and generalists, as described above, suggested 
that the prediction accuracy of the model could be 
improved by adjusting the value of the boundary sepa-
rating specialists and generalists. However, the main 
focus of comparative genomics is to understand the 
genetic basis of traits, and prediction accuracy is only 
a guarantee of the reliability of the model. Therefore, 
such minor tuning for accuracy was not done in this 
case because it would only have increased the fit to the 
data set of this experiment and might have reduced its 
generality for wood-rotting fungi as a whole. In addi-
tion, it is generally possible to improve the prediction 
performance in RF and LightGBM by carefully select-
ing only those explanatory variables with large contri-
butions, but for the same reason, we did not follow-up 
using this approach.

CAZymes contributing to host specialization prediction
CE1 stood out across all four patterns, showing more 
than twice the importance of other families (Fig.  4, 
Table  S1). CE1 includes AcXE, which degrades acetyl 
side chains protecting xylan. Notably, CE1 gene numbers 
significantly differed between gymnosperm specialists 
and the other two host specialization groups in white-
rot fungi, suggesting its critical role as a bottleneck in 
hardwood xylan degradation (Fig. 5). Although CE1 also 
includes feruloyl esterases, which disconnect feruloyl 
side chain from herbaceous arabinoxylan, this activity 
might not be the target of the classification in this study 
considering that the content of feruloyl moiety is limited 
in arboreous plant. The GH10 and GH11 families involv-
ing xylanase activity also exhibited substantial difference 
in importance, correlating with their differences in acetyl 
xylan degradation activity [34]. The major difference of 

Fig. 1  Composition of the host specificity data set. a Histogram of gymnosperm association values for each sample in the host specificity data set. 
b Proportion of host specificity for different decay styles. c Sample count per order
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carbohydrates between softwood and hardwood is hemi-
celluloses, O-acetyl-glucuronoxylan is the major hemicel-
lulose in hardwood, while O-acetyl-galactoglucomannan 
for softwood [35]. Both hemicelluloses contain acetyl 
side chains, but the acetyl content of softwood is lim-
ited (~ 1.5%) [36] and deacetylase activity of galactoglu-
comannan has not been discovered in CE1, suggesting 
that AcXE is the key for the classification.

The second most important family was commonly 
CBM1 in all four patterns. CBM1 is generally used for 
the adsorption on crystalline cellulose and typical mod-
ule for cellulases. However, the domain is also connected 
to esterase domains such as CE1 and CE15, glucuronoyl 
esterases, in the genome of the white-rot fungus Phan-
erochaete chrysosporium [37], suggesting higher signifi-
cance next to CE1 is reasonable. The order in third place 
and later differed among methods and especially among 
tasks. For example, CE15 was third in importance in the 

classification task, whether using RF or LightGBM, but 
was as low as 20th or below in the regression (Table S1). 
On the other hand, PL1 was about 10–15th in impor-
tance in classification, but was in the top 5 in regression. 
This may be because in regression, the contribution to 
prediction is evaluated uniformly in any range, while in 
classification, a wide range of gymnosperm associations 
(10–90%) is collectively considered generalist, so that 
only the contribution to prediction of the extreme values 
is evaluated as important.

While CE1 and other families related to hemicellulose 
and pectin degradation dominated the host specializa-
tion prediction model compared to the decay type pre-
dictions in the previous report [14], families associated 
with crystalline cellulose and lignin showed relatively low 
importance, except for CBM1 and AA9 LPMO. Lignin is 
known to differ in content between softwoods and hard-
woods, but both AA2 peroxidases and AA1_1 laccases 

Fig. 2  Model prediction accuracy. a, c Prediction accuracy for host specificity using RF. b, d Prediction accuracy for host specificity using 
LightGBM. Error bars represent standard deviation. For classification tasks (a, b) the following metrics were adopted: accuracy: percentage of all 
test samples that were correctly predicted; recall: percentage of samples predicted to be gymnosperm specialists that actually are gymnosperm 
specialists; precision: percentage of gymnosperm specialist samples correctly predicted to be gymnosperm specialist; F1-score: harmonic mean 
of the reproducibility and goodness-of-fit rates. For regression tasks (c, d), the following metrics were adopted: coefficient of determination 
(R2): proportion of variance explained by the model relative to the total variance of the dependent variable; mean absolute error (MAE): average 
of absolute errors; root-mean-square error (RMSE): square root of the average squared error



Page 6 of 10Hasegawa et al. Journal of Wood Science           (2024) 70:44 

Fig. 3  RF model predictions for classification tasks. a Comparison between true host specialization and RF predictions. Predictions are based 
on the average class probabilities. b Misclassified sample count and percentage for each host specificity group (total samples: A = 88, Gen = 64, 
G = 30)
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were below the 25th rank. For wood-decay fungi, the pri-
mary target could be sugar components that are relatively 
easy to metabolize, and lignin should be broken down 
obligatorily to access these components. Interestingly, 
host specialization group comparisons revealed signifi-
cant gene number distribution differences in white-rot 
fungi, but not in brown-rot fungi. This suggests that 
mechanisms beyond CAZymes may contribute to brown-
rot fungal host specialization. The contrast between 
white-rot fungi, which flexibly use various CAZymes 
according to their targets, and brown-rot fungi, which 
employ alternative mechanisms, highlights the complex-
ity of wood decay strategies.

In white-rot fungi, there were families without signifi-
cant gene number distribution differences between Angi-
osperm specialists and generalists. This finding, coupled 
with the higher misclassification rates between these two 
groups compared to other combinations (Fig.  3b), sug-
gests that the differences in CAZymes between Angio-
sperm specialists and generalists are small compared 
to those between these two groups and Gymnosperm 

specialists. Specifically, the presence of CE1 genes related 
to acetyl xylan degradation appears to be the critical fac-
tor limiting hardwood availability in white-rot fungal 
host specialization.

Conclusion
In this study, we used machine learning to establish 
that white-rot fungi exhibit significant differences in 
CAZymes composition between specialists for soft-
woods and those for hardwoods, with acetylxylan deg-
radation capacity being a major distinguishing factor. 
In contrast, brown-rot fungi showed no significant gene 
number differences among host specialization groups, 
and the CAZymes families with high importance for 
decay style predictions were consistently more abun-
dant in white-rot fungi. These findings suggest that 
brown-rot fungi rely on different mechanisms beyond 
CAZymes. To address the diverse decay styles of wood-
decay fungi and to further understand brown-rot fungal 
decay systems, high-resolution experimental methods 

Fig. 4  Importance of each CAZy family in the model. Relative importance of each CAZy family in the model for both classification and regression 
tasks, using RF and LightGBM. Only the top 12 families are shown. Error bars represent standard deviation



Page 8 of 10Hasegawa et al. Journal of Wood Science           (2024) 70:44 

are needed. While our study focused on gene numbers, 
it will be necessary to bridge the gap between genomic 
data and actual decay processes by dissecting decay 
mechanisms temporally and spatially through various 
omics analyses in the future.
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