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Abstract 

Cell death plays an important role in the determination of secondary xylem cell functions. Tracheary elements (TEs), 
such as vessel elements and tracheids, lose their organelles due to rapid autolysis after the completion of second-
ary wall thickening and lignification, and play an important role in water movement along the stem. In contrast, 
xylem axial and ray parenchyma cells (xylem parenchyma cells) remain alive for several years or longer and retain 
their organelles even after maturation. As a result, xylem parenchyma cells play important roles in nutrient stor-
age, axial and radial transportation of materials, and defense responses in the stem. In addition, they are involved 
in the formation of heartwood, which contributes to increases in the resistance of the tree trunk to decay, as they 
synthesize heartwood components such as polyphenols prior to their death. The present review focuses on changes 
in long-lived ray parenchyma cells during heartwood formation, such as morphology and contents of organelles, 
gene expression, and survival rate in sapwood. This review also summarizes the differences in cell death character-
istics between TEs and ray parenchyma cells. The elucidation of the cell death mechanism of ray parenchyma cells 
is expected to provide useful information for controlling the properties of heartwood.

Keywords  Cell death, Heartwood formation, Ray parenchyma cell, Secondary xylem, Woody biomass

Introduction
Trees have a well-developed vascular cambium and con-
tinue radial growth of the stem over time [1–8]. The 
periclinal division of cambial cells leads to radial growth, 
producing secondary phloem cells outside and secondary 
xylem cells inside the cambium. The cambium produces 
substantially more secondary xylem cells than second-
ary phloem cells. Therefore, woody biomass, an impor-
tant renewable and carbon–neutral resource, is primarily 
composed of secondary xylem cells.

Cell death plays an important role in the determina-
tion of secondary xylem cell functions. The differentia-
tion of secondary xylem cells involves cell expansion or 

elongation, cell wall thickening (secondary wall thick-
ening), the formation of modified structures such as 
pits and perforations, lignification, and cell death [4–6]. 
The process of differentiation is highly similar among 
secondary xylem cells with various functions, but the 
timing of cell death differs significantly. Tracheary ele-
ments (TEs), such as tracheids and vessel elements, lose 
their organelles due to rapid autolysis after the comple-
tion of secondary wall thickening and lignification and 
play an important role in water movement. In contrast, 
xylem axial and ray parenchyma cells (xylem parenchyma 
cells) remain alive for several years or longer. Even after 
maturation, i.e., secondary wall thickening and lignifica-
tion, they retain their organelles and remain viable [4–6]. 
Xylem parenchyma cells form three-dimensional lattices 
in secondary xylem and they are connected by symplas-
mic networks in sapwood [9–11]. As a result, these cells 
play important roles in nutrient storage, axial and radial 
transportation of materials, and defense responses in 
the stem [1, 10, 12–15]. In addition, xylem parenchyma 
cells are involved in the formation of heartwood (Fig. 1), 
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which contributes to the resistance of the tree trunk to 
decay, as they synthesize heartwood substances such as 
polyphenols prior to their death [16–23]. The elucidation 
of the cell death mechanism of xylem parenchyma cells 
is expected to provide useful information for controlling 
the properties of heartwood. This review introduces the 
cell death characteristics of long-lived xylem parenchyma 
cells and compares the regulatory mechanisms of cell 
death between xylem parenchyma cells and short-lived 
xylem cells, such as TEs.

Cell death of short‑lived xylem cells
The cell death process of xylem cells has been mostly 
researched in short-lived TEs of herbaceous angio-
sperms, such as Zinnia elegans [24–27], and ample 
information about the cellular and molecular cell death 
mechanisms has been accumulated. In  vitro, single 
mesophyll cells isolated from Z. elegans leaves transdif-
ferentiated synchronously into TEs within 72  h in the 
presence of two plant hormones, auxin and cytokinin 
[25, 28]. Therefore, cell death of these TEs is thought to 
be a time-dependent programmed cell death (PCD). Dur-
ing the early stages of TE differentiation, brassinosteroid 
phytohormones induce the expression of genes involved 
in secondary wall formation and PCD [29]. Then, nucle-
ases [30–34] and proteases [31, 35–37] accumulate in the 
vacuole. Autolysis of the cell organelles begins simultane-
ously as the accumulated autolytic enzymes are released 
into the cytoplasm, triggered by the collapse of the vac-
uole, which begins to be observed six hours after sec-
ondary wall formation [38]. Groover et al. [38] reported 
that nuclear DNA is fragmented during PCD in TEs. 

Similarly, we have observed nuclear DNA fragmenta-
tion during cell death in short-lived ray tracheids in Pinus 
densiflora (Fig.  2) [39, 40]. Autolysis after vacuolar col-
lapse reportedly proceeds quickly, with nucleic acid deg-
radation completed within 10–20  min [41]. Regarding 
the mechanism of vacuolar collapse, Groover and Jones 
[42] reported that it involves calcium ion influx into the 
cell, and Kuriyama [43] reported that changes in the per-
meability of organic anions in the vacuolar membrane 
cause vacuolar collapse. However, the detailed molecular 
mechanism has not been clarified.

The detailed molecular PCD mechanisms in TEs have 
been elucidated in studies using Arabidopsis thaliana. 
The NAC domain transcription factors Vascular-related 
NAC-domain6 (VND6) and VND7 regulate the expres-
sion of genes involved in secondary wall formation and 
PCD of TEs and are master transcription factors for TE 
differentiation [44]. In addition to transcriptome analysis 
results, results from drug treatment experiments, such as 
the inhibition of both secondary wall formation and cell 
death by trypsin inhibitors [42], suggest that secondary 
wall formation and PCD progress in a coordinated man-
ner during TE differentiation. The papain-like cysteine 
proteases xylem cysteine peptidase1 (XCP1) and XCP2 
[45, 46], a cysteine protease involved in vacuolar protein 
maturation termed vacuolar processing enzyme (VPE) 
[47, 48], metacaspase9 (AtMC9), a type of metacaspase, a 
cysteine protease with a similar structure to caspases that 
play a central role in PCD in animals [49–51], and the 
nucleolytic enzyme bifunctional nuclease1 (BFN1) [52, 
53] are involved in the PCD of TEs.

In wood fibers of Populus, nuclear DNA fragmenta-
tion and autophagosome-mediated autolysis of cellu-
lar contents occur prior to vacuolar rupture [54]. The 
life duration of wood fibers is approximately one month 
[55]. Gene expression of XCP2, VPE, and metacaspases, 
which are also involved in the PCD of TEs, increases dur-
ing the cell death process in wood fibers in Populus trem-
ula × tremuloides [51, 54, 56, 57]. Despite the common 
gene expression patterns, the differences in the autolysis 
process suggest that the cell death mechanisms differ 
between wood fibers and TEs.

For details on the cell death of TEs and wood fibers, 
which are short-lived xylem cells, refer to the reviews by 
Fukuda [24, 25], Bollhöner et  al. [55], and Escamez and 
Tuominen [58].

Cell death of long‑lived ray parenchyma cells
Xylem parenchyma cells play important roles in the 
storage and transport of materials for many years, after 
which they execute cell death processes and lose their 
organelles via autolysis. According to the International 
Association of Wood Anatomists (IAWA), the inner 

Fig. 1  Cross section of a tree trunk of Juglans mandshurica var. 
sachalinensis. Ca cambium, HW heartwood, Ph phloem, SW sapwood, 
Xy xylem. Scale bar = 5 cm
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layers of wood, which contain no living cells, are defined 
as heartwood, whereas the outer layers containing living 
cells are termed sapwood [59]. The innermost part of the 
sapwood, which is intermediate between sapwood and 
heartwood in terms of color and other general character-
istics, is termed intermediate wood [59]. It is important 
to note that regions with these characteristics are some-
times referred to as “transition zone” or “white zone”, 
which are defined differently by different researchers. 
Hillis [18] referred to the narrower of these regions as 
“transition zone” and the wider as “intermediate wood”. 
Nobuchi and Harada [60] referred to the area of the inner 
sapwood that appears white to the naked eyes in green 
condition as “white zone”, while the narrower, slightly 
colored area between white zone and heartwood was 
referred to as “transition zone”. In this review, we use 
the term “intermediate wood”, and provide explanations 
of terms when authors clearly defined the terms in their 
articles. To avoid confusion, we recommend authors to 
mention the definitions of sapwood, intermediate wood, 
and heartwood in each article, e.g., Nakada and Fukatsu 
[61].

Before the death of xylem parenchyma cells, they syn-
thesize heartwood substances as a result of metabolic 
changes. These heartwood substances, which play impor-
tant roles in the resistance to decay, are released from 
xylem parenchyma cells and diffused into surround-
ing tissues [62]. Heartwood color, odor, and durability 
are important parameters for wood utilization, and the 
mechanism of heartwood formation has long been of 
interest [18]. Understanding the process of cell death dur-
ing the transition from sapwood to heartwood is impor-
tant for understanding the mechanisms of cell death of 
xylem parenchyma cells. Cambial cells and their deriva-
tives have been suggested to provide a suitable model 
system for in situ studies of cytodifferentiation in second-
ary tissues because their differentiation can be followed 
in a radial direction [63–68]. In xylem parenchyma, axial 
parenchyma cells are sporadically distributed in the radial 
direction, whereas ray parenchyma cells are continuously 
arranged in the radial direction, allowing analysis of con-
tinuous changes to some extent. Therefore, ray paren-
chyma cells have been used to analyze changes from the 
start of differentiation to the death of xylem parenchyma 
cells. Hereafter, we first introduce the morphology of ray 

Fig. 2  Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay of tissue near the cambium (a–c) and differentiating 
ray tracheids (d–f) to detect nuclear DNA fragmentation in Pinus densiflora. The left panels show TUNEL fluorescence, the middle panels show 
propidium iodide fluorescence, and the right panels are differential interference contrast images. Arrows indicate nuclei with DNA fragmentation 
in ray tracheids. Arrowheads indicate nuclei without DNA fragmentation. The left side of the micrographs corresponds to the outer side of the tree. 
RP ray parenchyma cell, RT ray tracheid. Scale bars = 30 μm. Figures adapted from Nakaba et al. [39]
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parenchyma cells and then the changes in cell contents 
and morphology related to their death.

Morphology of ray parenchyma cells and structure of rays
The long-lived ray parenchyma cells are unique to trees 
and are arranged radially, forming rays. The structure of 
the rays differs between conifers and broad-leaved trees 
[69, 70]. In conifers, they generally exist of a single row of 
cells in the axial direction (uniseriate ray) when viewed in 
the tangential section [69], and ray parenchyma cells are 
long and strip-shaped in the radial direction. Ray paren-
chyma cells are directly connected with adjacent longi-
tudinal tracheids via cross-field pits. There are two types 
of coniferous trees: those in which the rays consist of ray 
parenchyma cells alone and those in which the rays con-
sist of ray parenchyma cells and ray tracheids. Ray trac-
heids are generally located at the upper and lower ends of 
rays and undergo cell death quickly after the completion 
of secondary wall formation [71, 72]. Due to differences 
in cell wall organization, pit structure and distribution 
of lignin, ray parenchyma cells in conifers were classi-
fied into five types, namely, Sciadopitys, Cryptomeria, 
Diploxylon, Haploxylon, and Abies types [73]. Accord-
ing to cell wall organization, ray parenchyma cells can be 
divided into two types: those composed of primary walls 
alone (Sciadopitys type and Cryptomeria type) and those 
composed of primary and secondary walls (Diploxy-
lon, Haploxylon, and Abies types). Among the species 
in which ray parenchyma cells form only a primary wall, 
there are two types: those in which cell wall thickening 
and lignification occur in the outermost sapwood (Cryp-
tomeria type) and those in which lignification occurs in 
intermediate wood (Sciadopitys type) [73]. In Pinus spe-
cies, ray parenchyma cells form primary and secondary 
walls and can be classified into three types based on their 
maturation process: (1) secondary wall thickening and 
lignification occur in the outermost sapwood, (2) second-
ary wall thickening and lignification occur in intermedi-
ate wood, and (3) lignification occurs without secondary 
wall thickening in intermediate wood [74]. Furthermore, 
in Pinus species, ray parenchyma cells with different 
types of maturation coexist in the same ray [74].

In contrast, broad-leaved trees show considerable 
variation in the shape of ray parenchyma cells and the 
aggregation state of ray parenchyma cells within a ray 
[69]. Rays in broad-leaved trees consist of parenchyma 
cells alone and do not form ray tracheids as in conifers. 
In the tangential section of rays, there are single-row 
rays (uniseriate ray), two-row rays (biseriate ray) and 
multi-row rays (multiseriate ray). Among multiseriate 
rays, those with significantly greater height and width 
are termed broad rays. Based on the shape of the radial 
view, ray parenchyma cells are classified into three types: 

procumbent cells, square cells and upright cells. When a 
ray is composed of procumbent cells alone, it is termed 
homogeneous rays, and when it is partially or completely 
composed of upright or square cells, it is termed hetero-
geneous rays. In uniseriate and biseriate rays, ray paren-
chyma cells are divided into three types based on their 
contacts with axial xylem elements: contact cells, inter-
mediate cells and isolation cells [75]. Contact cells are 
located predominantly within the upper and lower lines 
of individual rays and connect with adjacent vessel ele-
ments through pits. Intermediate cells are located within 
the same radial cell lines as contact cells but are not adja-
cent to vessel elements. Isolation cells are located within 
the other radial cell lines of a given ray. Even when iso-
lation cells are adjacent to vessel elements, they are not 
directly connected with vessel elements through pits. In 
addition, ray parenchyma cells situated inside multiseri-
ate rays which due to their position do not touch any ves-
sels, are termed as inner cells [76]. Although studies on 
the differences in the timing of secondary wall thickening 
and lignification in ray parenchyma cells in broad-leaved 
trees are few, it has been reported that in Populus which 
have only uniseriate rays, secondary wall thickening 
occurs earlier in contact cells and intermediate cells than 
in isolation cells [75].

Considering these differences among various types of 
ray parenchyma cells is important for understanding the 
cell death mechanisms of ray parenchyma cells. However, 
limited information is available about the relationship 
between types of ray parenchyma cells and characteris-
tics of the death of ray parenchyma cells. Further stud-
ies considering differences among various types of ray 
parenchyma cells are needed for understanding their 
mechanism of cell death in detail.

Changes in contents and morphology of nuclei in ray 
parenchyma cells
Changes in the nuclei are easy to detect because the 
nuclei are relatively large organelles. Therefore, nuclear 
changes have been observed as indicators of changes in 
ray parenchyma cells within sapwood. In ray parenchyma 
cells in intermediate wood, nuclei are smaller and have 
higher DNA contents than those in outer sapwood [77].

The morphological changes in nuclei in the radial 
direction differ between conifers and broad-leaved trees. 
In conifers, nuclei are spherical in ray cambial cells, 
become rod-shaped or ellipsoid as ray parenchyma cells 
elongate, and undergo condensation and disappear at the 
boundary between sapwood and heartwood [78, 79]. In 
contrast, in broad-leaved trees, nuclei are spherical in ray 
cambial cells, take on a spindle shape during differentia-
tion, and finally condensate and disappear at the bound-
ary between sapwood and heartwood after changing their 
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morphology to spherical again [78–80]. To quantitatively 
evaluate these morphological changes, the nuclear slen-
derness ratio [78, 79, 81, 82], nuclear irregularity index 
[83], and nuclear elongation index [84] have been pro-
posed. Morphological changes in nuclei in intermediate 
wood can be used as an indicator of the progression of 
cell death in ray parenchyma cells because they correlate 
with cell death progression [85].

Nakada and Fukatsu [61] reported that the death of ray 
parenchyma cells in Larix kaempferi in Japan occurred 
from April to July based on a comparison of the locations 
of intermediate wood (i.e., the zone with a white color in 
the green condition) and nuclear disappearance. Yama-
moto [74] noted that the death of ray parenchyma cells 
in several Pinus species in Japan occurred throughout the 
growing season, especially from July to October, based on 
methyl green pyronin staining and morphological analy-
ses of the nuclei. In Taiwan, Yang [83] observed that the 
greatest changes in nuclear morphology in Pinus banksi-
ana, Picea mariana and Populus tremuloides occurred in 
August, July–August, and August–October, respectively. 
Yang [83] concluded that heartwood formation within 
the stem started at the same time. We have observed 
significantly deformed nuclei in ray parenchyma cells 
in Abies sachalinensis from July to November in Japan 
(data not shown), and we speculate that cell death occurs 
at the same time. Although the evaluation methods dif-
fered among the previous reports, it can be assumed that 
the death of ray parenchyma cells occurs from spring to 
autumn.

Changes in other organelles and contents in ray 
parenchyma cells
Changes in organelles other than the nucleus have 
been revealed by transmission electron microscopy and 

other microscopic techniques, mainly in conifers such 
as Cryptomeria japonica (Fig.  3). In the outermost sap-
wood, abundant organelles such as mitochondria, the 
Golgi apparatus, endoplasmic reticulum, plastids, ribo-
somes, and amyloplasts exist (Fig. 3) [86–88]. Mitochon-
dria and ribosomes are abundantly observed during the 
growth period, when ray parenchyma cells have high 
physiological activity, such as respiration and protein 
biosynthesis. In the inner sapwood (authors referred to 
relatively inner part of sapwood which located outside 
of intermediate wood as “inner sapwood”), the numbers 
of these organelles decrease [87]. In intermediate wood, 
ray parenchyma cells become markedly vacuolated, 
pressing the organelles against the periphery of the cells 
(Fig. 3) [87]. Osmiophilic substances, thought to be waste 
products, accumulate in the large vacuoles and the cyto-
plasm shows osmiophilic properties [62, 88]. Nobuchi 
and Harada [62] pointed out that vacuoles might act as 
autophagosomes involved in autolysis in the inner part 
of intermediate wood (authors used “white zone”, and 
referred to the regions with a white color in the green 
condition as white zone) in Cryptomeria japonica. We 
have observed the timing of vacuolar rupture and mor-
phological changes and nuclear disappearance during 
the death of ray parenchyma cells and found that the first 
change in vacuoles might be a dramatic decrease in stor-
age proteins in protein-storage vacuoles. In ray paren-
chyma cells in intermediate wood (the regions with a 
white color in the green condition), not all vacuoles rup-
ture at the same time even within the same cell, and the 
rupture of enlarged vacuoles might result in autolysis of 
the cellular contents in ray parenchyma cells in the out-
ermost part of heartwood (Fig.  3) [89]. These observa-
tions indicate that vacuoles play an important role in the 
process of the death of ray parenchyma cells. Finally, ray 

Fig. 3  Schematic diagram of the changes that occur in organelles during cell death of ray parenchyma cells in Cryptomeria japonica. In 
the outermost sapwood, there are abundant organelles. In the inner sapwood, the number of these organelles decreases. In intermediate wood, 
ray parenchyma cells become markedly vacuolated, and the amount of storage proteins in protein-storage vacuoles dramatically decrease. In 
heartwood, there are no organelles or starch grains as storage materials
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parenchyma cells in heartwood contain no organelles or 
starch grains as storage materials, although residues of 
organelles and cytoplasmic substrates can be observed 
(Fig. 3) [62, 88]. These observations suggest that an effi-
cient nutrient recycling system exists during the process 
of ray parenchyma cell death, in which autophagy might 
play an important role.

Changes in the survival rate of ray parenchyma cells 
in the radial direction
Not all ray parenchyma cells in sapwood dies simulta-
neously. Early death in some ray parenchyma cells has 
been reported. In conifers that do not form ray tracheids 
in rays, such as Cryptomeria japonica and Abies sacha-
linensis, cell death occurs earlier in ray parenchyma cells 
located in the upper and lower radial lines of a ray than 
in other radial lines (Fig. 4) [88, 90, 91]. In conifers that 
form ray tracheids in rays, such as Pseudotsuga menziesii, 
Picea abies, Pinus densiflora and Pinus banksiana, cell 
death occurs earlier in ray parenchyma cells that are in 
contact with ray tracheids than in those not in contact 
with ray tracheids [71, 83, 91–93]. As mentioned above, 

in uniseriate and biseriate rays in broad-leaved trees, ray 
parenchyma cells are of three types designated contact 
cells, intermediate cells, and isolation cells, which dif-
fer in terms of their contacts with axial xylem elements 
[75]. We compared the timing of cell death of these three 
types of ray parenchyma cells in hybrid poplar (Populus 
sieboldii × P. grandidentata) and found that cell death 
occurs earliest in contact cells, then in intermediate cells, 
and finally in isolation cells [75]. The timings of second-
ary wall thickening and lignification differ between ray 
parenchyma cells that die earlier and other ray paren-
chyma cells [68, 71, 74, 75, 90]. In addition, the amounts 
of starch grains, lipids, storage proteins, and heartwood 
substances differ between ray parenchyma cells that die 
earlier and the other ray parenchyma cells [71, 75, 90]. 
These observations indicate that positional information 
might be an important factor in the regulation of the tim-
ing of cell death, differentiation, and the function of ray 
parenchyma cells in conifers and broad-leaved trees that 
form uniseriate rays.

The location where the death of ray parenchyma cells 
starts within sapwood and the percentage of ray paren-
chyma cells that die earlier differ among species. The con-
cept of survival rate of ray parenchyma cells presented 
by Ziegler [94] is useful in evaluating such differences 
among species. Nobuchi et al. [91] calculated the survival 
rates of ray parenchyma cells in 20 conifer species and 
found three survival rate decline types: (1) all ray paren-
chyma cells from cambium to the sapwood-heartwood 
boundary are alive, (2) the survival rate of ray paren-
chyma cells starts to decline from the middle sapwood, 
and (3) the survival rate of ray parenchyma cells starts to 
decline from the outer sapwood. In addition, Nobuchi 
et  al. [95] reported the survival rate of ray parenchyma 
cells in 26 broad-leaved tree species and showed that 
most ray parenchyma cells from the cambium to the 
sapwood-heartwood boundary are alive and that it is rare 
for a tree species to have ray parenchyma cells that start 
to die from outside the sapwood-heartwood boundary. 
However, Nobuchi et  al. [95] considered only procum-
bent cells, not upright and square cells, in calculating 
these survival rates. Spicer and Holbrook [93] showed 
that ray parenchyma cells retained their nuclei until these 
abruptly disappeared at the sapwood-heartwood bound-
ary in three broad-leaved tree species, Acer rubrum, 
Fraxinus americana and Quercus rubra. These results 
indicate that, in broad-leaved trees, the differences in 
the radial decline trends of the survival rate of ray paren-
chyma cells among species are small, whereas in conifers, 
the location within the sapwood where cell death initiates 
may vary from species to species. It remains unclear why 
the survival rate of ray parenchyma cells varies among 
species.

Fig. 4  Early death of ray parenchyma cells located in upper 
and lower cell lines of rays in Abies sachalinensis. a Light micrograph 
of a radial section, stained with acetocarmine, showing nuclei 
(arrows) in the ray parenchyma cells of the 10th annual ring 
from the cambium. The left side of the micrograph corresponds 
to the outer side of the stem. RP, ray parenchyma cell; T, tracheid. 
Scale bar = 50 μm. b Survival rates of ray parenchyma cells in August, 
determined from the current year’s annual ring to the annual 
ring in which all ray parenchyma cells had lost their organelles. 
Each rate was calculated as the percentage of ray parenchyma 
cells that contained a nucleus among 100 ray parenchyma cells. a 
Adapted from Nakaba et al. [90]
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It is expected that the physiological activity of ray 
parenchyma cells decreases from the outer sapwood 
towards sapwood-heartwood boundary because the 
numbers of organelles decrease in the inner sapwood 
[62, 88]. This expectation is consistent with the drastic 
decreases in the amount of RNA, which reflects cellular 
metabolic activity [96], and the mitochondrial reduction 
capacity, which reflects respiratory activity [78] in the 
outer sapwood. Radial trends in respiratory activity (oxy-
gen consumption) have been reported, but results were 
rather inconsistent, ranging from a decrease [97–102] 
to no change [103] or even an increase [103, 104] in res-
piratory activity in intermediate wood compared to outer 
sapwood. However, as mentioned above, the survival rate 
of xylem parenchyma cells decreases towards the heart-
wood; therefore, the survival rate should be considered 
in evaluating radial variation in the respiratory activity 
of xylem parenchyma cells in sapwood. Spicer and Hol-
brook [93] evaluated the respiratory activity, which was 
corrected based on the area fraction, and survival rate of 
xylem parenchyma cells in outer and inner sapwood. In 
Tsuga canadensis, the respiration rate was lower in the 
inner sapwood than in the outer sapwood before cor-
rection, but after correction, the rates were similar [93]. 
Although results may vary among species, it is important 
to consider the survival rate when evaluating physiologi-
cal activities, such as the respiratory activity, in xylem 
parenchyma cells, particularly for conifers.

Comparison of disappearance pattern of nuclei 
between tracheids and ray parenchyma cells
Ray parenchyma cells survive for many years after the 
completion of secondary wall thickening and lignifica-
tion. In contrast, cell death of TEs occurs immediately 
after the completion of secondary wall formation. The 

cell death program in TEs is tightly coupled with second-
ary wall formation [25]. These features suggest that the 
cell death mechanism in ray parenchyma cells might dif-
fer from that of PCD in TEs. Therefore, we compared 
the distribution of cell death (disappearance of nuclei) 
between short-lived tracheids and long-lived ray paren-
chyma cells in secondary xylem of conifers and found 
that the cell death pattern of ray parenchyma cells differs 
from that of tracheids. In longitudinal and ray tracheids, 
cell death occurs successively in a radial direction and is 
related to the radial distance from the cambium (Fig. 5a) 
[71, 72, 90]. In other words, cell death of tracheids occurs 
in order from the pith side to the bark side in a radial 
direction. These results indicate that the length of time 
from the start of differentiation might control the tim-
ing of cell death of tracheids. This scenario resembles the 
time-dependent PCD of TEs in cultured Z. elegans cells 
[24, 25, 28]. In contrast, in ray parenchyma cells, succes-
sive cell death does not occur even within a given radial 
cell line of a ray (Fig. 5b) [71, 90]. These results indicate 
that the process of cell death of ray parenchyma cells 
might not be fully explained by the cellular and molecu-
lar mechanisms of cell death that have been proposed for 
short-lived TEs [25].

Molecular mechanisms of cell death of ray parenchyma 
cells
The molecular mechanisms regulating the death of ray 
parenchyma cells have not been fully unraveled. Compre-
hensive gene expression analyses to elucidate the mecha-
nism of heartwood formation have revealed increased 
expression of nucleases, proteases, transcription factors, 
cytoskeleton-associated protein, and desiccation-related 
protein [105–109]. Huang et  al. [110] reported that the 
KNAT3-like homeobox transcription factor involved in 

Fig. 5  Comparison of nuclear disappearance patterns between tracheids and ray parenchyma cells in Abies sachalinensis. a, b Light micrographs 
of radial sections, stained with acetocarmine, showing nuclei in differentiating tracheids near the cambium (a) and ray parenchyma cells of the 10th 
annual ring from the cambium (b). Arrows indicates nuclei. Arrowhead indicates a dead ray parenchyma cell. The left side of the micrographs 
corresponds to the outer side of the stem. Ca cambium, RP ray parenchyma cell, T tracheid. Scale bars = 50 μm. a Adapted from Nakaba et al. [90] 
and b adapted from Funada et al. [6]
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cell specialization and patterning was highly expressed 
in inner sapwood and intermediate wood (authors used 
“transition zone”, and referred to regions which fluoresce 
blue under UV light as transition zone) of black walnut 
(Juglans nigra). Using real-time PCR analysis, Moshchen-
skaya et al. [111] showed that BFN gene expression was 
increased in the intermediate wood (authors used “tran-
sition zone”, and referred to two growth rings at the bor-
der with heartwood as transition zone) compared to the 
inner sapwood in Pinus sylvestris. We have assessed the 
variation in the radial direction of gene expression of the 
transcription factors NAC and MYB, which are associ-
ated with secondary wall formation and PCD in short-
lived xylem cells, and XCP, a cell death marker in TEs, 
in hybrid poplar (Populus tremula × P. alba) ray paren-
chyma cells using real-time PCR analysis [112]. We found 
that these genes continued to be expressed in the sap-
wood and that their expression did not increase prior to 
cell death [112]. It remains unclear where the products of 
the above genes are localized in xylem parenchyma cells 
and how the cell death process proceeds. Further studies 
on the localization of autolytic enzymes and functional 
gene analyses are needed in the future.

Gene functions that may be related with the death of 
ray parenchyma cells are difficult to analyze in trees 
because it takes several years or more for heartwood 
formation to initiate in individual trees, which hinders 
a good understanding of the molecular mechanisms of 
cell death in ray parenchyma cells. We believe that model 
experiments inducing cell death with secondary metabo-
lism similar to heartwood formation would be useful to 
achieve a breakthrough in understanding the cellular and 
molecular mechanisms of cell death in ray parenchyma 
cells. We have been conducting cytological analyses of 
cell death accompanied with secondary metabolism 
in ray parenchyma cells using an artificial cell-death-
induction system [113]. In this system, established by 
Imai and Nomura [114], cell death and the biosynthesis 
of agatharesinol, a heartwood substance, are induced 
in small sapwood sticks under high-humidity condi-
tions. Such model experimental systems are expected to 
be useful in the functional analysis of cell death-related 
genes. Combining the results of cell death analyses in 
intact ray parenchyma cells with those obtained using 
the cell-death-induction system will greatly advance our 

Fig. 6  Schematic diagram of cell death in short-lived ray tracheids (a tracheary element) and long-lived ray parenchyma cells in conifers. Ray 
tracheid: autolysis occurs immediately after completion of secondary wall formation. The length of time from the start of differentiation might 
control the timing of cell death. Ray parenchyma cell: autolysis occurs after several years or more after the completion of secondary wall formation. 
In addition, positional information might affect the timing of differentiation and cell death. The death of ray parenchyma cells in broad-leaved trees 
has similar characteristics to that in conifers
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understanding of the molecular mechanisms of cell death 
in ray parenchyma cells.

Conclusions
Elucidating the mechanism of cell death in ray paren-
chyma cells is important for understanding the mech-
anism of heartwood formation, which is a unique 
phenomenon in trees with a large stem and long life. The 
process of cell death in long-lived ray parenchyma cells 
differs from that in short-lived xylem cells such as TEs, 
and is likely to differ in terms of the regulatory mecha-
nisms as well. In particular, the existence of an interval 
of several years to several decades between the comple-
tion of secondary wall formation and cell death must be 
an important feature in explaining the regulatory mecha-
nism of cell death in ray parenchyma cells (Fig. 6). As ray 
parenchyma cells are unique to trees, elucidating their 
cell death-regulatory mechanism might lead to a better 
understanding of the cell death mechanism unique to 
trees.

As discussed in this review, numerous cytological stud-
ies on cell death of ray parenchyma cells during heart-
wood formation have been conducted. It has been shown 
that morphological changes occur in the nuclei in sap-
wood, other organelles decrease in numbers from outer 
sapwood to intermediate wood, and the survival rates of 
ray parenchyma cells in the radial direction differs among 
species. Furthermore, their positional information might 
affect the timing of differentiation and the death of ray 
parenchyma cells (Fig. 6). However, the regulatory mech-
anism of cell death in ray parenchyma cells has not yet 
been elucidated. Further studies considering differences 
among various types of ray parenchyma cells are needed 
for understanding their mechanism of cell death in detail. 
In addition, in order to understand the mechanism of 
cell death in ray parenchyma cells, it is essential to elu-
cidate not only the morphological changes throughout 
the process, but also the molecular mechanisms, such as 
changes in the expression patterns of cell death-related 
genes and their products. We believe that further cellu-
lar and molecular biological studies combining analysis 
of intact ray parenchyma cells with cell-death-induction 
model experiments will provide new insights into the 
mechanism of heartwood formation, which remains 
largely unknown. In particular, a better understanding 
of the molecular mechanisms will provide important 
evidence for the identification of cell death triggers, as 
it will help determine when and where cell death begins. 
Furthermore, a detailed molecular mechanism will allow 
a clear discussion of the relationship between cell death 
and the biosynthesis of heartwood substances.
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