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Abstract Ionic liquids are salts that have melting points

around ambient temperature and unique characteristics,

such as high solubility, extremely low volatility, incom-

bustibility and low viscosity. Application of ionic liquids in

wood processing technology has attracted attention and is

expected to promote further use of wood. They are effec-

tive as wood-preserving agents to enhance decay-resistance

and also improve fire resistance of wood. Ionic liquids have

been used as reaction solvents for preparing various cel-

lulose derivatives or composites with other materials. At-

tempts have been made to use ionic liquids in pretreatments

for enzymatic hydrolysis when producing bio-ethanol from

cellulose or wood. Ionic liquids also have been shown to be

effective for dissolution of cellulose or wood, forming the

basis for studies into the separation of cellulose, hemicel-

lulose and lignin from wood. The effective separation of

these components is essential for chemical use of wood,

and ionic liquid treatment thus has potential as an enabling

technique in biorefineries. Moreover, ionic liquids induce

depolymerization of solubilized wood polymers, which

may be applicable to the production of useful chemicals

from wood polymers such as cellulose, hemicellulose and

lignin.
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Introduction

While global environmental problems such as global

warming and depletion of energy resources have become

increasingly serious, the use of biomass resources that are

carbon-neutral, sustainable and cause smaller environmental

burdens is expected to offer ways to resolve such problems. It

is considered critical to promote the use of a woody biomass

resource that is abundant, non-edible and does not compete

with land use for growing foods to provide post-fossil re-

sources and realize a low-carbon society. Thus, this paper

aims to introduce recent research and developments in ionic

liquid treatment technology, which is new and expected to

promote the use of woody biomass.

Woody biomass is a material that has been available to

humankind since ancient times; we also use it in various

ways today. Methods of its use can be roughly classified

into three categories: (1) material use, (2) chemical use,

and (3) thermal use. Material use refers to methods that use

woody biomass as a material by changing its size for us-

ability by physical machining. Chemical use aims to use

the cellulose, hemicellulose and lignin components of

woody biomass and the wide variety of useful chemicals

that can be obtained from them by performing certain

chemical or biochemical treatments. Thermal use uses

woody biomass as a fuel through combustion. Ionic liquid

treatment has attracted attention as a new technology re-

lated to both material and chemical use.

What is an ionic liquid?

An ionic liquid is a salt that has a melting point near

normal temperature (below approximately 100 �C) and

has unique characteristics such as excellent solubility,
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extremely low volatility, incombustibility and low vis-

cosity. Application of ionic liquids has advanced in var-

ious fields and, in particular, they come under the

spotlight as favorable solvents in terms of green chem-

istry, with low environmental impact, in the context of

using them as chemical reaction solvents because they can

be recycled for repeated use [1]. However, effective pu-

rification process is indispensable for actual recycling of

them. The first important characteristic of ionic liquids to

be identified from the perspective of applying it to using

woody biomass is that it can dissolve cellulose, which is

the most abundant organic resource on earth and is con-

tained in woody biomass. Figure 1 shows the structural

formula of 1-ethyl-3-methylimidazolium chloride

([C2mim][Cl]), as an example of an ionic liquid that is

capable of dissolving cellulose, and Fig. 2 shows typical

cations and anions for ionic liquids. Because ionic liquids

are salts, as described above, they provide numerous

combinations of anions and cations; it is therefore possi-

ble to prepare a variety of ionic liquids that vary in

physical properties such as a melting point, viscosity, and

polarity by varying such combinations.

Ionic liquid treatment technology for woody
biomass

Application in material use

In the use of woody biomass as construction materials, its

susceptibilities to decay and combustion have been re-

garded as defects, so various chemical agents are often

used to reduce these. However, ionic liquids have been

shown to be effective as wood-preserving agents. The

treatment of wooden materials with the ionic liquids

dimethyldidecylammmonium D,L-lactate and benzalkoni-

um D,L-lactate has been reported to result in unsatisfactory

decay-resistant performances against Coniophora puteana,

which belongs to brown-rot fungi, and Trametes versicolor,

which belongs to white-rot fungi [2]. However, an agar

medium test demonstrated that both 1-methyl-3-octy-

loxymethylimidazolium tetrafluoroborates and 1-methyl-3-

nonyloxymethylimidazolium tetrafluoroborates exhibit the

same decay-resistant performances as commercially

available chemical agents [3]. Moreover, as a result of

examining the decay-resistance of wood treated with var-

ious ionic liquids containing pyridinium cations, 1-decy-

loxymethyl-4-dimethylaminopyridinium chloride and

1-decyloxymethyl-4-dimethylaminopyridinium acesulfa-

mate were reported to confer satisfactory decay-resistance

[4].

Figure 3 shows the result of an experiment comparing

the combustion of wood treated with ionic liquids, obtained

by impregnating samples with the ionic liquid, 1-ethyl-3-

methylimidazolium hexafluorophosphate. The left side

shows untreated wood and the right side shows wood

treated with ionic liquids; both are shown approximately

5 s after exposure to flames at their centers. The untreated

wood was almost entirely burned, whereas that treated with

ionic liquid was burned only at the portion directly con-

tacting the fire, and flames did not spread. This demon-

strates that ionic liquids are effective anti-combustion

agents for wood [5].

ClNN +

Fig. 1 1-Ethyl-3-methylimidazolium chloride ([C2mim][Cl])
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Fig. 2 Typical ionic liquid cations and anions

Fig. 3 Fire-resistance test on wood treated with ionic liquid (right)

compared with untreated wood (left)
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These findings imply that ionic liquid treatment can

improve the performance of wood and enhance its function.

Further research and development is expected to yield a

novel wood treatment technology that enables the use of

wood at locations where it is not currently feasible because

of its decay and flammability properties, leading to the

prevention and mitigation of disasters in houses and var-

ious buildings.

Application in chemical use

Dissolution and component separation

Fundamental research has advanced in dissolution of cel-

lulose and wood in ionic liquids since it was reported by

Swatloski et al. [6] that a certain type of ionic liquid dis-

solves cellulose. It should be noted that many research

reports related to ionic liquid treatment technologies have

used two terms, i.e., ‘‘Dissolution’’ and ‘‘Liquefaction’’,

both of which refer to the phenomena whereby solid cel-

lulose or wood samples become invisible in ionic liquids;

thus, this paper uses these terms interchangeably.

With regard to an ionic liquid that is capable of dissolving

cellulose, ionic liquids that possess imidazolium cations,

shown in Fig. 1, have often been used in research. However,

it has recently been reported that various kinds of ionic liq-

uids having different structures from this can also dissolve

cellulose; furthermore, numerous findings have been re-

ported regarding the effects of cation and anion structures on

cellulose solubility and the relationship between conditions

such as temperature or heating time and the solubility of

cellulose [7–12]. Nuclear magnetic resonance (NMR) ana-

lysis [13–15] and analyses using molecular dynamics

simulations [16–18] have been conducted on dissolution

mechanisms, which have reported that dissolution pro-

gresses when ionic liquids dissociate the intramolecular and

intermolecular hydrogen bonds of cellulose and generate

interactions with its hydroxyl groups [19]. Additionally, it

has been posited that the anions in ionic liquid molecules

have a significant effect on the solubility of cellulose [20]. Is

has also been reported that carbon–carbon bonds are formed

as a result of reactions between imidazolium cations in the

ionic liquid and the hydroxyl groups at the C2 position of the

reducing ends in cellulose [21].

An examination of the reactivity of each type of ionic

liquid with wood, focusing mainly on the ionic liquid

having the ability to dissolve cellulose showed that the

selection of adequate reaction conditions ensures the

complete liquefaction of all components, including lignin,

hemicellulose, and cellulose, irrespective of whether

hardwood or softwood used [22–27]. However, cellulose

and hemicellulose are easier to liquefy than lignin [28–30].

Figure 4 shows an example of fluctuations in the residue

rate, as well as changes in the total amounts of cellulose

and hemicellulose within a residue and the amount of

lignin when treating beech wood at 120 �C using

[C2mim][Cl]. It was found that the residue decreases, and

that lignin, cellulose and hemicellulose decrease with in-

creasing treatment time. Moreover, there have been studies

aimed at separating cellulose, hemicellulose, and lignin

from woody biomass, leveraging this property [31, 32].

The cellulose and hemicellulose that comprise woody

biomass are types of polysaccharide, and their chemical

structures and characteristics differ greatly from lignin,

which is a type of aromatic polymer. Therefore, effective

separation of these components is essential for their che-

mical use and ionic liquid treatment offers the potential for

use as a fundamental technique in biorefineries. This is a

highly likely and anticipated application of ionic liquids.

Effects at the cellular level have also been examined to

evaluate reactions between wood and ionic liquids. It has

been demonstrated that when [C2mim][Cl] is used to treat

Japanese cedar, separation and destruction of wood cells

occur selectively in latewood, and that cellulose within

wood is amorphized while maintaining the tissue structure

of wood [33, 34]. This behavior is attributable to the sig-

nificant swelling that occurs after an ionic liquid treatment

has been performed; this swelling is caused by the presence

of thicker tracheid cell walls in latewood compared with

those in earlywood. However, in cases where hardwood

samples such as beech wood, were similarly treated, de-

struction similar to those observed in Japanese cedar were

not observed, although the swelling behaviors of vessels

and wood fibers were found to differ from one another [35,

36]. Additionally, in cases where 1-ethyl-3-methylimida-

zolium acetate [C2mim][Ac] was used, similar changes

were observed in the wood samples [37]. Moreover, when

Japanese cedar was treated with [C2mim][Cl],

Fig. 4 Product composition of beech wood treated with [C2mim][Cl]

at 120 �C [24]
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topochemical evaluations based on Raman microscopy

clarified that although cellulose and hemicellulose in wood

cells could be relatively uniformly dissolved, lignin in the

cell walls was dissolved first and the lignin in the com-

pound middle lamellae and cell corners was stabilized and

remained as a residue [38]. Raman microscopy has also

been used to observe changes in the wood cells of a poplar

tree after treatment with [C2mim][Ac] [39].

Derivatization and preparation of composites

Apart from the basic studies related to dissolution de-

scribed above, there have been studies related to chemical

processing, aimed at advanced applications of cellulose

materials. There have also been reports on the use of ionic

liquids as reaction solvents to prepare various derivatives

such as cellulose acetate and cellulose succinate [40–48] or

various composites of cellulose with different types of

materials such as TiO2 and wool [49–53]. Additionally,

some studies attempted to derivatize wood or compound

wood with other materials after liquefaction in an ionic

liquid. The octanoylation [54], acetylation [55], benzoyla-

tion [55], and carbanilation [55] of wood that was com-

pletely liquefied were performed in 1-butyl-3-

methylimidazolium chloride, whereas other studies pro-

duced composites with polystyrene, as well as products of

lauroylation and benzylation treatments of samples [56]. In

these studies, although the effects of various reaction

conditions were examined, it was inferred that uniform

materials were obtained through short reactions in the cases

of both cellulose and wood, which represents an excellent

reaction system compared with other, previously investi-

gated reaction solvents, because they were derivatized or

combined with other materials in a homogeneous dissolu-

tion system.

Pretreatment for bio-ethanol production

Attempts have been made at using ionic liquids in pre-

treatments before enzymatic hydrolysis to produce bio-

ethanol from cellulose, on the premise that the amor-

phization of cellulose is possible when the treatment is

performed using ionic liquids that are capable of solubi-

lizing cellulose. After cellulose is dissolved in an ionic

liquid, water is added as a poor solvent for cellulose (re-

ferred to as an ‘‘anti-solvent’’ technique) and cellulose

collected as a precipitate. It was apparent that the glucose

yield could be improved by markedly increasing the reac-

tivity of enzymes such as cellulase towards the obtained

amorphous cellulose [57–59]. It was also apparent that the

rate of glucose generation could be increased by applying

cellulase to wood components that were precipitated from

ionic liquids through water addition after ionic liquid

treatment [60–69]. Additionally, it has been shown that

cellulase retains its catalytic activity in an ionic liquid–

water mixture system, whereas it is not functional in pure

ionic liquids that are capable of dissolving cellulose [70–

73]. Other studies have been conducted on the separation of

glucose obtained after enzymatic hydrolysis using ionic

liquids and enzymes [74, 75].

Depolymerization and conversion to useful

chemicals

When ionic liquid treatments are performed over short

periods of time, ionic liquids can function as solvents not

only for cellulose but also for hemicellulose and lignin.

However, long-period treatments induce depolymerization

of the solubilized polymers within the ionic liquid. Cur-

rently, studies are actively being conducted on ionic liquid

treatment techniques for producing useful chemicals from

cellulose or wood using the afore-mentioned properties.

Figure 5 shows the results of gel permeation chro-

matography analysis of solubilized wood components from

ionic liquids after treatment of wood by [C2mim][Cl].

Results obtained using a refractive index detector (RID),

showed that low-molecular-weight compounds were

formed with increasing treatment time, although during the

initial stages of the reaction, some components exhibiting

relatively large molecular weights were observed. A peak

was observed around the molecular weight of 180 Da after

a 24-h treatment, indicating that depolymerization pro-

gresses to the monomer level. Additionally, although

compounds that absorb ultraviolet light were detected us-

ing a photodiode array (PDA) detector, large peaks ap-

peared at molecular weights of 180 Da or less, from which

it is believed that degradation compounds of sugars such as

5-hydroxymethylfurfural (5-HMF) or low-molecular-

weight compounds from lignin were contained in the ionic

liquids [24]. Additionally, depolymerization has been

confirmed to be accelerated under environments with high

concentrations of water and oxygen [76]. In contrast, re-

actions using 1-ethylpyridinium bromide were found to

undergo less progressive depolymerization compared with

the reaction using [C2mim][Cl] [77].

By analyzing the solubilized compounds in [C2mim][Cl]

after treating western red cedar and beech wood at 120 �C,

the amount of sugars such as glucose, xylose, mannose,

galactose, and arabinose was confirmed to increase with

increasing reaction time [29]. Conventional chemical con-

version techniques such as acid hydrolysis or hot-com-

pressed water treatment require the use of acid catalysts or a

high-temperature (200 �C) treatment, whereas new chemi-

cal conversion techniques using ionic liquids can convert

cellulose or woody biomass to various useful chemicals

without catalysts, at relatively low temperatures (120 �C).
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More detailed investigations on the reaction of cellulose

in ionic liquids have been carried out. Cellulose that un-

dergoes heat processing at 120 �C in the presence of

[C2mim][Cl] can be converted into useful chemicals such

as glucose, cellobiosan, 5-HMF and levoglucosan via cel-

lobiose and cello-oligosaccharide through reaction path-

ways that produce anhydrosugars and hydrolysis with

water, which is produced by degradation of cellulose or is

present in the reaction environment. These various com-

pounds are further decomposed and low-molecular-weight

compounds produced then react to form new kinds of

polymers that are completely different from cellulose. In

such processes, the [C2mim][Cl] moiety is incorporated

into the polymers [78, 79]. In addition, during these reac-

tions, inversion of a portion of glucose occurs, to produce

various disaccharides such as maltose, nigerose, kojibiose,

laminaribiose, isomaltose, and gentiobiose [80].

[C2mim][Cl] is an interesting reaction solvent that induces

two different types of reactions (depolymerization of cel-

lulose and the formation of new polymers). Furthermore,

although the same types of reaction are thought to occur

with cellulose in ionic liquids with the pyridinium cation as

those observed to occur in [C2mim][Cl], the reaction rate is

faster in cases where the anions are Cl- compared with Br-

[81].

Some researchers have claimed that lignin that has been

extracted from wood using [C2mim][Ac] can be degraded

by treatment with [C2mim][Cl] [82]. Depolymerization

mechanisms of lignin in ionic liquids are gradually being

elucidated through detailed experiments with various types

of lignin model compounds [83–85].

The literature contains reports regarding the treatment of

cellulose in ionic liquids with acid catalysts to promote

depolymerization and produce useful chemicals [86]; other

research is related to the kinetics of cellulose depolymer-

ization using an acid catalyst [87]. Researchers have re-

ported the ability to obtain 5-HMF and glucose by rapid

hydrolysis of cellulose dissolved in an ionic liquid at

100 �C, using acid catalysts such as sulfuric acid or hy-

drochloric acid [88–91]. Other researchers have mentioned

production of various types of sugars, such as glucose and

xylose, by performing acid hydrolysis of wood in ionic

liquids containing various acid catalysts such as sulfuric,

hydrochloric or trifluoroacetic acid [92–94]. It was also

found that 5-HMF and furfural, which are decomposition

products of sugars promising raw materials for polymer

production, can be obtained during such hydrolysis reac-

tions. Other research describes the production of these fu-

ran compounds from wood using various catalysts such as

chromium oxide [95–97]. Furthermore, some researchers

have reported the hydrolysis of cellulose in ionic liquids

using solid acids [98, 99]. The aim of this research was to

improve the reactivity of wood by creating homogenous

reaction systems through its liquefaction with ionic liquids.

It is reported that various compounds can be produced

by various reaction system with ionic liquids as described

above. However, those products are difficult to recover

from ionic liquids. Separation or recovery of such products

derived from woody biomass is thought to be an important

future research subject for the practical application.

Summary

Because ionic liquids are currently expensive, it will be

necessary to recycle them for repeated use or establish

simple treatment processes to push the technology intro-

duced in this article towards practical implementation. In

addition, there are numerous types of ionic liquids whose

basic reactions with cellulose or wood remain unclear. On

the basis of the mechanisms identified so far, it is apparent

Fig. 5 Gel-permeation chromatograms for compounds produced

from beech wood solubilized in [C2mim][Cl] at 120 �C at various

treatment times [24]. RID refractive index detector, PDA photodiode

array
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that ionic liquids possess the potential to offer unique

technologies for the use of woody biomass that distinctly

differ from previous technologies. I hope that this article

will provide hints for research and development directions,

which will help promote use of wood.
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28. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP
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