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Abstract The internal bond strength (IB) of a commer-

cial particleboard put under various outdoor exposure

conditions were modeled using a multiple linear regression

(MLR) and an artificial neural network (ANN). The out-

door exposure data used in this study were collected from

the results of past outdoor exposure tests conducted at eight

locations across Japan from 2004 to 2011. The data from

five locations were used to develop the MLR model and the

ANN model for predicting the IB of particleboard under

outdoor exposure based on climate data including exposure

duration, annual mean temperature, annual sunshine dura-

tion, and annual precipitation. The performance of the

models was assessed by comparing predicted IB values

with measured ones for the remaining three locations. The

MLR model gave a high R2 of 0.87 and a low root mean

square error (RMSE) of 0.07 MPa, while the ANN model

gave an R2 of 0.93 and an RMSE of 0.05 MPa. Thus, both

models were demonstrated to be applicable to particle-

boards exposed at different locations in Japan. A statistical

test of the MLR model revealed that the IB was influenced

negatively by exposure duration, temperature, and precip-

itation. These influences were confirmed by the sensitivity

analysis of the ANN model, and the analysis also showed

an additional positive influence of sunshine duration on IB.

Keywords Internal bond strength � Particleboard �
Outdoor exposure � Artificial neural network � Multiple

linear regression

Introduction

Outdoor exposure test is one of the standard methods for

evaluating the durability of wood-based boards. As a test

specimen is exposed in a natural weathering environment

for a long-term period, the deterioration of the test speci-

men strongly depends on the climate conditions of the

exposure locations. Consequently, the results of the out-

door exposure tests conducted at specific locations are not

generally applicable to locations with different climate

conditions. This is a disadvantage of outdoor exposure test.

To overcome this problem, Sekino et al. [1] and Kojima

et al. [2, 3] extensively collected the outdoor exposure data

of commercial wood-based boards exposed at eight repre-

sentative locations across Japan, and quantified the dete-

rioration of wood-based boards at different locations. The

relationships between board deterioration and outdoor

exposure conditions were modeled by introducing a com-

bination of climate factors, called ‘‘weathering intensity

(WI)’’. The best combination of climate factors was

determined based on the coefficient of correlation from

simple linear regression analysis, and it was found that the

WI defined by the logarithm of
P
ðTemperature�

PrecipitationÞ was highly correlated to the deterioration of

mechanical properties, namely internal bond strength (IB),

modulus of rupture, and lateral nail resistance. Although

the WI data were well fitted by the regression analysis, it
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remains unclear whether the WI is applicable to predict the

deterioration of wood-based boards, because no validation

was performed with an independent set of data.

Furthermore, there are three questions regarding the data

analysis. Firstly, the WI is a combination of climate factors

involving mathematical transformation, so it is difficult to

examine the impact of individual climate factors on the

deterioration of wood-based boards. Secondly, simple lin-

ear regression uses one variable to explain patterns in the

data by looking for a relationship between two continuous

variables. If there is more than one possible explanatory

variable and an important third variable is not included, we

could miss significant relationships between the first two

variables, or even come to the wrong conclusion [4].

Instead, it would then be more efficient to include all the

information available in a multivariate analysis. Thirdly, a

group of parametric tests, including linear regression, t test

and analysis of variance (ANOVA), relies on the four

assumptions: independence, homogeneity of variance,

normality of error, and linearity [4]. If these assumptions

are contravened, the parameter estimates are no longer

valid and the statistical significance of WI cannot be

assessed. It is highly likely that one or more assumptions

were contravened by the simple linear regression between

the WI and the deterioration of mechanical properties.

Therefore, in this paper, we addressed these questions

using multiple linear regression (MLR), presenting how to

check the assumptions of MLR.

Contrastingly, an artificial neural network (ANN) is a

nonlinear computational model, capable of modeling

complex, undefined, and nonlinear relationships between

variables with better results than traditional statistical

regressions [5]. The background information on ANNs can

be found in the literatures [6, 7]. The characteristic feature

of ANNs is that they are not programmed; they are trained

from a series of examples without needing to know

beforehand the relations which may exist between the

variables involved in the process, by adjusting the weight

of the relations between the variables. In the field of wood

science, ANNs have been applied to predict mechanical

and physical properties of wood [8–10], fracture toughness

[11], thermal conductivity [12], hygroscopic equilibrium

moisture content [13], nonisothermal diffusion of moisture

[14], dielectric loss factor [15], and drying process of wood

[16–19]. Also in the field of wood-based composite mate-

rials, some mechanical and physical properties of wood-

based boards have been successfully predicted using ANNs

based on their physical properties [20–24] or based on

processing parameters which are to be optimized in a board

manufacturing process [25–28].

In this study, we focused on the IB of particleboard

subjected to outdoor exposure. An MLR and an ANN were

developed to predict the IB of particleboard during outdoor

exposure based on climate data collected at eight locations

in Japan. The ANN model and the MLR model were

developed with the data from five locations, and the per-

formance of the models was assessed for the remaining

three locations. In addition, techniques to check the

assumptions in MLR were presented, and the impact of

climate exposure on the IB under outdoor exposure was

examined by means of statistical analysis.

Materials and methods

Samples and outdoor exposure tests

Industry-manufactured phenol–formaldehyde resin-bonded

particleboards (hereafter call ‘‘board’’) were obtained for

the experiments. The boards were manufactured from

wood processing residues, and satisfied the waterproof

category of Type 18 and Type P boards under JIS A-5908

[29]. Type 18 boards satisfy 18 MPa in modulus of rupture,

and Type P indicates waterproof particleboard. The density

and thickness of the boards were 0.75 g/cm3 and 12.2 mm.

The industry-manufactured boards did not allow revealing

the information on the processing parameters, such as

particle size, hot pressing temperature, and time. Further

details are provided in the references [30, 31]. Thirty

specimens measuring 50 9 50 mm were prepared for

control, and the IB test was conducted according to JIS-

5908 [29]. The initial IB was 0.83 MPa on average with a

standard deviation of 0.09 MPa.

The outdoor exposure tests were conducted at eight

locations in Japan from February 2004 to March 2011.

Figure 1 and Table 1 show the latitude, longitude, and

climate conditions of the locations. Twelve particleboards

measuring 300 9 300 mm were set up for each location on

Fig. 1 Eight locations for outdoor exposure tests in Japan
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an exposure stand that faced south at an angle of 90� to the

ground. The cut edges of the boards were coated with

enamel paint as a waterproof agent prior to outdoor

exposure. Two boards were collected from each location

after 1, 2, 3, 4, 5, and 6 (or 7) years of exposure, and were

subjected to the IB test. Prior to the IB test, the boards were

conditioned to the moisture content of approximately

10 %. For each location, thirteen specimens measuring

50 9 50 mm were cut from the boards. The detailed cut-

ting pattern was described by Korai et al. [30, 31].

Data preparation

Climate data of the eight locations for the exposure period

were collected from the website of the Meteorological

Agency in Japan [32]. The data included annual mean

temperature (T), annual sunshine duration (S), and annual

precipitation (P). The individual annual data were averaged

over exposure period (t; t = 1–7 years) using the following

equations:

Tmtj ¼
1

t

Xt

k¼1

Tkj t ¼ 1�7; j ¼ 1�8ð Þ ð1Þ

Smtj ¼
1

t

Xt

k¼1

Skj t ¼ 1�7; j ¼ 1�8ð Þ ð2Þ

Pmtj ¼
1

t

Xt

k¼1

Pkj t ¼ 1�7; j ¼ 1�8ð Þ ð3Þ

where j is the location number, Tmtj is the mean T of the

location j during the exposure period t, Smtj is the mean S of

the location j during the exposure period t, Pmtj is the mean

P of the location j during the exposure period t. Table 1

lists a summary of the mean annual climate data for each

location.

The IB values of the thirteen specimens obtained from

the same location were averaged to remove the variability

in IB between the specimens. The mean IB (IBm) of each

location is shown in Fig. 2 providing strong evidence that

the IB deterioration depended on the exposure duration and

the climate conditions at each location.

The data obtained from the eight locations were sepa-

rated into two groups by analyzing the variability in the

climate data of each location, as discussed later in the

results and discussion section. The data from the locations

1, 2, 4, 7, and 8 were used to develop MLR and ANN

models, while the data from the remaining three locations

3, 5, and 6 were used to evaluate the predictive ability of

the models.

MLR model

We considered models that assume the IB deterioration of

particleboard under outdoor exposure was influenced by

exposure period, temperature, sunshine duration, and pre-

cipitation. An MLR model was developed assuming that

IBm depends linearly on t, Tm, Sm, and Pm. The developed

MLR model was expressed as following:

Table 1 Summary of Tm, Sm, and Pm for each location

Location

j

Tm (�C) Sm (h) Pm (mm)

Mean SD Max Min Mean SD Max Min Mean SD Max Min

1 7.1 0.1 7.2 7.0 1582.7 21.6 1605.8 1548.5 979.2 21.4 1008.8 945.5

2 11.5 0.1 11.6 11.4 1377.7 66.7 1444.1 1271.6 1554.2 108.7 1731.0 1456.3

3 10.5 0.1 10.6 10.3 1660.8 25.0 1690.8 1632.8 1388.5 93.3 1534.5 1296.4

4 14.3 0.1 14.5 14.2 2043.5 88.1 2173.8 1963.2 1466.4 129.8 1693.0 1377.4

5 17.0 0.2 17.4 16.9 2151.0 64.8 2256.5 2100.3 2576.7 446.0 3453.5 2302.1

6 14.2 0.1 14.5 14.2 1788.4 13.9 1816.3 1780.6 1374.9 153.1 1682.5 1273.7

7 16.7 0.1 16.9 16.7 2046.5 26.1 2083.8 2020.9 1168.5 172.0 1509.0 1056.7

8 16.9 0.1 17.0 16.8 2011.6 27.8 2046.5 1979.7 2746.2 308.8 3302.0 2462.8

SD standard deviation
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Fig. 2 Mean internal bond strength (IB) of each location as a

function of exposure period
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IBm ¼ b0 þ b1 � t þ b2 � Tm þ b3 � Sm þ b4 � Pm þ e

ð4Þ

where bi (i = 0–4) represent parameters to be estimated,

and e is the error term following a normal distribution with

a mean zero and constant variance.

The assumptions of MLR, such as homogeneity of

variance, normality of error, and linearity, were diagnosed

by looking for patterns in certain plots [4]: standardized

residual plots against fitted values and quantile–quantile

plot (Q–Q plot) against normal distribution. In addition, the

variance inflation factor (VIF) was used to assess the levels

of multicollinearity. VIFs measure how much the variances

of the estimated regression coefficients are inflated as

compared to when the predictor variables are not linearly

related. VIFs larger than 5–10 imply problems with mul-

ticollinearity between input variables, which can lead to

models with poor prediction [33]. The analysis of MLR

was performed using R, version 3.0.1 [34].

ANN model

An ANN model was constructed to predict IBm using

NeuralWorks Predict (NWP) software (NeuralWare Inc.,

Pittsburgh, PA, USA). The input variables were t, Tm, Sm,

and Pm, while the output layer was IBm. The input vari-

ables were nonlinearly transformed to avoid complex rep-

resentation of the model. A genetic algorithm [35] was

employed to make a suitable choice of input variables from

the set of all input variables and transformations of input

variables [36]. The types of transformation selected

included the linear, square, and hyperbolic tangent,

whereupon ANNs were constructed by a cascade-correla-

tion learning algorithm [37]. The cascade-correlation is a

method of incrementally adding processing elements.

Instead of adjusting the weights in an ANN of fixed

topology, cascade-correlation begins with a minimal net-

work, then automatically trains and adds new hidden units

one by one, creating a multilayer structure. Once a new

hidden unit has been added to the ANN, its input-side

weights are frozen. This unit then becomes a permanent

feature detector in the ANN, available for producing out-

puts or creating other, more complex feature detectors. The

flowchart of the ANN modeling is depicted in Fig. 3.

To show the degree of contribution of the input variables to

the determination of the network output, a sensitivity analysis

was performed with NWP that computes partial derivatives of

the output variable with respect to each of the input variables.

The sensitivity analysis produces a quantitative measure of the

variation in the IBm calculated by the network, when each

variable changes. The normalized sensitivity for each input

variable was calculated according to Eq. (5):

Normalized sensitivity ¼
PN

i¼1
oyi

oxi

� �2

r2N
ð5Þ

where r2 is the variance of the partial derivatives for each

input variable, xi and yi are the input and output vectors for

each data set. High values of this sensitivity indicate that a

slight variation of the variable produces considerable

changes in the output IBm, and vice versa. Furthermore, the

average value of sensitivity for each input variable was

calculated according to Eq. (6):

Average value of sensitivity ¼
PN

i¼1
oyi

oxi

N
ð6Þ

which indicates a positive relationship between input and

output variables for its positive sign, while a negative sign

indicates an inverse relationship. This is a standard diag-

nostic procedure commonly used to gain insight into a

multilayer neural network solution [36].

Results and discussion

Climate variability between locations

Principal component analysis was employed for the climate

variables, namely Tm, Sm, and Pm, so that the climate

variability between locations could be observed in the two-

dimensional score plot (Fig. 4). It is clear that the locations

5 and 8 are clustered in the top right-hand corner, indi-

cating that the climate conditions at locations 5 and 8 are

different from those at the other locations. These two

locations had relatively high Tm and Pm (Table 1), and

showed the lowest IBm among the eight locations over the

entire exposure period (Fig. 2), whereas the location 1 in

the bottom left-hand corner had the lowest Tm and Pm, and

showed the highest IBm. Therefore, the score plot shows

the tendency of IB deterioration in association with climate

conditions. Kojima et al. [2, 3] geographically divided

eight locations into northern Japan (location 1–4) and

southern Japan (location 5–8), and the IB deterioration was

evaluated for each group separately. This geographical

difference is apparently reflected on the first principal

component in Fig. 4.

If the data for model construction are collected from the

locations with similar climate condition, the model will not

be applicable to the external locations with different cli-

mate conditions. The climate variability between locations

was checked by the score plot, and the eight locations were

divided to avoid substantial bias between groups. Conse-

quently, the locations 1, 2, 4, 7, and 8 were selected for

model development, while the data from the remaining

154 J Wood Sci (2015) 61:151–158
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three locations (3, 5, and 6) were used to evaluate the

predictive ability of the models.

Checking assumptions of MLR

An important aspect of regression involves assessing the

tenability of the assumptions upon which its analyses are

based. The assumption of independence of observations,

which is fundamental to all statistics, was fulfilled at the

design stage of this study.

The residuals from the model were examined to check

the assumptions of linearity and homogeneity of variance.

In Fig. 5, the standardized residuals were more or less

evenly scattered above and below their mean of zero,

indicating that the data satisfied both assumptions.

The normality assumption was assessed through normal

Q–Q plot in Fig. 6. The displayed points should follow a

linear shape if the data values are from normal distribution.

The Q–Q plot shows that the residuals were approximately

normally distributed, since the plots did not depart from the

expected identity line. These results confirm that the data

satisfied the assumptions of MLR.

Interpretation of MLR model

The results of type II ANOVA for the MLR model is listed

in Table 2. The inspection of the ANOVA table suggests

that t, Tm, and Pm were significant factors of IB giving

p \ 0.05. This finding supports the fact that the WI (the

Fig. 3 Flowchart of the ANN

modeling. t exposure period,

T annual mean temperature,

S annual sunshine duration,

P annual precipitation, IB

internal bond strength

Fig. 4 Score plot for the first two principal components. The

individual plots represent locations for each exposure period t
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logarithm of the sum of (T 9 P) over exposure period) was

highly correlated to IB [2, 3]. The sums of squares and

F value were highest for t, followed by Tm and Pm in

decreasing order. Therefore, the exposure period was found

to be the most influential factor on IB deterioration, fol-

lowed by Tm and Pm.

In contrast, Sm was insignificant (p = 0.685), indicating

that sunshine duration had little influence on IB deterio-

ration of particleboard under outdoor exposure. This find-

ing is consistent with the suggestion that sunlight does not

directly affect the internal deterioration of board and that

IB is an interior property of boards [2].

Variance inflation factor was used to measure collin-

earity among explanatory variables. The VIF values were

lower than 5 for all variables, indicating the absence of

multicollinearity. The estimated coefficient for Sm was

zero, and as a result, the developed MLR was expressed as

following;

IBm ¼ 1:1521� 0:0841� t � 0:0340� Tm � 0:0009� Pm

ð7Þ

The coefficients for all variables showed negative val-

ues, and the MLR model gave an R2 of 0.89 (adjusted R2 of

0.88). This means that 88–89 % of the IBm variance could

be explained by the linear model assuming that exposure

duration, temperature, and precipitation negatively affect

IB in an additive manner. These results demonstrate that

the MLR model was useful to assess the impact of climate

on IB of particleboard under outdoor exposure. It is,

however, noted that the MLR model is applicable within

the limited exposure period of this study, as discussed later.

Interpretation of ANN model

The architecture of the ANN model consisted of 4 input

neurons, 9 neurons with a hyperbolic tangent transfer

function in the hidden layer, and 1 output neuron with a

sigmoid transfer function. To estimate the relative impor-

tance of the individual climate variables to model predic-

tions, the normalized sensitivity was calculated for each

input variable (Fig. 7). It is apparent that t, Tm, and Pm had a

negative influence, and t was the variable presenting a

higher impact on IBm, followed by Tm and Pm. This order is

consistent with the results of the MLR model. Conversely,

Sm had a relatively small and positive impact on IBm. It is

likely to reflect the nonlinear relationships between Sm and

IBm, which was not found in the statistical test of the MLR

model. Although Sm does not directly affect the internal

deterioration of board, solar radiation facilitates the evap-

oration of rain water from the surface and prevents water

from penetrating into the interior of board. This may be a

reasonable explanation for the positive impact of Sm.

Predictive ability of ANN model and MLR model

Figure 8 shows the plots of the experimentally measured

versus predicted IBm using the ANN model and MLR

model, respectively. The ANN model gave an R2 of 0.93

and a root mean square error (RMSE) of 0.05 MPa, while

the MLR model gave an R2 of 0.87 and an RMSE of

0.07 MPa. Thus, the predictive ability of both models was

good, and they were demonstrated to be robust and appli-

cable to boards exposed at different locations in Japan.

The ANN model gave a higher R2 and a lower RMSE

than the MLR model. Therefore, the ANN model outper-

formed the MLR model for predicting IBm. As can be seen

in the Eq. (7), the MLR model assumes that IBm decreases

by 0.0841 MPa per year, independent from the magnitude

of IBm. Consequently, in Fig. 8, the MLR model showed a

negative value when its measured IB value was close to

zero. It is concerned that MLR will be vulnerable when the

exposure period is further increased and the boards con-

tinue degrading, because the assumption of linearity will no

longer be valid. In contrast, ANN is capable of describing

nonlinear effects of climate variables without any

assumptions. This flexibility of ANN makes it more suit-

able for predicting the IB of particleboard under outdoor

exposure.

Table 2 Type II ANOVA table for MLR model

SS df F value P value

t 0.9213 1 171.15 2.20 9 10-16

Tm 0.1729 1 32.11 1.20 9 10-6

Sm 0.0009 1 0.17 6.85 9 10-1

Pm 0.0709 1 13.17 0.77 9 10-3

Residuals 0.2261 42

SS sums of squares, df degree of freedom

t
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N
or

m
al
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ed
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ns
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vi

ty

Tm Sm Pm

Fig. 7 Results of sensitivity analysis in the ANN model. Gray bars

represent average sensitivity \0; white bars represent average

sensitivity [0
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Conclusion

The IB deterioration of a commercial particleboard put

under various outdoor exposure conditions were examined

by developing the MLR model and the ANN model based

on climate data including exposure duration, annual mean

temperature, annual sunshine duration, and annual precip-

itation. Our results showed that both the models could be

used to predict the IB of Type 18 and Type P particleboards

exposed at different locations in Japan, and that the ANN

model yielded slightly better performance than the MLR

model.

It should be noticed that the MLR is based on the four

assumptions: independence, homogeneity of variance,

normality of error, and linearity. It is important to check

the assumptions that we made in fitting the data. If these

assumptions are contravened, the significance levels are no

longer valid and the worth of the whole analysis is cast into

doubt. In contrast, ANNs allow for flexible modeling of

both linear and nonlinear behavior of IB deterioration

without any assumptions that are required for MLR.

Therefore, the ANNs are considered to be more suitable to

predict the IB of particleboard under outdoor exposure.
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26. André N, Cho H-W, Baek SH, Jeong M-K, Young TM (2008)

Prediction of internal bond strength in a medium density fiber-

board process using multivariate statistical methods and variable

selection. Wood Sci Technol 42:521–534
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