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Abstract Off-axis tensile creep tests were conducted on

woods taken from Japanese cypress and Kalopanax by

changing the angle of load to the grain direction in the

longitudinal–tangential (LT) plane. The dependence of the

Poisson’s ratio and trend of the viscoelastic Poisson’s ratio

on grain angle were investigated. The Poisson’s ratios were

found to reach their extrema when the grain angle was

around 30�. Moreover, the Poisson’s ratio in the LT plane

was observed to be negative when the grain angle was in

the range of 15�–45�. Comparing the experimental results

with theoretical values obtained from the theory of

orthotropic elasticity, it was revealed that, although the

Poisson’s ratio reached an extremum in both cases, the

specific values did not match, especially when the angle

was between 15� and 45�. Furthermore, the temporal var-

iation of the viscoelastic Poisson’s ratio was found to de-

pend on the grain angle and the measurement plane. It also

appeared to be affected by the Poisson’s ratio, showing an

increasing tendency above a specific Poisson’s ratio (Ja-

panese cypress: 0.196, Kalopanax: 0.102) and a decreasing

tendency below it, regardless of the grain angle and mea-

surement plane. Additionally, the increment in the vis-

coelastic Poisson’s ratio after 24 h of creep was observed

to reach its extremum when the grain angle was around

30�. Finally, by improving the six-element Frandsen–

Muszynski viscoelastic model, which simultaneously con-

siders the longitudinal and transverse strains, an eight-

element model was presented, and the trend of the vis-

coelastic Poisson’s ratio was well reproduced by this

model.

Keywords Poisson ratio � Grain angle � Shear effect �
Viscoelasticity � Creep

Introduction

Wood is a material that has been used for building structures

since ancient times. Despite the importance of studying its

mechanical behavior, many aspects are still poorly under-

stood. One of the main characteristics of the mechanical

behavior of wood is anisotropy; wood is known to be an

orthotropic material, and its strength varies significantly with

cellular orientation and arrangement. The strength in the

longitudinal (L) direction of the grain is dominantly high,

followed by that in the radial (R) direction, and then by that

in the tangential (T) direction. Although there have been

many studies on anisotropy in directions other than the three

principal axes (axes of symmetry), almost all of them con-

sider only the Young’s modulus, shear modulus, and

strength. For instance, Hearmon [1] investigated the varia-

tion in Young’s modulus and shear modulus with respect to

the grain angle in spruce. Kollmann [2] determined the

elements of the elastic compliance matrix, i.e., Young’s

moduli and shear moduli in the three principal stress di-

rections, for 17 wood species. Moreover, he used Hankin-

son’s equation [3] to study the variation in tensile strength

with grain angle for white fir and basswood.

In comparison, there have been relatively few researches

into the anisotropy of the Poisson’s ratio of wood [4–17].

The Poisson’s ratios in the direction of the principal axes of

wood are defined as follows:
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mij ¼ � ej
ei

i; j ¼ L; T; Rð Þ; ð1Þ

where ei is the longitudinal strain, ej is the transverse

strain, and the subscripts i and j denote the directions

along the three principal axes. Because of the lack of

definite relationships between the Poisson’s ratios and

other elastic constants, density, or strength [18] and our

limited understanding of how Poisson’s ratio varies in

different directions, many aspects of the formation

mechanism of Poisson’s ratio in wood remain unclear.

Similar to the Young’s modulus and shear modulus, the

Poisson’s ratio is an independent elastic constant that has

significant influence on the stress–strain relationship of a

material, especially under combined stresses. With in-

creasingly complex and diversified structures being de-

veloped using wood, it is important to elucidate the

formation mechanism for the anisotropy of its Poisson’s

effect, on which several studies have been conducted.

Yamai [4] derived the Poisson’s ratios for nine wood

species in the directions along the grain and perpendicular

to the grain through compression tests, and he found that

the Poisson’s ratio is not related to the specific gravity.

Moreover, he theoretically investigated the dependence of

Poisson’s ratio on grain angle by applying the theory of

orthotropic elasticity to experimental data and showed

that the Poisson’s ratio may be negative at some incli-

nation angles. Although the Poisson’s ratio of isotropic

materials is generally positive, it has been pointed out that

porous materials can have negative Poisson’s ratios [19].

Sliker et al. [7] investigated the dependence of the Pois-

son’s ratios in the LT and LR planes on grain angle in 18

hardwood species through tensile tests. They reported that

the rate of change of Poisson’s ratio with the angle of

load to the L direction was greater in the LT plane than in

the LR plane. In the LT plane, the Poisson’s ratios of

some wood species were negative at 20� grain angle (this

supports the theory of orthotropic elasticity), and the grain

angle corresponding to the minimum value differed by

species. On the other hand, in the LR plane, all the wood

species had non-negative Poisson’s ratios regardless of

the grain angle. Bukur et al. [20] and Murata et al. [13]

also recorded negative Poisson’s ratios in experimental

data of woods. Since then, research into the dependence

of the Poisson’s ratio of wood on the grain angle, annual-

ring angle, or microfibril angle has included several ex-

perimental and theoretical studies, which have reported

extreme values at inclination angles of 20�–45� [8–13].

However, there has also been a report of a different

tendency observed in the Poisson’s ratio of a tropical

wood, which decreases with increasing grain angle with-

out reaching an extremum [14]. It could not be explained

why this tendency differs.

In addition to anisotropy, another important characteristic

of the mechanical behavior of wood is its viscoelastic

property. Therefore, to grasp the mechanical response of

wood under long-term loading, the time dependence of

Poisson’s effect must be analyzed. As Poisson’s ratio is an

elastic constant, it does not change with time; the parameter

that characterizes the time-dependent Poisson’s effect is

called the viscoelastic Poisson’s ratio. There have been

several studies on the viscoelastic Poisson’s ratio of wood in

the directions of the principal axes [21–30]. Taniguchi et al.

[27] conducted tensile creep tests on 12 wood species to

measure mLR(t) and mLT(t) and experimentally verified that

both increase with time t. As in the case of the longitudinal

strain, the transverse strain during creep can be decomposed

into three components, namely instantaneous strain, delayed

elastic strain, and permanent strain. Taniguchi et al. also

verified that the main cause for the increase in viscoelastic

Poisson’s ratio during creep is the considerable increase in

the permanent transverse strain. Moreover, Taniguchi et al.

[26] and Ando et al. [29] conducted tensile creep tests on

Japanese cypress in the direction of the three principal axes

and measured the transition of the six viscoelastic Poisson’s

ratios [mLR(t), mLT(t), mRL(t), mRT(t), mTL(t), and mTR(t)]. Their

results revealed that all the viscoelastic Poisson’s ratios in-

crease logarithmically with creep time and that the vis-

coelastic compliance matrix is non-symmetric, unlike the

symmetric elastic compliance matrix. Ozyhar et al. [30]

performed tensile and compressive creep tests on beech

wood and reported that the six viscoelastic Poisson’s ratios

increased in tension and decreased in compression and that

the viscoelastic compliance matrix was non-symmetric,

confirming the results of Ando et al.

When wood is used as a building material, loads can be

generated in various directions with respect to the grain,

not necessarily in the directions of the principal axes.

Therefore, the shear forces arising in the direction of the

principal axes are significant, and it is important to un-

derstand the behavior of the viscoelastic Poisson’s ratio

under the shearing effect. However, there has been almost

no research into the variation of the viscoelastic Poisson’s

ratio with respect to the grain angle of wood.

In this study, 24 h off-axis tensile creep tests were

conducted on the LT plane of two wood species, Japanese

cypress and Kalopanax, and the dependence of the Pois-

son’s effect on grain angle and creep time was investigated.

Materials and methods

Materials

Defect-free sections from 115-year-old Japanese cypress

(Chamaecyparis obtusa Endl.) and 81-year-old Kalopanax
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(Kalopanax septemlobus Koidz.) woods were chosen as

test samples in this study. The specimens for the tensile

creep tests were cut from a sawn board, and, by changing

the loading direction in the LT plane from the L direction

to the T direction, specimens of seven different grain an-

gles were prepared (0�, 15�, 30�, 45�, 60�, 75�, and 90�), as

illustrated in Fig. 1. The angles 0� and 90� correspond to

the L direction and T direction, respectively, and the R

direction is always perpendicular to the direction of load-

ing. The dimensions of the specimens were 180 9 15 9

15 mm (Fig. 2), and the grip sections of length 40 mm on

both ends of the specimen were reinforced by tabs made of

a hardwood.

All the specimens were conditioned to equilibrate a

moisture content at a constant 25 �C and 55 % relative

humidity (RH). The densities of these air-dried Japanese

cypress and Kalopanax specimens were 417 ± 7 and

545 ± 7 kg/m3, respectively; their moisture contents were

9.4 ± 0.6 and 9.6 ± 0.1 %, respectively, and the widths of

their annual rings were 0.84 and 1.92 mm, respectively.

Off-axis tensile creep tests

The off-axis tensile tests were performed using a universal

testing machine (Shimadzu Autograph AGX-100kN). Bi-

axial strain gauges (gauge length: 2 mm; Tokyo Sokki

Kenkyujo, FCA-2-11) were attached to the central regions

of the four planes of the specimen to measure both the

longitudinal and transverse strains, which were reported as

the average of the values from the corresponding opposite

planes. The viscoelastic Poisson’s ratio on the LT plane of

the specimen is denoted as mLT(a, t) (Fig. 1), where a is the

grain angle (�), and t is the creep time (h). The viscoelastic

Poisson’s ratio on the plane perpendicular to the LT plane,

i.e., the plane whose normal direction changes from the T

to L with increasing grain angle, is denoted as mLR(a, t)

(Fig. 1). Therefore, as the grain angle increases from 0� to

90�, the corresponding Poisson’s ratios change from mLT to

mTL and from mLR to mTR.

The tensile creep tests were conducted for 24 h.

Although a 24-h period from the start is considered an early

stage of creep in wood, permanent strains are generated

during this period, and therefore it was assumed that the

creep behaviors in this study are similar to those from long-

period tests. The applied stress was 40 % of the tensile

strength, which was determined in advance from static

tensile tests (Table 1), and the target load was reached in

10 s. At least five samples were prepared for each grain

angle, but the number of samples varied depending on

the cutting procedure from one board. During the tests, the

temperature and humidity were maintained at 25 �C and

55 % RH, respectively.
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Fig. 1 Schematic of off-axis tensile specimens. mLT(a, t) and mLR(a, t) represent the viscoelastic Poisson’s ratios. a grain angle (�), t creep time

(h)

Fig. 2 Tensile test specimen. A biaxial strain gauge was attached on

each of the four side planes
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Results and discussion

Young’s modulus

The Young’s moduli of Japanese cypress and Kalopanax

obtained from the experiments at the various grain angles

are presented in Fig. 3, in which the solid line represents

the theoretical values calculated in accordance with Eq. (2)

described later in this section. For both the wood species,

the Young’s modulus dropped rapidly as the grain angle

first increased from 0� and then decreased gradually with

further increase in the grain angle. At 0� grain angle, the

Young’s modulus of Japanese cypress was 10.0 GPa, and

that of Kalopanax was 8.5 GPa. At 90� grain angle, the

Young’s modulus of Japanese cypress was 0.9 GPa, and

that of Kalopanax decreased to 0.5 GPa. In the entire

range, the Young’s modulus of Japanese cypress was

higher than that of Kalopanax at the same grain angle.

Poisson’s ratio

The relationships between the grain angle and the Poisson’s

ratios mLR(a, 0) and mLT(a, 0) are shown in Figs. 4 and 5,

respectively, for both the Japanese cypress and Kalopanax.

The Poisson’s ratio was taken at creep time t = 0, i.e., at the

start of the test, and the solid lines represent the theoretical

values obtained from Eqs. (3) and (4), which are described

later in this section. On both planes, the Poisson’s ratio

reached an extremum around a grain angle of 30�. However,

the manner in which the extremum was approached differed:

mLR(a, 0) was convex upward, whereas mLT(a, 0) was convex

downward. Furthermore, mLT(a, 0) exhibited the same ten-

dency as the experimental results published by Sliker et al.

[7], who conducted off-axis tensile tests in the LT plane on

specimens of 18 hardwood species. According to their re-

sults, mLT(a, 0) convexed downward and reached the ex-

tremum at a grain angle of 20�; whereas, in our study, it

varied greatly at same grain angle within the range 15�–45�.
Because of significant shearing effect along the L direction

and its variation due to the inhomogeneity and mounting

conditions of the tensile wood specimen, it was difficult to

accurately measure the Poisson’s ratio at these grain angles.

Moreover, the Poisson’s ratios mLT(a, 0) of some specimens

were negative in the range 15�–60�, implying that the spe-

cimen extended in the transverse direction when the tensile

load was applied. This phenomenon, which is unlikely in

isotropic materials, was assumed to occur because of the

large shearing effect along the L direction and was investi-

gated using the following theoretical equations that include

this shearing effect.

Applying the generalized Hook’s law to the orthotropic

specimen with grain angle a, the following equations are

obtained [31, 32]:

1

EðaÞ
¼ 1

EL

cos4 aþ �2
mLT

EL

þ 1

GLT

� �
sin2 a cos2 a

þ 1

ET

sin4 a ð2Þ

mLR a; 0ð Þ ¼ EðaÞ
mLR

EL

cos2 aþ mTR

ET

sin2 a

� �
ð3Þ
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Fig. 3 Young’s modulus E(a) as

a function of the grain angle.

The solid line represents a fit

according to the theory of

orthotropic elasticity used to

estimate the shear modulus GLT

(Eq. 2). Error bar standard

deviation

Table 1 Creep stresses and number of specimens at different grain

angles

Angle (�) Japanese cypress Kalopanax

n Creep stress

(MPa)

n Creep stress

(MPa)

0 9 44.0 13 35.4

15 6 17.8 7 22.0

30 9 6.4 7 10.1

45 5 3.4 7 5.7

60 8 2.3 5 3.9

75 7 1.8 7 3.2

90 7 1.7 6 3.0

n number of specimens
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mLT a; 0ð Þ ¼ �EðaÞ
1

EL

þ 1

ET

� �
sin2 a cos2 a

�

� mLT

EL

ðcos4 aþ sin4 aÞ � 1

GLT

sin2 a cos2 a

�

ð4Þ

in which E(a) is the Young’s modulus in the direction along

the grain angle a, EL is the Young’s modulus in the L

direction, ET is the Young’s modulus in the T direction,

and GLT is the shear modulus in the LT plane. The theo-

retical values of the Poisson’s ratios mLR(a, 0) and mLT(a, 0)

were calculated from Eqs. (3) and (4), respectively, using

the elastic parameters tabulated in Table 2. The values of

EL, ET, mLT, mLR, and mTR used were taken from ex-

perimental measurements. Moreover, GLT was obtained by

using Eq. (2) and applying the least-squares regression

method so that the sum of the squared differences was

minimized between the experimental measurements of E(a)

for different grain angles and the corresponding values of

E(a) calculated using the estimated GLT (and the

experimental values of EL, ET, and mLT). The regression

results are shown in Fig. 3 as a solid line, and it can be seen

that they roughly match with the experimental measure-

ments. The estimated GLT was 0.804 GPa for Japanese

cypress and 0.644 GPa for Kalopanax.

The theoretical values of the Poisson’s ratios mLR(a, 0)

and mLT(a, 0) at various grain angles are presented as solid

lines in Figs. 4 and 5, respectively. At grain angles between

15� and 75� for Kalopanax, negative values were obtained

for mLT(a, 0), implying that a shearing effect occurs in the L

direction. On the other hand, the theoretical mLT(a, 0) for

Japanese cypress did not show negative values even though

some of the corresponding experimental values were

negative. This difference between the two wood species is

most likely due to the sensitivity of the analytical values

from Eq. (4) to the estimated GLT values. For both wood

species, mLR(a, 0) was convex upward, mLT(a, 0) was con-

vex downward, and the measured and theoretical results

were consistent in the manner of the Poisson’s ratios

reaching their respective extrema. However, the values
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Fig. 4 Poisson’s ratio mLR(a, 0)

as a function of the grain angle.

The solid line represents a fit

according to the theory of

orthotropic elasticity (Eq. 3).

Error bar standard deviation
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Fig. 5 Poisson’s ratio mLT(a, 0)

as a function of the grain angle.

The solid line represents a fit

according to the theory of

orthotropic elasticity (Eq. 4).

Error bar standard deviation

Table 2 Elastic parameters

used in the calculations of

Eqs. (2), (3), and (4)

Species EL (GPa) mLT mLR mTR ET (GPa) GLT (GPa)

Japanese cypress 10.05 0.432 0.408 0.491 0.877 0.804

Kalopanax 8.48 0.409 0.377 0.403 0.452 0.644
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itself were not well matched, especially between 15� and

45�. Two reasons were considered to explain the noticeable

discrepancies between the measured and theoretical results,

especially at grain angles in the range of 15�–45�. The first

reason is that Eqs. (3) and (4), which were used to calculate

the theoretical values, are two-dimensional (2D) equations,

and therefore cannot fully express the three-dimensional

phenomena, i.e., the effects from the vertical plane. The

second reason is that variations in the influence of the shear

forces on the L direction arise because of the inhomo-

geneity and mounting conditions of the wood specimens,

especially at grain angles in the range of 15�–45�.

Viscoelastic Poisson’s ratio

Typical cases of the evolution of the viscoelastic Pois-

son’s ratios mLR(a, t) and mLT(a, t), obtained from the 24 h

creep tests on Japanese cypress and Kalopanax specimens,

are plotted for the various grain angles in Figs. 6 and 7,

respectively. In these figures, the solid lines represent

Japanese cypress, and the dotted lines represent Kalopa-

nax. In all cases, the viscoelastic Poisson’s ratios first

underwent rapid change once creep started, and then

showed more gradual change over time. For both wood

species, mLR(a, t) increased regardless of the grain angle;

whereas mLT(a, t) increased at the grain angle of 0�, in-

creased or decreased at the grain angle of 15�, and de-

creased at the grain angles equal to or greater than 30�.
However, the results shown in Figs. 6 and 7 are only from

one set of specimens, and thus it cannot be concluded that

all specimens at a certain grain angle will show the same

trend. For example, although the mLT(15, t) of the Kalo-

panax specimen presented in Fig. 7 increased, there were

specimens that showed a decrease in the mLT(15, t).

Therefore, to express the creep test results quantitatively

with respect to grain angle, the increments in the vis-

coelastic Poisson’s ratios after 24 h of creep will be ex-

amined next.

The increment in the viscoelastic Poisson’s ratio with

creep time t (h) is defined by the following equation:

WLi a; tð Þ ¼ mLi a; tð Þ � mLi a; 0ð Þ i ¼ R, Tð Þ ð5Þ

The increments in the viscoelastic Poisson’s ratios

after 24 h of creep, WLR(a, 24) and WLT(a, 24), are

plotted against the grain angle in Figs. 8 and 9, respec-

tively. Both quantities approached the extrema around a

grain angle of 30� in the two wood species, but WLR(a,

24) was convex upward; whereas WLT(a, 24) was convex

downward. These trends are similar to the dependence of

the Poisson’s ratios on grain angle previously shown in

Figs. 4 and 5. Without taking into account the grain

angle and measurement plane, the relationship between

the Poisson’s ratio and the increment in the viscoelastic

Poisson’s ratio at t = 24 h is presented in Fig. 10 for the

two wood species. According to the results of linear

regression, these two parameters are positively correlated

with a 1 % significance level. The regression results also

suggested that there exists a Poisson’s ratio (denoted as

m0) at zero increment of viscoelastic Poisson’s ratio.

From the regression equation, the values of this Pois-

son’s ratio were obtained as m0 = 0.196 for Japanese

cypress and m0 = 0.102 for Kalopanax. Regardless of the

grain angle and measurement plane, the viscoelastic

Poisson’s ratio showed an increasing tendency at Pois-

son’s ratios above m0 and a decreasing tendency at

Poisson’s ratios below m0, i.e., the influence of the

Poisson’s ratio on the trend of the viscoelastic Poisson’s

ratio was evident.

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0 4 8 12 16 20 24

LR
(0

,t)

Time(h)

0.50

0.55

0.60

0.65

0.70

0 4 8 12 16 20 24

LR
(1

5,
t)

Time(h)

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

0 4 8 12 16 20 24

LR
(4

5,
t)

Time(h)

0.30

0.40

0.50

0.60

0.70

0.80

0 4 8 12 16 20 24

LR
(6

0,
t)

Time(h)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0 4 8 12 16 20 24

LR
(7

5,
t)

Time(h)

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0 4 8 12 16 20 24

LR
(9

0,
t)

Time(h)

0.8

1.0

1.2

1.4

1.6

1.8

0 4 8 12 16 20 24

LR
(3

0,
t)

Time(h)
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Estimation of viscoelastic Poisson’s ratio using a 2D

viscoelasticity model

To express the 2D viscoelasticity of wood, Frandsen et al.

[25] proposed a six-element model (Frandsen–Muszynski

model) that included the components of instantaneous

strain and delayed elastic strain in both the longitudinal and

transverse directions. In this study, their model was im-

proved by adding the permanent strain components, and

thus an eight-element 2D creep model was obtained, as

illustrated in Fig. 11 (longitudinal strain direction: L,

transverse strain direction: R). It can be confirmed
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Japanese 
cypress

Kalopanax

-0.2

-0.1

0.0

0.1

0.2

0.3

0 15 30 45 60 75 90

LR
(

,2
4)

Grain angle  (deg)

-0.2

-0.1

0.0

0.1

0.2

0.3

0 15 30 45 60 75 90

LR
(

,2
4)

Grain angle  (deg)

Fig. 8 Increment in

viscoelastic Poisson’s ratio after

24 h of creep, WLR(a, 24), as a

function of the grain angle.

Error bar standard deviation

Japanese 
cypress

Kalopanax

-0.2

-0.1

0.0

0.1

0.2

0.3

0 15 30 45 60 75 90

LT
(

,2
4)

Grain angle  (deg)

-0.2

-0.1

0.0

0.1

0.2

0.3

0 15 30 45 60 75 90

LT
(

,2
4)

Grain angle  (deg)

Fig. 9 Increment in

viscoelastic Poisson’s ratio after

24 h of creep, WLT(a, 24), as a

function of the grain angle.

Error bar standard deviation

378 J Wood Sci (2015) 61:372–383

123



experimentally that the transverse strain in wood under-

going creep also consists of instantaneous strain, delayed

elastic strain, and permanent strain [27], similar to the

longitudinal strain. Therefore, the proposed model that

considers these three strain components is appropriate. In

Fig. 11, the section on the left represents the longitudinal

strain, and the section on the right represents the transverse

strain resulting from Poisson’s effect. Each of them is

represented by a series arrangement of a spring, Kelvin–

Voigt element, and dashpot. C and C0 denote the stiffness

moduli of the springs; g and g0 denote the viscosity coef-

ficients of the dashpots. The total longitudinal strain in the

L direction, eL, is expressed as the sum of the instantaneous

strain in the spring, e0
L, the delayed elastic strain in the

Kelvin–Voigt element, e1
L, and the permanent strain in the

dashpot, e2
L, yielding the following equation:

eL ¼ e0
L þ e1

L þ e2
L ð6Þ

Similarly, the total transverse strain in the R direction,

eR, can be defined as the sum of the instantaneous strain e0
R,

the delayed elastic strain e1
R, and the permanent strain e2

R,

yielding the following equation:

eR ¼ e0
R þ e1

R þ e2
R ð7Þ

For the instantaneous strain, delayed elastic strain, and

permanent strain components, the relationship between the

stress in the L direction, rL, and the respective strain can be

written as follows (Fig. 11):

rL ¼ CLLe
0
L þ CLRe

0
R ð8Þ

rL ¼ C0
LLe

1
L þ g0LL

de1
L

dt
þ C0

LRe
1
R þ g0LR

de1
R

dt
ð9Þ

rL ¼ gLL

de2
L

dt
þ gLR

de2
R

dt
ð10Þ

The stress in the R direction, rR, can be expressed in a

similar manner. For each of the three strain components (i–

iii), matrix notation can be used to obtain the following:

(i) instantaneous strain

rL

rR

� �
¼ CLL CLR

CRL CRR

� �
e0

L

e0
R

� �
ð11Þ

or

e0
L

e0
R

� �
¼ CLL CLR

CRL CRR

� ��1
rL

rR

� �
ð12Þ

(ii) delayed elastic strain

rL

rR

� �
¼ C0

LL C0
LR

C0
RL C0

RR

� �
e1

L

e1
R

� �
þ g0LL g0LR

g0RL g0RR

� � de1
L

dt
de1

R

dt

0
B@

1
CA

ð13Þ

Rearranging gives:
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Poisson’s ratio mLi(a, 0) and
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Fig. 11 2D viscoelastic model considering Poisson’s effect (modified

Frandsen–Muszynski model) under uniaxial creep stress in L

direction, rL
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de1
L

dt
de1

R

dt

0
B@

1
CA ¼ g0LL g0LR

g0RL g0RR

� ��1
rL

rR

� �

� g0LL g0LR

g0RL g0RR

� ��1
C0

LL C0
LR

C0
RL C0

RR

� �
e1

L

e1
R

� �

ð14Þ

In uniaxial creep tests, rR = 0. After simple replace-

ment, the equation above can be summarized as follows:

g0LL g0LR

g0RL g0RR

� ��1

¼ a b

c d

� �
ð15Þ

g0LL g0LR

g0RL g0RR

� ��1
C0

LL C0
LR

C0
RL C0

RR

� �
¼ e f

g h

� �
ð16Þ

de1
L

dt
¼ arL � ee1

L þ f e1
R

� �
ð17Þ

de1
R

dt
¼ crL � ðge1

L þ he1
RÞ ð18Þ

Equation (17) can be re-arranged into as

e1
R ¼ � 1

f

de1
L

dt
� e

f
e1

L þ a

f
rL ð19Þ

Differentiating Eq. (19) with respect to time t yields

de1
R

dt
¼ � 1

f

d2e1
L

dt2
� e

f

de1
L

dt
ð20Þ

Substituting Eqs. (19) and (20) into Eq. (18) and

rearranging,

d2e1
L

dt2
þ de1

L

dt
eþ hð Þ þ e1

Lðeh� fgÞ ¼ rLðah� fcÞ ð21Þ

After simple replacement, Eq. (21) becomes

eþ h ¼ 2p; eh� fg ¼ q; rL ah� fcð Þ ¼ r ð22Þ

d2e1
L

dt2
þ de1

L

dt
2pþ e1

Lq ¼ r ð23Þ

Solving the differential Eq. (23) with the initial condi-

tion e1
L ¼ 0 at t = 0 gives

e1
L ¼ C1 ek1t � 1

� �
þ C2 ek2t � 1

� �
; ð24Þ

where

C1 ¼
r �p�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p	 

þ aqrL

2q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p ð25Þ

C2 ¼ � r

q
�
r �p�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p	 

þ aqrL

2q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p ð26Þ

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p
� p; k2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q

p
� p ð27Þ

Similarly, the transverse strain component e1
R can be

computed by the following equation:

e1
R ¼ C3 ek3t � 1

� �
þ C4 ek4t � 1

� �
ð28Þ
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(iii) permanent strain

rL

rR

� �
¼ gLL gLR

gRL gRR

� � de2
L

dt
de2

R

dt

0
B@

1
CA ð29Þ

or

de2
L

dt
de2

R

dt

0
B@

1
CA ¼ gLL gLR

gRL gRR

� ��1
rL

rR

� �
ð30Þ

Integrating Eq. (30) with respect to time t with the initial

conditions e2
L ¼ 0 and e2

R ¼ 0 at t = 0 yields

e2
L

e2
R

� �
¼ gLL gLR

gRL gRR

� ��1
rL

rR

� �
t ð31Þ

As can be seen, the permanent strains e2
L and e2

R are

proportional to time t. The constants of proportionality are

defined as A and B, respectively.

Thus, from (ii) and (iii), the longitudinal and transverse

creep strains can be expressed as follows:

e1
L þ e2

L ¼ C1 ek1t � 1
� �

þ C2 ek2t � 1
� �

þ At ð32Þ

e1
R þ e2

R ¼ C3 ek3t � 1
� �

þ C4 ek4t � 1
� �

þ Bt; ð33Þ

where C1, C2, C3, C4, k1, k2, k3, k4, A, and B are the

constants from the stiffness moduli of the springs, viscosity
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coefficients of the dashpots, and stress. From Eqs. (32) and

(33), the unknown quantities were calculated by perform-

ing regression analyses on the measured longitudinal and

transverse strains. The progressions of the creep strains

were then predicted using these equations using instanta-

neous strain components obtained from experimental

measurements. For example, Fig. 12 shows the regression

results of the strains in Japanese cypress at a grain angle of

0�, and the experimental results were found to be in good

agreement with the theoretical values from the model.

Moreover, the regression curve of the viscoelastic Pois-

son’s ratio was derived from the ratio of transverse to

longitudinal strains, and the results for Japanese cypress

and Kalopanax are presented in Figs. 13 and 14, respec-

tively. Again, the experimental results and theoretical

values from the model were found to be in good agreement.

Therefore, the eight-element creep model proposed in this

study can be used to estimate the viscoelastic Poisson’s

ratio at any creep time t. However, this model does not

currently have a practical use because many of the quan-

tities remain unclear. Further experimental and theoretical

works, to determine the unknown quantities (all stiffness

moduli of the springs and all viscosity coefficients of the

dashpots), are still needed to establish this model.

Conclusions

Through off-axis tensile creep tests on the LT plane of

Japanese cypress and Kalopanax specimens, the depen-

dence of the Poisson effect in wood on grain angle and

creep time was investigated. The Poisson’s ratios reached

their extrema around a grain angle of 30�, which was

considered to be caused by the influence of shear forces in

the L direction of wood. Moreover, the Poisson’s ratio in

the LT plane was found to be negative in the range of 15�–
45�. The theoretical Poisson’s ratios were calculated from

the theory of orthotropic elasticity, and they were similar to

the experimental results in the manner of reaching the re-

spective extrema, but the actual values differed.

The progression of the viscoelastic Poisson’s ratio var-

ied depending on the grain angle and the measurement

plane, and the increment in the viscoelastic Poisson’s ratio

after 24 h of creep reached its extremum at a grain angle of

around 30�. These trends were also presumed to be caused

by the shear forces in the L direction of wood, but further

research on the time dependence of the apparent shear

modulus GLT(t) is required to understand this influence

more clearly. Taking into account the Poisson effect, an

eight-element viscoelastic model was presented, and the

progression of viscoelastic Poisson’s ratio under uniaxial

creep was well reproduced by this model. However, this

model does not currently have a practical use because

many of the quantities remain unclear. Further ex-

perimental and theoretical works are still needed to

establish this model.
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