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Abstract Compression wood is formed by the living tree to 
compensate for external loads. It creates wood fibers with 
properties undesirable in sawn products. Automatic detec- 
tion of compression wood can lead to production advan- 
tages. A wood surface was scanned with a spectrometer, 
and compression wood was detected by analyzing the spec- 
tral composition of light reflected from the wood surface 
within the visible spectrum. Linear prediction models for 
compression wood in Norway spruce (Picea abies) were 
produced using multivariate analysis and regression meth- 
ods. The resulting prediction coefficients were implemented 
in a scanning system using the MAPP2200 smart image 
sensor combined with an imaging spectrograph. This scan- 
ning system is capable of making a pixelwise classification of 
a wood surface in real time. Classification of one spruce 
plank was compared with analysis by scanning electron mi- 
croscopy, showing that the automatic classification was cor- 
rect in 11 of 14 cases. 
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Introduction 

When a tree is exposed to abnormal loads during growth 
(e.g., a leaning tree), it starts to form reaction wood to 
compensate for the load. In softwood species, reaction 
wood is formed on the side of the stem exposed to compres- 
sive loads; hence the name compression wood. This is a 
common defect in Norway spruce (Picea abies), which is the 
largest commercial species in Sweden. This investigation is 
limited to this species. 
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Compression wood has a fiber structure that differs from 
that of normal wood. This affects the shrinking and swelling 
properties as moisture content changes, which is the cause 
of many problems involving compression wood. A review of 
what is known about compression wood can be found in 
Timell. 1 

Lumber containing compression wood tends to deviate 
from the intended shape after sawing and drying owing to 
the special fiber properties. Deformed wood may entail 
major handling problems that often lead to disturbances of 
production. These problems can be reduced by rejecting 
lumber that contains a large amount of compression wood 
at an early stage of the production line. An optical system 
with the capability to detect compression wood on wood 
surfaces could be used to reject the right pieces. 

Compression wood has a chemical composition differing 
from that of normal wood. In particular, the lignin content 
is higher. Lignin has a characteristic absorption of light, 
especially high absorption of ultraviolet lightJ The absorp- 
tion of light in lignin from spruce has been analyzed by 
Norrstr6m and Teder. 2 Using spectrophotometric methods, 
they showed that the spectral absorption consists of 13 ab- 
sorption bands in the ultraviolet and visible spectra. These 
differences in light absorption can be used for automatic 
detection of compression wood by spectral analysis. 

Spectral analysis produces an enormous amount of data. 
For real-time application it is essential to process the data 
close to the sensor to reduce the amount of data at an early 
stage. A smart sensor with built-in image processing elec- 
tronics combined with an imaging spectrograph (spectro- 
graphic array with spatial information) makes up a scanning 
system that in real time is capable of making a pixelwise 
classification of the wood surface. The use of the prism 
grating prism (PGP) imaging spectrograph (Specim, Fin- 
land) combined with the MAPP2200 smart image sensor 
(Integrated Vision Products, Sweden) as a real-time classi- 
fication system was presented by Astrand et al. 3 

The system must be trained for the task. Multivariate 
image analysis methods were used to make linear models 
for different types of wood to distinguish compression wood 
from other normally occurring types of wood by its spectral 



characteristics. The linear models were implemented in the 
MAPP camera, which then was capable of making classifi- 
cations in real time. 

An evaluation plank was scanned, and the resulting clas- 
sified image was compared to a human classification of the 
same surface. A number of samples were collected from the 
evaluation plank (primarily from areas with uncertain clas- 
sification by humans or machine) and analyzed with scan- 
ning electron microscopy (SEM), which showed that the 
automatic classification was correct in most cases. The aim 
of this work was to develop prediction coefficients, based on 
spectral analysis of the wood surface, that are able to distin- 
guish compression wood from normal wood in Norway 
spruce. 

Materials and methods 

All experimental work was done using dried and condi- 
tioned wood of Norway spruce (Picea abies) to avoid prob- 
lems associated with keeping the wood surfaces in the same 
condition throughout the investigation. The scanning sys- 
tem described here is able to make classifications in real 
time, but it requires that the system has been trained to 
solve the problem. Figure 1 shows how the different stages 
of the training cycle are connected and how the same scan- 
ning system later is used for real-time classification. 

Training set 

A training set was put together that included different 
grades of compression wood as well as normal wood. 
The selected pieces of wood were considered to be good 
representatives of the entire material available for this 
investigation. 

The training set consisted of eight wood pieces glued 
together, five of which contained more or less compression 
wood and three normal earlywood and latewood (Fig. 2). 
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The pieces were oriented with both radial and tangential 
cross sections toward the surface, and the complete training 
set was sanded, forming a level training surface. 

To verify which areas contain compression wood and 
which contain normal wood, samples from all eight parts 
were studied with SEM. Fiber properties such as circular 
cross section, thick cell walls, helical cavities, and intercellu- 
lar spaces are typical for compression w o o d  1 and easy to 
establish with SEM. 

Experimental setup 

The PGP imaging spectrograph is arranged with the MAPP 
sensor as shown in Fig. 3. The PGP diverges light from a 
narrow line to a square sensor matrix, so very high intensity 
is needed on the line. For this reason a Solar 1000 sulfur 
plasma lamp 4 was used. 

This electrodeless lamp uses microwave energy to heat 
sulfur, which emits light with a spectral distribution close to .  
that of the sun and a high output that allows an intensity of 
5000001ux on the scene. Compared to a halogen lamp the 
sulfur plasma lamp emits little infrared radiation (heat). 
Radiation in the blue and near-ultraviolet region is also low, 
which is a disadvantage for this application because it nar- 
rows the effective spectral range. 

The method of spectral analysis of the light reflected 
from the wood surface presupposes that the light pen- 
etrates the wood specimen and is colored by its light- 
absorbing characteristics. It is important to avoid specular 
reflectance from the wood surface. For this reason the 
MAPP-PGP system was arranged perpendicular to the 
wood surface and the illumination at an angle of 45 degrees 
(Fig. 4). 

Multivariate modeling of images 

Prediction coefficients for the MAPP-PGP system must be 
generated offline using a training procedure. The linear 
models for classification of compression wood were made 

Fig. 1. Training cycle and real- 
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Fig. 2. Gray-scale image of the 
training set consisting of eight 
pieces of wood (Picea abies). 
Pieces A-E contain compression 
wood; F-H contain only normal 
earlywood and latewood 
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Fig. 3. Functional design of the 
imaging spectrometer. PGP, 
prism grating prism 
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using multivariate analysis tools, primarily multivariate im- 
age analysis (MIA) 5 and multivariate image projections to 
latent structures (MIPLS) 6 implemented in the public do- 
main NIH Image program (developed at the U.S. National 
Institutes of Health and available on the Internet at http:// 
rsb.info.nih.gov/nih-image/). 

Principal component analysis (PCA) is a method used 
for the analysis or compression of multivariate data by find- 
ing the dominating directions of the dataset in a multidi- 
mensional space. MIA is PCA applied to images. The result 
of MIA can be displayed as images, which makes interpre- 
tation of the result easier. 

Partial least-squares regression, or projections to latent 
structures (PLS), is a method of iterative fitting of bilinear 
models in several blocks of variables and can make linear 
regression models for many classes simultaneously. MIPLS 
uses the kernel algorithm 7 for PLS, which allows many ob- 
jects (pixels in the image) to be modeled toward several 
classes in a fast and memory-saving way. The result of 
MIPLS can be displayed as prediction images (prediction 
coefficients applied on the data set). 

Generating the prediction coefficients 

To generate the prediction coefficients needed for a real- 
time classification, the well-defined surface of the training 
set was scanned with the PGP-MAPP image spectrometer. 
Using the MAPP sensor as an ordinary camera results in 
256 images of the same surface covering different spectral 
bands within the visible spectrum, each image with a spatial 
size of 256 × 64 pixels and an 8-bit gray scale. These images 
covered the entire training set, which means that the spatial 
resolutions were 0.45 mm/pixel crossboard and 2.5 mm/pixel 
in the grain direction. The images all represent different 
wavelength bands ranging from about 400 to 710nm, giving 
a theoretical spectral resolution of 1.2nm (Fig. 5). The 
image stack was then used as input data for the modeling. 
The prediction coefficients were generated by multivariate 
analysis primarily using MIA and MIPLS implemented in 
the image processing software NIH Image. 

The entire data set was first analyzed with MIA to iden- 
tify separable features and extract areas with a similar spec- 
tral pattern, which are considered good representatives of 
each class. By using score scatterplots to distinguish differ- 
ent features, good representatives for the training classes 
were obtained. In the next step the class representatives 
were input as a key with the original data and modeled by 
MIPLS. The resulting coefficients from MIPLS were then 
used as prediction coefficients in the PGP-MAPP system. 

To give an instant appraisal of the prediction ability of 
the model, the prediction coefficients were applied on the 
spectral training data set, resulting in theoretical prediction 
images of the training surface (Fig. 6). These prediction 
images also indicated how many principal components (in- 
fluential directions in a multivariate space) were needed to 
solve the problem. For a complex problem, more principal 
components are needed. 

To distinguish compression wood from normal wood 
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(noncompression wood), the training set was divided into 
four classes: compression wood, latewood, earlywood, and 
dark defects. Compression wood was wood cells with char- 
acteristic fiber properties (verified by SEM analysis), late- 
wood was the darker part of the annual rings, earlywood the 
lighter parts of the annual rings, and dark defects the back- 
ground or black knots with low reflection of light. The latter 
three formed the class "noncompression wood" but 
could not be modeled in one class because of their spectral 
differences. 

The MAPP readout logic is restricted ~ such that every 
sensor row (spectral band) can be used for only one class. 
Consequently, if many types of wood are to be classified 
simultaneously, the sensor rows must be distributed among 
all classes. In this investigation we made linear models of 
four classes, so the sensor rows were distributed into groups 
with every fourth row in each class. For example compres- 
sion wood uses rows 0, 4, 8 . . . . .  252, and latewood uses 
rows 1, 5, 9 . . . . .  253. The prediction coefficients (Fig. 5) 
generated by this training procedure were then imple- 
mented in the system by controlling the integration time in 
the MAPP sensor. 

Real-time classification 

The MAPP2200 smart image sensor is well suited for this 
application because of the unique possibilities of controlling 
the integration time individually for each sensor row and 
making an analogue columnwise summation of the sensor 
rows, which means considerable and fast reduction of data] 

Each row on the sensor corresponds to one spectral 
band. The integration time for each row was set propor- 
tional to the prediction coefficient corresponding to that 
spectral band. 

As the data were read they were temporarily stored in an 
analogue register. The data rows were summed by reading 
data from several rows without resetting the analogue reg- 
ister. This columnwise summation of the charges in all in- 
cluded rows reduced the data to a single prediction row per 
class before the A/D conversion. Although it is possible to 
calculate negative prediction coefficients, it is not possible 
to implement them. Therefore, positive and negative sums 
were calculated 8 (both with positive integration time). The 
negative sum was later subtracted from the positive sum, 
making the class predictions. 

During scanning, the prediction values for all classes 
were calculated one line at the time using the built-in image- 
processing electronics of the MAPP sensor. The data were 
then sent to a host computer where the prediction values for 
all classes were mutually compared and the classification 
was done. Each pixel was allotted to the class with the 
highest prediction value in that point, resulting in a classi- 
fied image of the scanned surface. The level of each class 
prediction could be adjusted with an offset to set the classes 
to an appropriate level relative to each other. Because the 
image was processed line by line during the scanning, the 
classified image could be displayed within a split second 
after the last line was read. 
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Fig. 5. Prediction coef- 
ficients modeled with 
multivariate image pro- 
jections to latent struc- 
tures (MIPLS). Abscissa: 
sensor row number ,  
where rows 0 and 255 cor- 
respond to wavelengths 
of about 400 and 710rim, 
respectively. Ordinate: 
percentage of m a x i m u m  
integration time 
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System evaluat ion 

To evaluate  the per formance  of the system, a p lank of Picea 
abies was scanned and classified. The plank had a cross 
section of 125 × 50mm 2 and a length of about  4m, and it 
was scanned with a speed of 0.3 m/s at a resolut ion of 2 ram/ 
pixel in the feeding direction. The classification result  was 
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presented  as a pseudocolored  image where the colors repre-  
sent different  classes. This classified image was compared  to 
the human  judgment  of the same surface but  comparing 
only the presence or absence of compression wood. F rom 
the areas on the plank where  the result  f rom the automat ic  
classification seemed to be incorrect  or doubtful ,  samples 
were obta ined  and analyzed with SEM. 

Fig. 6. Prediction images of the training set modeled with MIPLS. All 
images show the same surface with different prediction coefficients 
applied. 1, compression wood; 2, latewood; 3, earlywood; 4, dark de- 
fects. Gray-scale level indicates the probability of class possession; dark 
indicates high probability, light indicates low probability 

Results 

Training the system 

Analyzing the training set with SEM verified that  five of the 
eight pieces contained compression wood,  most ly of ra ther  
severe grade in the la tewood par t  of each annual  ring, but  in 
all cases together  with a varying amount  of normal  early- 
wood. Three  pieces contained only normal  la tewood and 
ear lywood (Fig. 2). 

The image stack of the training set was mode led  by mul- 
t ivariate analysis, which genera ted  four sets of predic t ion 
coefficients (Fig. 5). The best  models  were achieved with 
four principal  components .  Theore t ica l  predic t ion images 
(Fig. 6) were genera ted  at the same stage, giving a quick 
appraisal  of the predic t ion  abili ty of the model  before  the 
predic t ion  coefficients were implemented  in the scanning 
system. 

Evaluat ion of real- t ime classification 

The result f rom real- t ime classification of a p lank (Fig. 7) 
was compared  to a manual  judgment  of the same surface 
with respect  to the presence of compress ion wood.  Samples 
from the 14 selected areas on the plank were analyzed with 
SEM, which showed that  the classification result  could be 
considered correct  in 11 cases and incorrect  in three cases 
(Table 1). Scanning the plank in real  t ime was done with a 

Table 1. Judgment of the automatic classification compared to SEM analysis of the wood surface 

Sample Automatic classification SEM analysis Judgment 

7 
8 
9 

l0 
11 

12 
13 
14 

Thin streak of compression wood 
Scattered pixels of compression wood 

Scattered pixels of compression wood 

Definitely compression wood 
Compression wood 

Compression wood 

Definitely compression wood 
Compression wood 
Definitely compression wood 
Compression wood 
No indication of compression wood 

Compression wood 
Scattered pixels of compression wood 
Compression wood 

Clear signs of compression wood in a streak of the annual ring Correct 
Compression wood cells of less pronounced type in the middle Correct 

of the annual ring 
Compression wood cells of less pronounced type are present Correct 

in some areas. 
Clear compression wood Correct 
No signs of compression wood at the scanned surface, but Incorrect 

further away in the annual ring 
Clear signs of compression wood, but not in the entire annual Correct 

ring 
Clear compression wood Correct 
Compression wood of varying grade in parts of the annual ring Correct 
All signs of compression wood Correct 
Compression wood is present in the lower side of the branch Correct 
Compression wood cells are present together with large regions Incorrect 

of normal cells 
Clear compression wood Correct 
Compression wood cells of less pronounced types are present Correct 
No signs of compression wood Incorrect 
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sampling frequency of 150 lines per second with instant line- 
by-line classification. 

Fig. 7. Gray-scale images compared with compression wood classified 
images of the evaluation plank, pithwood, and sapwood side. Numbers 
denote samples analyzed with SEM. Black regions are compression 
wood in the classified images 

Discussion 

The best classification results were obtained with four 
principal components. If five or more principal com- 
ponents were used, the classification became worse, most 
likely due to overfitting (the noise in the data set was 
modeled). 

Analyses of the samples with SEM show that the occur- 
rence and grade of compression wood can vary considerably 
within each annual ring. That is why the manual judgment 
of the classification result is sometimes difficult. Generally, 
the classification seemed to be correct on areas with pro- 
nounced compression wood. Where the classification was 
uncertain, with scattered pixels of compression wood, 
analysis showed that these areas often contained unevenly 
occurring or a less pronounced form of compression 
wood. 

When the classification was false, it was either on the 
edges of the plank where the compression wood class was 
too weak, or in the center of the plank where the class was 
too strong, which caused normal latewood to be classified as 
compression wood. This problem was probably due to un- 
evenly distributed light on the surface (stronger light in the 
center of the plank). The best way to eliminate the problem 
is to change the setup of the lighting, but it is difficult to 
distribute light from a high-intensity point source evenly on 
a line. 

All of the optical components have spectral characteris- 
tics that reduce the level of radiation in the blue/ultraviolet 
region, and many components limit the radiation in the red/ 
near-infrared region. This narrows the spectral range, which 
is a severe limitation for the system, especially the lack of 
signal in the blue/ultraviolet region which is useful for 
detecting compression wood. 

In this investigation only dried and conditioned wood 
was used to make sure the wood surfaces were kept in 
the same condition throughout the study, but it is of inter- 
est for an industrial application to make this classifi- 
cation on green lumber. Some kind of penetrating radiation, 
such as X-rays or microwaves, to obtain some estimation 
of the compression wood volume inside the wood could 
also be useful for predicting the form stability after 
drying. 

The MAPP2200 sensor is controlled by a host computer 
that feeds the sensor with instructions. The instructions can- 
not overlap in time. Using the system for real-time classifi- 
cation almost certainly results in conflicts when finding time 
slots to execute readouts, sensor resets, and A/D conver- 
sions. 8 Running the software under Windows 95 probably 
adds distortion to the timing. If the instruction timing can be 
improved, the classification result is expected to improve as 
well. 
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