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Abstract Timber joints used in traditional Japanese

constructions have no metal plates or fasteners. Because

these joints resist external force by embedment to each

member, they show high ductility. The ductile joints get

much attention recently. Japanese ‘‘Watari-ago’’ joint used

in horizontal structure is one such ductile joint. The joint

consists of two beams with interlocking notches, which

build resistance against in-plane shear forces. In this paper,

the mechanical behavior of ‘‘Watari-ago’’ joints is studied

experimentally and theoretically. Experimental results

show that ‘‘Watari-ago’’ joints can retain resistance after

reaching their yield strength and that mechanical behavior

varies depending upon notch shape and size. In theoretical

research, a predicting model of mechanical behavior of the

joint is developed by applying wooden embedment theory.

The model proposed in this study also identifies the size

that gives optimal mechanical performance. By numerical

calculation on the basis of the model, the authors find it

quantitatively that the increase of the sizes of beam width

and notch depth has greatly effect on the moment

resistance.

Keywords Timber joint � Mechanical modeling �
Moment–deformation angle relationship � Wooden

embedment

Introduction

Traditional Japanese timber constructions are the result of a

long progress in the art of timber construction. Despite

exposure to earthquakes and typhoons, these constructions

persist to the present day. Because the constructions consist

mainly of columns and beams, the mechanical behavior of

the joints is important in evaluating their mechanical per-

formance under external forces. The joints used in these

constructions consist of wood-to-wood without metal

plates or fasteners. These joints resist external force by

embedment to each member. Under embedment forces,

wood may be loaded far over its elastic limit. Thus, the

joints depending on wooden embedment property for the

resistance also have high ductility.

Ductile joints get much attention recently. These joints

have high energy absorption capacity, and they are expected

to delay or avoid their brittle failure. Many researchers have

tried to develop new ductile joints [1–4]. The ductility can

also be found in traditional timber joints. Japanese ‘‘Nuki’’

joints [5, 6], slot-plug type joint seen in China [7], Taiwanese

‘‘Nuki’’ joint [8, 9] and dovetail joint used in Korea [10–12]

has been already studied mechanically.

Japanese ‘‘Watari-ago’’ joint is one such timber joint used

in a floor or a horizontal roof member of traditional Japanese

timber constructions, as shown in Fig. 1. When horizontal

forces due to earthquakes or winds act on the structure, the

‘‘Watari-ago’’ joint resist the in-plane shear forces. ‘‘Watari-

ago’’ joints consist of two notched beams, as shown in Fig. 2.

The interlocking of these notches resists the applied load.

Although there has been experimental study of the

mechanical behavior of ‘‘Watari-ago’’ joints [13], few the-

oretical studies have been conducted. Because the joint has

complex design, three-dimensional deformation under the

embedment force is required for the theoretical analysis. It is
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a reason that the analysis of ‘‘Watari-ago’’ joint becomes

more difficult than other joints.

This paper attempts to develop a calculation method for

predicting the mechanical behavior of the ‘‘Watari-ago’’

joint based on wooden embedment properties, and discuss

the relationship between size and mechanical behavior

based on our theory.

Theory

Formulation of displacement under embedment

loading

Embedment occurs at the contact area of interlocking

notches when an in-plane shear force acts on the joint.

‘‘Watari-ago’’ joint seems to produce its resistance by the

embedment. The purpose of this study is to apply an

embedment theory to a formulation of the mechanical

behavior of the joint.

Under an embedment loading, a deformation is also

found at an indirectly loaded area, as illustrated in Fig. 3.

The surface deformation at the area is generally expressed

with an exponential curve like Eq. (1) [14].

Z ¼ d� expð�aXÞ ð1Þ

Inayama made a theory with this equation, describing an

embedment property of wood [14]. The theory describes

the material properties in the elastic region well. However,

it does not cover plastic deformation. To describe the

mechanical behavior of the ‘‘Watari-ago’’ joint after yield

deformation, this study expands the theory to represent the

wooden embedment properties in the plastic region.

The exponential curve expressed by Eq. (1) starts from

the edge of the steel plate as shown in Fig. 3. At deter-

mining an end point of the exponential curve, a decay point

is set [14]. The decay point is assumed that displacement is

essentially zero. The point is positioned at the distance

between the edge of steel plate and the end point of an

exponential curve as shown in Fig. 3. The distance was

then called decay length and is assumed to be 1.5Z0, where

Z0 is thickness of wood member [15]. The shape of the

exponential curve is determined by a coefficient a. In the

indirectly loaded area, the volume deformation vX=1.5Z0 in

the range of decay length (0 B X B 1.5Z0) is assumed to be

0.9 times the original volume deformation vX??(0 B X). It

is explained by Eq. (2) [14]:

vX¼1:5Z 0

vX!1
¼ 1 � expð�1:5Z 0aÞ � 0:9 ð2Þ

From Eq. (2), coefficient used in the exponential curve a is

derived as 1.5/Z0. The coordination of the decay point is

Fig. 1 A ‘‘Watari-ago’’ joint in horizontal roof members, consisting

of two notched beams

Fig. 2 Design of two types of ‘‘Watari-ago’’ joint. a–d Size parameters in upper beam. e–k Size parameters in lower beam. Pairs of size

parameters (a and h, c and i, d and j) have same value because of geometrical relationship
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then derived by assigning X = 1.5Z0 to Eq. (1). It becomes

(1.5Z0, de-9/4).

Inayama assumed the fixed value of a as 1.5/Z0 [14].

However, for large displacement, it is undesirable to con-

tinue using the embedment displacement d for the coordi-

nate of the decay point. The reason for this is that the

irrelevant volume becomes larger because the displacement

at the decay point is increasing due to an increase in d. The

coefficient a then was divided in this research when the

deformation becomes large. In the case of large displace-

ment, the coordinate of decay point is fixed at the case that

the displacement d reaches the yield displacement dy. The

coordinate is expressed as (1.5Z0, dye-9/4). The authors

then derive another formula of a in the range of dy\ d.

The coefficient a in the range is derived by assigning the

coordinate (1.5Z0, dye-9/4) to Eq. (1). Therefore, the coef-

ficient a used in this study is obtained as

a ¼
3

2Z 0 d� dy

� �

3

2Z 0 �
2

3Z 0 log
dy

d
dy\d
� �

8
><

>:
ð3Þ

Formulation of mechanical behavior of ‘‘Watari-

ago’’ joint

The derivation of the theoretical model for predicting the

mechanical behavior of the ‘‘Watari-ago’’ joint is described in

this section. Three assumptions are made for the derivation:

Assumption 1 When in-plane shear force acts on the

specimen, embedment deformation is found at the contact

area perpendicular to the grain, as shown in Fig. 4a.

Assumption 2 When the deepest part of a contact area

reaches yield displacement dy, plastic deformation occurs

partially, as shown in Fig. 4b. The embedment force is

calculated based on Hooke’s law in the elastic deformation

region. For plastic deformation, the embedment force is

calculated by multiplying a reduction coefficient r to

describe non-linear behavior. The reduction coefficient r is

defined as the ratio between the slopes of the plastic and

elastic deformation regions on a stress–strain diagram of

wooden embedment. In this research, the value of r is

obtained from embedment test with small clear specimen

as described later.

Assumption 3 If there are gaps at contact areas of the

joint (as shown in Fig. 5), the structure cannot produce its

resistance at initial loading until the notches start inter-

locking by additional loading.

Based on these assumptions, the moment resistance M

produced in the ‘‘Watari-ago’’ joint can be calculated by

the following equations. The derivation in this study starts

from Hook’s low, which simply express a stress–strain

relationship. By multiplying size parameters to the strain in

the low, the embedment forces Pu and Pl produced in upper

or lower beam shown in Fig. 4a are given as

Pu ¼ Vu

a
E90; Pl ¼

Vl

j
E90 ð4Þ

where Pu and Pl are the respective embedment forces

produced on the upper and lower beams, Vu and Vl are the

volume deformations on the upper and lower beams (ex-

pressed by the darker parts in Fig. 4a), and E90 is the

modulus of elasticity perpendicular to grain. The variables

a and j are the sizes of the notch (see Fig. 2). According to

Eq. (4), the embedment forces Pu and Pl depend on the

volume deformations Vu and Vl. Calculations of Vu and Vl

are thus important for predicting moment resistance M.

Fig. 3 Surface shape of indirectly

loaded area under embedment

loading, taken a side view of small

clear wood specimen. An

embedment deformation is divided

on the boundary of the Z axis. The

left side is called the directly loaded

area, and right side the indirectly

loaded area in this research. The

surface shape of the indirectly

loaded area is expressed as an

exponential curve
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For the calculation of volume deformation, contact areas

are divided into four smaller components by the following

process (see Fig. 4b).

Deformed part 1 Deformation at directly forced area.

Volume deformation at this part is named Vx1.

Deformed part 2 Deformation at an indirectly loaded

area, adjacent to deformed part 1, and parallel to the grain.

Volume deformation at this part is named Vx2.

Deformed part 3 Deformation at an indirectly loaded

area, adjacent to deformed part 1, and perpendicular to the

grain. Volume deformation at this part is named Vx3.

Deformed part 4 Deformation at an indirectly loaded

area, and adjacent to the deformed parts 2 and 3. Volume

deformation at this part is named Vx4.

The index x is substituted for u or l in the case of the

upper and lower beams, respectively.

The deformation volume Vu describes the total volume

deformation at a contact area on the upper beam. It can be

written as

Vu ¼ Vu1 þ Vu2 þ Vu3 þ Vu4 ð5Þ

The volume deformation of the deformed part 1 Vu1 is

expressed in Fig. 6a including plastic area. Thus, we can

geometrically derive it:

Vu1 ¼ 1

2
c

d

2
sin hþ e

2
sin h

� �
d

2
cos h� e

2
cos h

� �

¼ 1

8
c e2 � d2
� �

sin h cos h ð6Þ

Volume deformations Vu2 and Vu3 in Fig. 6a, b are then

found by integration of exponential curves describing the

Fig. 4 a Geometry of compressed deformation of ‘‘Watari-ago’’ joint

under a deformation angle h (top view of the joint in Fig. 2). Darker

parts mean deformed areas. b Three dimensionally expression of a

deformed part in upper beam. It is divided into 4 parts. The axis x, y,

z is according to Fig. 2. a, d, e and j size parameters in Fig. 2, Pu and

Pl embedment forces produced on the upper and lower beams, lu and

ll length from the rotational center to loading points Pu and Pl

Fig. 5 Gaps at the contact area.

Gu gap seen from the viewing

point A. Gl gap seen from the

viewing point B
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surface shapes of the indirectly loaded area. These volume

deformations can be written as

Vu2 ¼ c

Z 3
2
a

0

e

2
sin h� exp �axð Þdx ð7Þ

Vu3 ¼
Z e

2
cos h

d
2

cos h

Z 3a
2n

0

x tan h� exp �anyð Þdydx ð8Þ

where the coefficient n in Eq. (8) represents the grain

direction [14]. This will be described later; the value of the

coefficient n is 5. For the calculation of volume deformation

Vu4, we assume the exponential curve in the y direction start

from the exponential curve at the edge of deformed part 2,

as shown in Fig. 6b. The volume deformation then becomes

Vu4 ¼
Z 3

2
a

0

Z 3a
2n

0

e

2
sin h� exp �axð Þ � exp �anyð Þdydx ð9Þ

When the deformation angle h is larger than the yield

deformation angle hy, the deformation volume Vu is

divided into elastic volume deformation Vue and plastic

volume deformation Vup (shown in darker shading in

Figs. 4b and 6). As shown in Fig. 4b, the overall volume

deformation Vu can be divided into the elastic volume

deformation Vuei and plastic volume deformation Vupi.

The index i is substituted with 1–4 according to the

deformation parts described earlier. The overall volume

deformation then becomes

Vu ¼
X4

i¼1

Vui ¼
X4

i¼1

Vuei þ Vupi

� �
ð10Þ

The yield deformation angle hy is defined as the angle for

which the largest displacement (esinh)/2 reaches yield

displacement dy. The yield displacement dy is considered

as a function of the sizes, the coefficient a and allowable

stress for long sustained embedment loading fm [16]:

dy ¼ 2:4afm

E90

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CxCyCxmCym

p ð11Þ

where

Cx ¼ 1 þ 1

ae
1 � exp � 3a

2
a

� �� �
;

Cy ¼ 1 þ 1

anc
1 � exp � 3a

2
an

� �� �

Cxm ¼ 1 þ 4

ae
;Cym ¼ 1 þ 4

anc

The authors now derive the plastic volume deformations

Vupi in Eq. (10). As shown in Figs. 4b and 6, the plastic

volume deformation Vup1 at part 1 are calculated using the

length lp1 of the top surface of the plastically deformed in

deformation part 1. Geometrically, we obtain

lp1 ¼ e

2
cos h� dy

tan h
ð12Þ

The plastic volume deformation at part 1, Vup1, is described

with lp1:

Vup1

¼

c

2
lp1

e

2
sin h� dy

� � d

2
sin h� dy

� �

c

2

e

2
sin hþ d

2
sin h� 2dy

� �
e

2
� d

2

� �
cos h

d

2
sin h� dy

� �

8
>>><

>>>:

ð13Þ

For the deformed part 2, the length lp2 of the top surface of

the plastically deformed in deformed part 2 (Fig. 6a) is

obtained by substituting the yield displacement dy for the z

in exponential curve (Eq. (1)):

Fig. 6 Size parameters and equations that make up the deformed parts (detailed view of Fig. 4b). lp1, lp2, lp3 and lp4 length of the top surface of

the plastically deformation in deformed part 1–4
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lp2 ¼ � 1

a
log

2dy

e sin h
ð14Þ

The plastic volume deformation at part 2, Vup2, can be

expressed as

Vup2 ¼ c

Z lp2

0

e

2
sin h� exp �axð Þ � dy

� �
dx ð15Þ

The length lp3 of the top surface of the plastic deformation

in deformed part 3 (Fig. 6b) and the plastic volume

deformation at part 3, Vup3, is given by forms similar to

Eqs. (14) and (15),

lp3 ¼ � 1

an
log

dy

x tan h
ð16Þ

Vup3

¼

R e
2
cosh

e
2
cosh�lp1

R lp3

0
x tanh� exp �anyð Þ� dy

� �
dydx

d

2
sinh�dy

� �

R e
2
cosh

d
2
cosh

R lp3

0
x tanh� exp �anyð Þ� dy

� �
dydx

d

2
sinh�dy

� �

8
>>><

>>>:

ð17Þ

The volume deformations Vup4 is also calculated by the

similar way:

lp4 ¼ � 1

an
log

2dy

e sin h� exp �axð Þ ð18Þ

Vup4 ¼
Z lp2

0

Z lp4

0

e

2
sin h� exp �axð Þ � exp �anyð Þ � dy

n o
dydx

ð19Þ

Expressed in Eq. (10), the volume deformations Vui is the

sum of the elastic volume deformation Vuei and plastic

volume deformation Vupi. Therefore,

Vuei ¼ Vui � Vupi ð20Þ

The moment resistance Mu on the upper beam produced

due to embedment is given as follows, using the embed-

ment forces in Eq. (4), the length lu from the rotational

center to the loading point and the reduction coefficient r

written in above,

Mu ¼ E90

a

X4

i¼1

Vuei þ r
E90

a

X4

i¼1

Vupi

 !

lu � 2 ð21Þ

Then the length lu is simply assumed as e/3 to avoid the

derivation become complexity although the length lu
should be changed when considering the indirectly forced

area and yielding.

It is possible that the volume deformations in lower

beam Vlei and Vlpi is calculated by the similar Eqs. (4–21).

Therefore, the moment resistance on the lower beam Ml is

calculated as

Ml ¼
E90

j

X4

i¼1

Vlei þ r
E90

j

X4

i¼1

Vlpi

 !

ll � 2 ð22Þ

The total moment resistance produced in the ‘‘Watari-ago’’

joint, M, is expressed as

M ¼ Mu þMl ð23Þ

If gaps described in the Assumption 3 exist in the real

structure, moment resistances Mu or Ml are not produced

until the notches start interlocking by additional loading.

The assumption can be expressed by considering angular

lags hu and hl. The moments Mu or Ml cannot be produced

until the deformation angle reached hu or hl, respectively.

By defining the gaps Gu and Gl as in Fig. 5, these lags hu

and hl in the deformation angles are expressed as

hu ¼ 2Gu

e
¼ h� a

e
; hl ¼

2Gl

a
¼ j� d

a
ð24Þ

Materials and methods

Full-scale test specimens

Thirty full-scale specimens were tested for experimental

analysis of the mechanical behavior of ‘‘Watari-ago’’ joint.

These were cross specimens of Japanese cedar (Cryptomeria

japonicaD.DON) with an interlocking ‘‘Watari-ago’’ joint at

their center. The overall size was 1500 9 1500 mm. Two

types of notch shape were used for the lower beams. These

are shown in Fig. 2 as Type A and Type B. Six different

series of notch dimensions were used; these are shown in

Table 1, where the size parameters a, b,…, k and the gap

sizes Gu and Gl are as described in Figs. 2 and 5. The values

in the table are desired values; therefore, there are slight

errors in actual specimens. The parameters enclosed in

parentheses (h, i and j) have the same value with the next

parameters because of the geometrical relationship. Five

specimens were produced for each series.

Loading method

The experimental setup is shown in Fig. 7. A steel-framed

fatigue testing machine was used for the test. The top of the

specimen was connected with pins to a hydraulic actuator,

while the remaining three edges were connected to the steel

frame. In-plane shear forces were applied to the top of the

specimen with reverse cyclic loading. The loading sequence

consisted of nine cyclic steps with three identical cycles, as

shown in Fig. 8. The deformation angle amplitudes h of each of

the cyclic steps were ±1/450, 1/300, 1/200, 1/150, 1/100, 1/75,

1/50, 1/30, and 1/7 rad (at the maximum stroke of the machine).

486 J Wood Sci (2015) 61:481–491
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Stroke speed was 200 mm/min. For measuring the load P and

deformation angle h, a load cell and two displacement gages

were used. These were recorded simultaneously with a

dynamic data logger at a sampling frequency of 5 Hz.

Results and discussion

Test results of full-scale specimens

Similar failure modes were found in most full-scale spec-

imens. Embedment failure occurred in all of the contact

areas, as shown in Fig. 9a. It is clear that the behavior of

the ‘‘Watari-ago’’ joint depends on embedment properties.

Series II and IV specimens showed a distinct failure not

observed in other specimens. Shear failures starting from

the corner of the notch are seen at large deformation

angles; this is seen in Fig. 9b.

Figure 10 shows the hysteresis characteristics of the

‘‘Watari-ago’’ joints. The moment was calculated by mul-

tiplying the load by the length between the pins at the top

and bottom specimen edges. The deformation angle h was

obtained by using the distance H between the two dis-

placement gages and their measured values v1 and v2:

h � tan h ¼ v1 � v2

H
ð25Þ

As the deformation angle becomes large, the ‘‘Watari-ago’’

joints produce greater moment resistance. Even if the

deformation angle greatly exceeded the yield deformation

angle, the moment resistance kept increasing; it is clear that

‘‘Watari-ago’’ joints have high ductility. At the second or

third loading instance of the cyclic steps described in the

previous section, the stiffness decrease was not obvious for

small deformation angles (below approximately 0.03 rad).

However, once the deformation angle increased over

0.1 rad, the specimen showed little moment resistance at

the second or third loading. This is attributed to residual

strain at contact areas.

The hysteresis characteristics are different between each

series according to differences in notch size and shape.

Series III specimens showed little initial resistance due to

the existence of gaps at the contact area, but large moment

resistance occurred after contacting. Series IV specimens

showed little moment resistance at the initial loading like

series III; however, it did not show large stiffness after

Fig. 7 Experimental setup

Fig. 8 Loading sequence

Table 1 Sizes of ‘‘Watari-ago’’ joint specimens

Series Type a (h) (mm) b (mm) c (i) (mm) d (j) (mm) e (mm) f (mm) g (mm) k (mm) Gu (mm) Gl (mm)

I A 120 150 60 90 120 180 15 – 0.00 0.00

II A 120 150 60 72 120 180 24 – 0.06 0.00

III A 150 120 60 90 120 180 15 – 0.68 0.00

IV A 120 180 60 120 150 120 15 – 0.97 0.76

V B 120 180 30 120 150 120 15 60 0.44 0.00

VI B 120 150 30 90 120 180 15 60 0.00 0.00

The parameters a, b, …, k refer Fig. 2

The gap sizes Gu and Gl refer Fig. 5

The values were desired values, and therefore there were errors in actual specimens

The parameters enclosed in parentheses (h, i, j) have the same value with the next parameters because of the geometrical relationship

J Wood Sci (2015) 61:481–491 487
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contacting. When shear failure occurred as in Fig. 9b,

Series IV specimens showed an abrupt decrease in moment

resistance. Thus, shear failure at large deformation angles

is an important factor for decrement of moment resistance.

Series VI specimens showed less stiffness than others.

The bilinear (perfect elasto-plastic) model for evaluating

mechanical characteristics based on energy analysis, which

is generally used for mechanical research of wooden

structural components in Japan [17], is applied in this

study. The thin lines in Fig. 11 and Table 2 are the results

of this applying; the thin lines are envelope curves which

are made by taking the largest moment in each deformation

angle as shown in Fig. 10 and the mechanical character-

istics show average values. Series III and V specimens,

which have large beam width, show larger maximum

moment resistance Mmax, moment at yield point My and

ultimate moment Mu than other specimens. The moment

resistances at 1/120 rad, M1/120, of series III is small. These

specimens have large gaps at contact areas. Thus, the

existence of gaps is an important factor contributing to the

hysteresis characteristics, especially at initial loading.

Theoretical results

Figure 11 also shows comparisons of theoretical and

experimental results. Thick lines represent the theoretical

results while thin lines represent the experimental ones.

The parameters used in the theoretical predictions are as

follows. Size parameters a, b, c, …, k are described in

Fig. 2 and Table 1. According to the reference [14], E90 is

Fig. 9 Failure mode

Fig. 10 Hysteresis characteristics of the ‘‘Watari-ago’’ joints. Series I to VI refer Table 1

488 J Wood Sci (2015) 61:481–491
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assumed by multiplying E0 by 1/50, where E0 is the

modulus of elasticity in compression parallel to the grain.

E0 is 7.6 GPa, as obtained by a standard compression test

according to JIS Z 2101 [18], performed separately. The

reduction coefficient r was found to be 0.065 from the

stress–strain diagrams obtained by the additional embed-

ment experiment according to JIS Z 2101 [18]. The values

of the gaps are shown in Table 1. The allowable stress for

long sustained embedment loading fm is 1.96 MPa [19].

The coefficient n representing the grain direction is 5 [14].

The theoretical results reflect accurately the experimental

results, as shown in Fig. 11. It has opened up the possibility of

theoretical simulation of the mechanical behavior of the joint.

However, the accuracy of rotational stiffness is not sufficient

in most series. The possible reasons and future issues of it are

raised: (1) The modulus of elasticityE0 was got from the small

clear specimens, while in contrast, the contact areas of the

actual joint specimens had different conditions from them

such as incline of annual ring and insufficient processing of

surface. The consistency verification of the parameters (e.g.,

modulus of elasticity E0) is one of the future issues. (2) The

length lu was assumed to a fixed value as e/3; however, lu
should be changed due to the existence of the indirectly loaded

area and yielding. (3) The friction forces should be produced

in actual joints, and the friction should be taken into consid-

eration in the future study. It should be noted that the little

moment resistance during initial loading, especially shown in

series III and IV specimens, can be predicted by considering

the existence of contact gaps.

Relationship between notch size and mechanical

behavior

It is clear that notch size is a significant factor for the

mechanical behavior of the ‘‘Watari-ago’’ joint. In this

research, the mechanical behaviors of fictitious joints are

calculated by the theoretical method discussed in previous

section ‘‘theory’’ for elucidating a mechanically efficient

design of ‘‘Watari-ago’’ joint. The notch sizes of ‘‘Watari-

ago’’ joints are freely changed according to several cases

described below and illustrated in Fig. 12.

Case 1 Length g parallel to grain at upper beam contact

area is changed. Lower beam width e is fixed. With a fixed

e, the notch width j of the lower beam is also changed

simultaneously because of the constraint condition

j ? 2g = e (Fig. 12a).

Case 2 Length g parallel to grain at upper beam contact

area is changed. The notch width j of the lower beam is

fixed in this condition. Consequently, the width e of the

lower beam is also changed simultaneously because of the

constraint condition j ? 2g = e (Fig. 12b).

Case 3 Length h parallel to notch at lower beam is

changed. Width a of upper beam is also changed simulta-

neously because of the constraint condition

a = h (Fig. 12c).

Case 4 Notch depth c and i of upper and lower beams is

simultaneously changed because of the constraint condition

c = i (Fig. 12d).

Fig. 11 Theoretical and experimental results. Series I to VI refer Table 1
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Case 5 Height i of notch at lower beam is changed. Depth

c of notch at upper beam is also changed because of the

constraint condition c = i. In this case, the top surface of

notch in lower beam (gray part) is moved downward. The

shape of notch in lower beam become like Type B after the

change of i (Fig. 12e).

Case 6 Width, j, of notch at lower beam is changed.

Length d of notch at upper beam parallel to grain is also

changed simultaneously because of the constraint condition

d = j (Fig. 12f).

Figure 13 shows the change in moment resistance with

changing parameters a, b, c,…, j according to the above

cases. The vertical axis depicts the change in moment due

to the change in dimension size. The moment of series I at

deformation angle 0.1 rad is used as a standard. The hor-

izontal axis shows the change in sizes according to the

cases in Fig. 12. The sizes of series I are used as the basis

of comparison. Figure 13 highlights the relationships

between size changes and increase (or decrease) of moment

resistance. From the graph, case 6 shows great effect on

moment resistance. When j is changed to 150 % according

to case 6, the change in moment is greater than 100 %.

Cases 3 and 4 changes more strongly affect moment

resistance than case 6. The change in moment almost

reaches 50 % for size changes of 50 %. Size changes

occurs the enlargement or reduction of cross section of the

members. Therefore, large size changes such as 100 % are

Fig. 12 Cases of change in notch size. The black and gray lines

means varied and fixed, respectively. a, c, d, e, g, h and j refer Fig. 2.

V, varied size parameter; F, fixed size parameter; C, constraint

condition due to geometrical relationships. In case 5, the top surface

of notch in lower beam (gray part) is moved downward

Table 2 Mechanical properties

of ‘‘Watari-ago’’ joint
Series Mmax (kNm) My (kNm) K (kNm/rad) Mu (kNm) Ds M1/120 (kNm)

I 3.26 1.83 58.0 2.87 0.47 0.70

II 3.01 1.65 50.9 2.61 0.49 0.49

III 3.83 2.05 51.2 3.27 0.55 0.29

IV 2.99 1.79 47.8 2.68 0.54 0.43

V 3.89 2.23 62.0 3.50 0.51 0.66

VI 3.02 1.66 50.9 2.64 0.51 0.53

Mmax maximum moment, My moment at yield point, K rotational stiffness, Mu ultimate moment, Ds

structural characteristic factor, M1/120 moment at deformation angle 1/120 rad

490 J Wood Sci (2015) 61:481–491

123



unfeasible. The authors thus propose the limit of change to

the horizontal axis as -50 to 50 % (gray part in Fig. 13).

Under this limit, it becomes clear that cases 3, 4, and 6 are

all effective.

Conclusions

This paper described about the mechanical behavior of

‘‘Watari-ago’’ joints experimentally and theoretically.

The experimental results showed that ‘‘Watari-ago’’

joints have high ductility. Their moment resistances are

different depending upon the shape of the notch and the

beam cross sections. For example, some specimens with

large beam width showed larger maximum moment. It is

also clear that the existence of gaps at the contact area

causes decreased moment resistance especially during

initial loading. Another significant aspect of this paper

was to derive the moment resistance of ‘‘Watari-ago’’

joints theoretically based on wooden embedment theory.

The theoretical results reflect accurately the experimental

results. It is noted that the little moment resistance seen

at initial loading can be expressed by considering the

gaps in contact areas. Finally, the authors indicated the

size parameters effective for altering the mechanical

behavior of the ‘‘Watari-ago’’ joint by using our theo-

retical simulation. The results of the simulation show

that optimization of beam width and notch depth

increase of 50 % in terms of the joint’s moment

resistance.
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