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Abstrac t  A new mechanical model was developed to intro- 
duce the maturation process of wood cells theoretically. 
Using mechanical and physical properties of the two com- 
ponents of the cell wall, namely, a matrix reinforced by 
oriented cellulose microfibrils, it is possible to predict the 
relation between the anisotropic released strains and the 
microfibril angle. The model used in this study is based on 
the unified hypothesis combining the compressive stress 
generated in the cell wall matrix and the tensile stress 
originating in the cellulose microfibril as a framework. It is 
simple compared to the previously derived multilayered 
model, but it does not strictly fulfill all conditions of static 
equilibrium. Nevertheless, an excellent fit with observations 
can be obtained through varying a limited number of 
parameters. 

K e y  words  Growth stresses • Wood cell maturation • Cell 
wall • Mechanical model - Fiber composites 

material, these deformations are no longer free to occur, 
and maturation stresses appear in the newly formed xylem. 
As a consequence of the mechanical equilibrium, an incre- 
ment of internal stresses is induced in the inner part of the 
stem. Therefore, by a cumulative process, year after year, 
internal residual stresses develop inside the tree trunk. 1-4 

In this paper, we present a new mechanical model de- 
scribing the tendency of the wood cell to deform during the 
maturation process on the basis of the displacement 
method. The "unified hypothesis ''5-9 has been used to de- 
velop the model. This hypothesis takes into account both 
the "lignin swelling hypothesis" proposed by Boyd ~° and the 
"cellulose tension hypothesis" suggested by Bamber) ~ The 
mechanical models proposed in this study are then used to 
describe the relations between released growth strains and 
microfibril angles (MFAs) in the $2 layers, shown by 
Okuyama et al. and Yamamoto et al) s 

Introduction 

During the maturation process living cells in the differenti- 
ating xylem underneath the cambium are subject to biome- 
chanical transformations. These transformations result in a 
tendency to alter cell dimensions as the cells mature. As 
new cells are "glued" onto the older, already existing wood 
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Mechanical modeling of the maturation process based 
on the displacement method 

Virtual unique cell model 

According to Yamamoto's model, a theoretical model 
of maturing wood, 9 the dimensional changes of new wood 
tissue during maturation can be more or less represented by 
the behavior of a virtual unique cell originally proposed by 
Barber. 12 In Barber's original model, the cell is reduced to 
the $2 layer and can be considered as a long thick-walled 
circular cylinder of composite fiber-reinforced material that 
consists of the reinforcing framework of the cellulose 
microfibril (CMF) and the matrix substance of the lignin- 
hemicellulose compound. According to the interpretation 
of the reinforced-matrix hypothesis 9 (H. Yamamoto, un- 
published), the CMF framework exists as a bundle and the 
lignin-hemicellulose matrix exists as a skeleton in the cell 
wall; therefore, it is thought that both the CMF bundle and 
the matrix skeleton occupy the same domain in the macro- 
scopic limit. 
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Fig. 1. Virtual unique cell model: a long, thick-walled circular cylinder 
of composite fiber-reinforced material, a, b Cell with the microfibril 
winding in one direction (Z-helix). c Virtual unique cell model with two 
sets of oriented microfibrils winding in opposite directions around the 
cell 

As suggested by Barber, ~2 the reinforcement in the 
model is obtained by two sets of oriented microfibrils 
winding in opposite directions around the cell (Fig. 1) with 
an angle of q) (i.e., the microfibril angle). Therefore one 
unique cell can be treated instead of a tissue of many wood 
cells. 

Constitutive equations of the cell wall material 

Mechanical presentation o f  the cell model  

During the maturation process each one of the two phases 
of the material - the CMF bundle and the lignin-hemicellu- 
lose matrix - shrinks or swells. Because of the perfect bond- 
ing between the microfibrils and the matrix, internal 
stresses are generated; and shrinkage or swelling of each 
component  is no longer free to occur. If a Cell was able to 
mature alone, having no interactions with the inner tissue of 
the trunk, the observable dimensional change would be 
characterized by the strain tensor % which is a tensorial 
unknown of the mathematical  problem. 

The differences between the observable strains e~j and 
the free maturation swelling of the matrix skeleton c~pro- 
duce the mechanical strains e~} ~ = e~j - c~ developing in the 
matrix skeleton and supposed to be elastic. The free matu- 
ration swelling induced in the matrix skeleton a~7 comes 
from the mechanism of the lignin swelling hypothesis} ° Let 
C~I~ be the elastic stiffness tensor of the matrix skeleton; 
then, in the same way as for the thermal stress phenom- 
enon, the associated elastic stresses become 

: < )  

In the same way, the differences between the observable 
strains e~j and the free maturation swelling (or shrinkage) of 
each one of the two sets of microfibril coatings, c{(+~)~j and 
c{(-¢)~j, and the associated stresses can be related by 

a i ( + ~ )  = ~i(+~)(~ _ 01(+~)] i ( ~ )  j, 4 : 
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The average stress tensor o~ in the laminated material of 
the two sets of microfibril coatings (i.e., the CMF bundle) 
can be given by: 

2 k ~j~t + 

Therefore, we obtain: 

= Cijkl6kt (2)  

As mentioned above, both the CMF bundle and the 
matrix skeleton occupy the same domain in the macro- 
scopic limit. Then, an approximation of the average stress 
tensor e~j in the biphasic medium (i.e., the cell wall) is given 
by 

o,~ = o ;  + ~,~ (3) 

Elastic properties o f  cell wall components 

Matrix skeleton The lignin-hemicellulose matrix as a 
skeleton is assumed to be isotropic. The components of the 
stiffness tensor can then be expressed using Lame's  param- 
eters 2 and #, which are directly connected to Young's  
modulus E " and Poisson's ratio vC 

The elastic constants C,~t of the behavior law (Eq. 1) 
are unchanged by rotation of the axes of reference; then 
nonzero terms are 

Cr'}rr = C~ooo = C ' ~  = Z + 2~, 

< %  = cL~ = co ; , ,  = CDzz : c L r  = < % =  ;~, 
m 

Cozoz = C  '~' - , .  = ..... -C~oro 

with Lame's  parameters 

(4) 

!dine m 
2 = and 

E m 

CMF bundle The elastic properties of the CMF bundle C~ik~, 
expressed along the main axes of the cell wall cylinder (r, 0, 
z), are more difficult to establish. The general form of elas- 
tic compliances (S,~t), expressed along the main axes of each 
of the two sets of microfibril coatings, are written in Eq. (5) 
as functions of the elastic constants, assuming orthotropy. 
Then nonzero terms are 

s?Z = UE(, s~2= 1/E2 r, sL3= UE;, 

s,,22 ~ ---v; /ES,  sC;3=-v(3/E~ 

$2f2"11 = - v f  / E f l ,  sf733 = - v f 3 / E  f , (5) 

sf3;11 = - v f l / E f l  f* , s33~2= - ~ A / e j  

sly= UaD, sg;< 1/a;~, s(;,2: 1~cA 

It has been assumed that only normal efforts along mi- 
crofibrils and shear efforts between them can be transmitted 
through the microfibril coating. Therefore, only E~, G~23, and 
E{1 are taken as nonzero elastic parameters. Shear moduli 
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are arbitrarily estimated as functions of U3 (i.e., G{23 = C~3, = 
gE~, where g is a constant). When we provisionally suppose 
g = 0.5, Posisson's effects are not taken into account (i.e., 
V12 = "/)21 = V23 = V32 = V31 = 'V13 = 0 ) .  The stiffness tensor C~*l 
is obtained inverting the compliance tensor S~*l (Eq. 5). 
Under such restrictive but realistic conditions, the nonzero 
terms of C~*t are 

C~3'33 = ES, Cf;23 = g" ES, C[~3, = g" E;3 (6) 

The components of the stiffness tensor of one of the 
microfibril's coating C~+~)q~ are first expressed along the 
main axes of the cell. They are deduced from CY*q~ as a 
result of the rotation of angle qo around axis 1, correspond- 
ing to the MFA. 

The elastic stiffness C~ of the CMF bundle, expressed 
along the main axes of cell, is calculated from super- 
positioning the two sets of microfibril coatings (which elimi- 
nates the terms with sin q) at an odd power). 

a~{ (+~) = a£ (-~) = fi~, ,~oo"f(+~) = af(oo ~) 

=/31 cos2 cfl + f13 sin2 q) 

a[} +¢) = azzJ(-~) = 13~sin2cfi + 133cos2cfi (11) 

a{} +~) = -a[} -~) = 2(133 - 131) c o s  q) s i n  q) 

d(+~) ~'~(-~) = a~ (+~) - a~  (~) 0 zr ~ --~zr ~ 

Then, the term 6~ in Eq. (2) is deduced using the formula 

4; = l[rv(+~).~(+~) ,~(-~).f(-~)] (12) ~p~qki ~t  + "~qkl ~kz ) 

and we obtain 

(13) 
(~frr =(~fOz = (~fr = (}; = 0 

The term d~ in Eq. (2) does not depend on fi~. 

t'f(+~) r f (  ~) Cq~, - ~qk, + ~ q k ,  (7) 
2 2 

An important consequence is that the axes of cylindrical 
coordinates are the main axes of the CMF bundle stiffness 
tensor (Eq. 8), whose nonzero terms are 

f f f f C f , C;ro, f C ..... Coooo, Czgzz, Cozo . . . . . .  Crroo, (8) 
f f f f f 

Coorr , Coozz , Czzoo , C ..... Cr ... .  

The general expressions of C~t are given in Appendix C, as 
functions of the elastic components C~*~, g, and q~. 

Free dimensional changes o f  cell wall components due to 
maturation 

According to various authors, 4'7-9 the free maturation 
swelling of the matrix as a skeleton during the maturation 
process of the cell is considered an isotropic swelling 
strain, characterized by the parameter a (>0), so the form 
of the swelling ami] ought to be a diagonal tensor: 

diag(<)  = (9) 

The free maturation swelling of each mierofibril coating, 
assumed to be shrinkage (<0) along the microfibril direc- 
tion, is characterized by a diagonal tensor, aI*q, when 
expressed with respect to the main axis of the microfibril 
coating. 

diag(a~*) = {t3i, ill, fiB} (10) 

In our particular case, the dimensional change along 
the longitudinal axis of the microfibril crystal (fi3) can be 
different from those in the transverse direction (fi~ =/32). 

The free maturation swelling of respective microfibril 
coating expressed along the main axes of the cell, a~ (+~) or 
cq~ (-~), are then obtained from @ through a rotation q0 
around axis 1. 

Classical interpretation of the mechanical problem 

Consequences o f  geometrical and material symmetries 

The cylindrical coordinates r, 0, z are used to express the 
various tensor components. Because of the geometry of the 
cell, the homogeneity of the material properties, and assum- 
ing a spatially uniform field of shrinkage (or swelling) all 
over the cell wall, this mechanical problem is independent 
of the coordinate 0, and all derivatives versus 0 are zero; 3 
/ 3 0 = 0. Coordinates r, 0, and z correspond to the main 
axes of material symmetry for both stiffness and maturation 
swelling tensors of the matrix (C~";t, %~) and the microfibril 
skeleton (~k~, 6[,). AS a result of the cylindrical symmetry on 
the field of displacements, radial displacement is only a 
function of r [U~(r)]. As the twist effect is restricted by 
assumption of the axisymmetrical deformation, the tan- 
gential displacement is zero [U0(r, 0, z) = 0]. As the cell 
remains a circular cylinder after maturation, the longitudi- 
nal displacement is a linear function of z [U~(z) = e~. z], 
where et is an unknown constant of the problem. 

In such conditions, the general expression of the strain 
components are given in Eq. (14). 

~rr(r~ O, Z ) -  f U r  ~oo(r~ O, Z ) -  Ur 
d r '  r '  

%(r, O, z) dUz 
_ _  - -  El ' 

dz 
yoz(r, O, z ) =  y~r(r, O, Z)= 7,.o(r, O, z )=  0 

(14) 

Introduction of Eqs. (1), (2), and (14) in Eq. (3) gives 
Eq. (15), which is the stress field in terms of displacements: 

dUr 
oq = & - - j r  + Bij - Cq + Dqe, (15) 

The details of the material tensors Aq, Bq, Cq, and Dq are 
given in Appendix B. In Eq. (15), the indices ij take only the 
values rr, 00, or zz because there are no shear stresses. 



Formulation o f  the mechanical conditions 

Generally speaking, oij must satisfy the equilibrium 
condition (Eq. 16). 

d°rr = O, d°zz - 0 (16) 
Orr - -  (~00 47 r dr dz 

Introduction of Eq. (15) into Eq. (16) gives a differential 
equation of Ur (Eq. 17). 

rA,, d2U~dr---- T 47 (Arr - Aoo + Br,) dUrdr - B°° U~r 

+(Dr~-Doe) '5~z+(Co6-Cr~)=O 
(17) 

We can obtain a unique solution of this equation under the 
boundary condition 

O"r(r) . . . .  = G,(r) . . . .  = 0 ( 1 8 )  

where R0 and R~ are the inner and outer radii of the 
cylinder, respectively. This means there is very small turgor 
pressure and no transverse restriction in the fiber. By apply- 
ing the solution of Eq. (17) to Eq. (15), we can determine 
the expressions of Orr , O00 , and Gz, although these stresses 
contain '51 as an unknown parameter. 

The maturation here is supposed to be free from the 
influence of the inner part of the trunk; therefore, no 
axial restriction is induced, and the average value of Ozz is 
taken as zero. Barber 12 and Yamamoto 9 (H. Yamamoto, 
unpublished) then applied the following condition (integral 
condition) (Eq. 19) to their micromechanical analyses on 
the behavior of an isolated wood fiber. 

R1 

I oz~dA = 2rt S a~zrdr = 0 (19) 
c ross - sec t ion  R 0 

As a consequence of the above condition, we can determine 
the expression of the unknown parameter '5l (= '5~). The 
components of strains G~ and '500, are deduced from Eq. (14) 
through the solution of Eq. (17) and e~. The strain of the 
transverse dimensional change of the wood fiber model e, is 
given as '5001~ R1. The expressions of e/ and '5, are given in 
Appendix A. 

New interpretation of the mechanical condition 

Consequence of the zero stress condition (local condition) 

Barber 12 and Yamamoto 9 (H. Yamamoto, unpublished) 
adopted the integral condition (Eq. 19) in their analysis. 
Equations (A1) and (A2) in Appendix A are based on the 
integral condition. However, in this model, the proposal is 
more restricting than the case of the integral condition. 
Directly from Eq. (15), we suppose 

( d U ~ +  BzzUr C z z 4  7 D~z'51)=O, for Vr °zz = Azz dr r 

(20) 
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This is a local condition, not an integral condition as adopted 
by Yamamoto 9 (H. Yamamoto, unpublished). The local con- 
dition sounds rather strange from the mechanical point of 
view. Strictly speaking, this condition is contrary to the 
equilibrium conditions of the stress field: It fulfills only a 
sufficient condition for Eq. (16) but not the necessary one. 
However, as described later, the local condition can explain 
the experimental relations between the MFA and the aniso- 
tropic maturation strain quite rationally. In that sense, we 
think that the local condition is a matter worthy of discussion 
for investigating the behavior of wood fiber cells during the 
maturation process. 

The general solution (Eq. 21) of the differential Eq. (20) 
gives the radial displacement 

U r cr -Bz~IA-'¢ + Czz - Dzze l = r, with U~ ='sIz (21) 
Azz + Bz~ 

where c is an integral constant. In this case, c and '5~ are 
unknown parameters. We can solve these unknown 
parameters under the boundary condition (Eq. 18), and we 
obtain 

Crr(Azz + Bzz ) -Czz(Ar,  ÷ Br,) 
'5/(: 6zz) = Orr(Azz 47 Bzz) Ozz(Ar r 47 Brr) , c = 0 

(22) 

The components of strains G, '5oo, are deduced from Eqs. (4) 
through (21) and (22): 

Czz - Dzz'51 _ 1 
"5rr = '500 - -  

Azz + Bzz Azz + Bzz 

C~,(Azz+ B z z ) -  Cz~(A,, + B,r)] 

× C~-  D~ Dr,(Azz+ Bzz) Dzz(A,r + B,,)) 

(23) 

These are equal to the strain of the transverse dimensional 
change of the wood fiber model, '5,. It must be noted that the 
solution obtained from the local condition (Eq. 20) does not 
depend on values of the inner R0 and outer R1 cell radius. 
This is a direct consequence of the hypothesis in Eq. (20) 
(i.e., the local condition). 

Assumption on the maturation swelling of the CMF 
bundle (averaged maturation swelling condition) 

Equation (12) gives the values of d£ in Eq. (2). We propose 
the following formula to calculate them, instead of Eq. 
(12): 

4~ f s = CijklCtkl (24) 

where 

ZT;_ _  ¢J'ij -f- beg 

2 2 (25) 

Then Eq. (2) can be expressed in the same form as for the 
matrix skeleton: 

f 
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The result is diagonal when expressed along the main axes 
of the cell: 

diag(c~i{ ) = {/31, fi~COS2q) + /33sin 2 9, /33COS2CP 

+ fi, sin 2 ~} 
(26) 

On the basis of  the new mechanical interpretation, that is, a 
combination of the local condition and the averaged matu- 
ration swelling condition, we calculated the behavior of the 
wood fiber model during the maturation process. 

Results and discussion 

Comparison to existing models 

The relations between ~ and e~, e, were calculated using the 
models proposed in this study. The results are displayed in 
Figs. 2 and 3. The values given by Yamamoto  9 were applied 
in the simulations as the parameters other than fi~,/33, and a. 
The volume ratio of the cellulose crystal and the matrix 
substance was supposed to be 40: 60. The most fitting values 
of/3,/3~, and ct were sought to predict the experimental 
tendency by the trial and error method. The description 
given by "the unified hypothesis" with a multilayered cell 
wall is shown in Fig. 4 and compared to the experimental 
results. 

Figure 3 shows the calculated result of the model  based 
on the integral condition, that is, Eq. (A1) and (A2). In this 
case, the parameters displayed in Table 1 were used, and p 

(=RJRo) = 1.5 was assumed for the calculation. This model 
can explain the dependence of the transverse growth strain 
on ~ when the value of g is assumed to be 0. However,  the 
calculated longitudinal growth strain, which is more impor- 
tant for practical purposes, deviates extraordinarily from 
the experimental one except in the region of M F A  smaller 
than 10 degrees. On the contrary, in the multilayered cell 
model reported by Yamamoto,  9 the calculated longitudinal 
growth strain is quantitatively consistent with the experi- 
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Fig. 3. Calculated released maturation strains (e~, e,) and microfibril 
angle (MFA) derived from the integral condition. The most fitting 
parameters are used (Table 1). The values of g are as follows: a, 0; b, 
0.2%; c, 0.5% 
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Fig. 2. Calculated released maturation strains (e~, e,) and microfibril 
angle (MFA) derived from the local condition. The most fitting param- 
eters are used (Table 1). Dots are experimental results of two sugi trees 

Fig. 4. Calculated released maturation strains (et, e,) and microfibril 
angle (MFA) derived from Yamamoto's multilayered model (unified 
hypothesis model). Parameters used for the calculation are displayed in 
Table 1 (isotropic shrinkage). Shaded zones are the experimental ten- 
dencies of two sugi trees 



Table 1. Micromechanical parameters of the matrix and microfibrils 

M i c r o f i b r i l  shrinkage E m v jn a E f f i l  /33 

(GPa) (%) (GPa) (%) (%) 

Isotropic shrinkage 
Test a 1.2 0.3 0.5 40 ~ 0.05 
Test b 1.2 0.3 0.5 40 ~ -0 .10 
Test c 1.2 0.3 0.5 40 ~ -0.15 
Test d 1.2 0.3 0.5 40 ~ -0 .20 

Best fit for Eqs. (A1) and (A2) 1.2 0.3 0.05 40 ~ -0 .10 
Best fit for Eqs. (22) and (23) 1.2 0.3 0.05 40 +0.9 -0 .10 

a/~ 1 has no effect on the behavior of the cell model 
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mental one over a wide range of MFA, although, the 
multilayered model tends to overestimate the value of the 06 
transverse growth strain. 

In the case of the simulation made using Eqs. (22) and 0.5 
(23), based on the new mechanical interpretation, not only 
the longitudinal growth strain but also the transverse one ~" o4 
can be predicted quantitatively as displayed in Fig. 2 by ~.L 
using the parameters shown in Table 1. In this simulation, .~ o.3 
we provisionally assumed g = 0.5. Also in this simulation +~ 
the critical MFA where the longitudinal growth strain ~ 0.2 
switches from contraction to expansion is 20-30 degrees, 
which is consistent with the experimental MFA. Thus, it has NN 0.1 
not been necessary to use a multilayered cell wall (e.g., the 
model reported by Yamamoto et al. 8'9) to obtain the critical ~ 0 
MFA. 

As we have seen, we can quantitatively predict the rela- 
-0 .1  

tion between anisotropic growth strain and microfibril angle 
by assuming the new mechanical interpretation. Therefore, 

-0.2 
it is believed there is some meaning in the new mechanical 
interpretation from the viewpoint of cell wall mechanics. 

Significance of the parameter/31 

The model based on the new mechanical interpretation is 
advantageous for explaining the relations between anisotro- 
pic growth strains and the MFA. This advantage is derived 
not only from assuming the local condition and the aver- 
aged maturation swelling condition but also from introduc- 
ing transverse maturation swelling of the cellulose 
microfibril skeleton ill. 

Figure 5 represents the effects of/31 on the generation of 
the anisotropic growth strains of the model based on the 
new mechanical interpretation. As the value of fll becomes 
larger, the curves of ez and e, tend to shift upward and 
downward, respectively, from a to d in Fig. 5. In the case of 
fl~ = 0 (a in Fig. 5) it is almost impossible to explain the 
longitudinal compressive stress generation in the compres- 
sion wood region with a large MFA. In such cases it is 
difficult to simulate the experimental tendency by searching 
fitting values offi3 and a. Therefore, it is thought that intro- 
duction of the parameter  fll is indispensable for elucidating 
the origin of the anisotropic growth stress. 

It is natural to think that/31 is concerned with swelling of 
the matrix regions inside the aggregation of the cellulose 
micro fibrils caused by deposition of the matrix substance. 

d c 

- -  6" i 

m O 

× ° ° 

b" 

I I I I d\NI ~c.; 
0 l0 20 30 40 50 

MFA (deg.) 

Fig. 5. Calculated released maturation strains (e~, e,) and microfibril 
angle (MFA) derived from the local condition, in the cases supposing 
various values of fi~. The most f t t ing parameters other  than fll are 
displayed in Table 1 (best fit for Eqs. 22 and 23). Values of ill: a, 0%; b, 
0.8%; c, 1.6%; d, 2.4% 

Then, it can be presumed that not only parameter a but also 
/31 are induced by maturation of the matrix substance. I° On 
the other hand, it is thought that/33 is induced in the cellu- 
lose microfibril crystal by the mechanism of the cellulose 
tension hypothesis. 11 From the micromechanical point of 
view, the origin of/33 is independent of a and/31 generation. 

Moreover, it is thought that the existence of a nonzero 
shear stiffness in each microfibril coating is indispensable 
for improving the previous models (e.g., done by 
Yamamoto et al. 7-9 Most previous models were developed 
on the basis of Barber's model, 12 in which the microfibril 
framework has no shear stiffness. According to Barber's 
conclusion "the shear forces across the plane are opposite in 
the two sets and canceled." On the contrary, the existence 
of a nonzero shear stiffness in each microfibril coating (i.e., 
cf~23 = Cf~31 = gES3) gives nonzero shear moduli C£.zr and Crr0r0 
to the stiffness tensor of the CMF bundle in the new model, 
as shown in Appendix C. 
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Conclusion 

The new mechanical  model ,  presented  here,  differs from 
previous models  on three part icular  points: (1) The elastic 
behavior  of the cellulose microfibrils bundle  takes into ac- 
count the possibili ty of t ransmiting shear efforts be tween  
fibers; then the elastic shear  modulus  is nonzero.  (2) The 
most  fitting condit ions governing longitudinal  efforts along 
the cell are the local condit ion and the averaged matura t ion  
swelling condition. The averaged values of the stress com- 
ponent  G~ is zero on every e lementary  volume,  instead of 
an integral  condit ion on the overal l  cross section of the cell 
in o ther  models.  (3) The  new model  taken  into account the 
anisotropy of the elastic proper t ies  and the dimensional  
changes for both  the matr ix  skeleton and the microfibril  
bundle.  

The  model  based on the new mechanical  in terpre ta t ion  
has three main advantages:  (1) The predic ted  values of the 
longitudinal  and transverse re leased strains are ob ta ined  
by the explicit  functions of the mater ia l  proper t ies  of each 
component  of the cell wall  and the microfibril  orientat ion.  
These functions are independent  of the inner  and outer  
radius of the cell cross section. (2) Unde r  Yamamoto ' s  ma- 
terial  parameters ,  8'9 the critical M F A  is obta ined at 20-30 
degrees with a simple model.  It is no longer necessary to 
introduce a mul t i layered model  to get this result. (3) To 
obtain a perfect  fit be tween  exper imenta l  results and pre- 
dicted values, it is necessary to consider  an anisotropic  di- 
mensional  change of the microfibrils. The new model  
suggests that  the most impor tant  d imensional  changes are 
located in the micro fibril bundle,  which shrinks along the 
fibrils and swells transversally.  The  swelling of the matr ix  
skeleton is of less importance.  The new interpreta t ion,  
presented  here,  may sound strange f rom a mechanical  view- 
point,  but  it offers several  impor tan t  speculat ions to experi-  
mental  research on the mechanism of the unified 
hypothesis.  7-9 
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Appendix A: strains of the dimensional changes of the 
wood fiber model deduced by the integral condition 
(Eq. 19) 

The longitudinal  strain, es, becomes 

[ a n d / 4 a r e  composed  of various variables:  
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A~ + B~ 1 2 
+ 2~X]Z-~oo)(C, , -Coo)-  -~Cz~}( p - 1) 
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World Congress, Yugoslavia, pp 249--260 
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k =  B~oo/A.., N~= 
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and 

A~ - Boo 

M =  Crr(B°° -t- Brr) - Coo(Arr + Brr) 

A,.,. - Boo 

Transverse deformation, e, becomes 

8t ~ 800 r=RI = rU_ r=R1 

= N l . p k - l + N 2 . p - k  1+ Art -__'~ooo Szz 

+ ( p z . p k  1+ P2"P-k-I + A~rC"r-Cee)Boo (A2) 

Appendix C: elastic properties of the microfibril 
skeleton 

Where c = cosq) and s = sinqv 

cL = c ~ i ,  = 0 

C~oooo = Cf;=c 4 + 2(C;3 + 2C3f]32)cZs 2 + C[333s 4 

= E f S 2 ( S  2 + 4g.c 2) 

S 2(C2~'33 + 2C;2)c2s 2 + f'f" 4 C .... = CS~33 c4 + ~2222 S 

= E[c2(c 2 + 4g. s 2) 

J* 2C2~33 )c2 s 2 <o o' = c;4c  - + + 

Cfzrz = C;3"13 c2 -}- C[;'12 $2 = g .  El3 c2 , 

Appendix B: material tensors 

Aq = Cqr,m + COt, Bi j = Cqeom + CqooY , 

C u = Cu~a~,~ + 6f,,j D,j = Cu~ ~ + Cij(z 

The expressions of C'~¢d and C~kz are given in Eqs. (4) and 
(8) (or Appendix C). 

C ; r  0 

C£o 0 = 

f 
Coozz ~- 

C f r  z zzr 

CFbc ~ + c ~ M  ,~ = g. E f  ~ ~ 

C[o~ i, 2 = C=lzc + Cf]~s 2 = 0 

I =C=33(c + s  4) Czzo 0 f* 4 

+ (Cf222 + Cf3;;~- 4CS£g;)c2s 2=  E[cZs2(1-  4g) 

Crfrrzz = cf£11 c2 -}- CS211 $2 = 0 


